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Introduction

Motivation for nuclear detection

Emerging nuclear threats
Surveillance and monitoring of nuclear waste/storage facilities
Nuclear nonproliferation
Lack of technology to address situational awareness
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Introduction

Needle in a haystack

Problems
Autonomously detect
radiation sources
generating weak signals
burried within a sea of
background events
Autonomously map
radiation levels over a
given area to provide
real-time situational
awareness
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Background

Prior work: mobile sensor networks

Groups of sensors used to
monitor, track, and survey
[Oh et al., 2006]
Mobile and stationary sensors for
surveillance
[Huntwork et al., 2006]
Gradient climbing for distribution
of sensors [Cortes et al., 2005,
Orgen et al., 2004]

source: (LANL) "vision of future response to global

threats "
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Background

Prior work: multi-agent coordination

Flocking [Tanner et al., 2007,
Olfati-Saber, 2006]
Swarming
[Gazi and Passino, 2002]
Pursuit-evasion games
[Antoniades et al., 2003,
Yamaguchi, 1998]
Formation keeping
[Das et al., 2002,
Tanner and Kumar, 2005]
Geometric optimization
[Cortes et al., 2005]
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Background

Prior work: topological mapping

Simultaneous Localization and
Mapping
[Dissanayake et al., 2001]
Three dimensional maps in
dynamic environments
[Hahnel et al., 2003]
Occupancy grids
[Elfes and Moravec, 1985]
Frontier based exploration
[Yamauchi, 1998, Thrun, 2001]
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Background

Prior work: spatial distribution mapping

Mapping gas concentrations
[Lilienthal and Duckett, 2004]
Tracking ocean features
[Orgen et al., 2004]
Mapping probability of
detection
[Kim and Hespanha, 2004,
Bertuccelli and How, 2005]

source: Pelagic Fisheries Conservation Program - Texas

A&M University at Galveston
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Radiation Mapping

How to find the needle

Increase detector area:
background signal ∝ area;
source signal ∝ solid angle
Design better sensors:
increase resolution
Bring a smaller sensor close
to source: for same signal,
area ∝ R−2

Radiation source

sensor
Gamma
rays

Solid angle
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Radiation Mapping

The mobile sensor

CsI sensor Charge-sensing
preamplifier

Shaping 
amplifier 8bit ADC FPGA Robot

AlphaSpectra 
CsI crystal 

Hamamamtsu 
PD 3509

Low noise 
Amptek A250

4-stage shaping 
(design by 
R. Schirato, P-25)

National 
Semiconductor
Low power,
High-Speed, 8bit
ADC08200

Altera 
Cyclone 
2910, 
65 IOs

Khepera II
miniature
mobile robot
by K-Team Inc
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Radiation Mapping

Sequential testing

Single pass, tuned to maximum
expected background and minimum
source activity
Confirms or rejects existence of
radioactive material
No information about background
radiation levels
Sensitive to assumption of source
strength

P(N|S) =
(t · µs)N

N!
e−t·µs

P(N|B) =
(t · µb)N

N!
e−t·µb

κ =
P(N|S)
P(N|B)

κ <
Pfn

1− Pfa
OR κ >

1− Pfn

Pfa
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Radiation Mapping

Robotic sequential search [Cortez et al., 2007b]
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Control velocity to regulate exposure :

a[k] =
2(L− v[k]Tt)

∆(2(Tt − Tp)−∆)
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Radiation Mapping

Bayesian mapping [Cortez et al., 2007a]

Gamma distribution on each cell

π(λ) = βγλγ−1e−λβΓ(γ)−1

Expectation

E(λ) =
γ

β
, V(λ) =

γ

β2

Reduce uncertainty (variance) in
radiation distribution

γ+
ij = γij + c β+

ij = βij + 1
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Radiation Mapping

Bayesian update

Assumptions

P(c, t) = (µ·t)c

c! e−(µ·t)

µ = χ · α
∫ t

0
1

r2(t) dt

Probability of
registering c counts:

f (c) = f (c|α, χ, r(t))

Radiation prior

f (α) =

{
1

α2−α1
, if α1 < α < α2

0, otherwise

fc(c) =∫ α2
α1

[
(χ·α

R t
0

1
r2(t)

dt)c

c! ·e
−(χ·α

R t
0

1
r2(t)

dt)

]
dα

f (α|c, χ, r(t)) = f (α)·f (c|α,χ,r(t))
fc(c) · σ
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Radiation Mapping

Sensor: a communication channel

Differential Entropy
quantifies the amount of information gained about the world by a
radiation measurement

h(A|C) = −
∫ α2

α1

f (α|c) · log2 f (α|c) dα

Mutual Information
I(A; C) = h(A)− h(A|C)
I(A; C) ≥ 0 with equality iff A and C are independent

Information surfing

is about moving the sensor along ∇I(A; C) to locally
maximize mutual information
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Radiation Mapping

Area Partitioning and Sensor Performance

Dynamic Voronoi Partitioning [Cortes et al., 2005]

Vi(P) = {q ∈ Q | ‖q− pi‖ ≤ ‖q− pj‖ ,∀pj ∈ P}

Sensing Performance Function
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f (‖q−pi‖)=8>>>>>>>>><>>>>>>>>>:

exp
„
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(R2−‖q−pi‖)
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+exp

„
−1

(‖q−pi‖−R2)

«
1
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Radiation Mapping

Control Design

Objective Function
Cortes & Bullo approach [Cortes et al., 2005]

Hi(P) =
∫

Vi(P)
f (‖q− pi‖)φ(q) dq

Our approach

Wi(P) =
∫

Vi(P)
f (‖q− pi‖)I(q, p, t) dq

Control design

ṗi =
[ ∫

Vi(P)
∂f (‖q−pi‖)

∂pi
I(q, p, t)dq +

∫
Vi(P) f (‖q− pi‖)∂I(q,p,t)

∂pi
dq

]
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Radiation Mapping

Stability Analysis

Challenge

Closed loop system is time varying; the invariance principle argument
used in [Cortes et al., 2005] does not apply.
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Radiation Mapping
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Radiation Mapping

Outline of Proof

∂I(q,p,t)
∂t = ∂h

∂d
∂d
∂t , d ,

∫ t
0

1
r2(τ)

dτ

∂h
∂d =

∑12
i=1 Ai

A1 , (−1−c)Γ(1+c,α1·d·χ)2

(1+c)d·c!(Γ(1+c,α1·d·χ)−Γ(1+c,α1·d·χ)2)) log 2

limd→∞ A1 = 0

c! changes exponentially fast whereas d changes linearly

A9 ,
α2

1cde(−α1−α2)dχ+α2dχχ2(α1dχ)2cΩ(1+c,1+c,2+c,2+c,−α1dχ)

(1+c)2(Γ(1+c,α1dχ)−Γ(1+c,α2dχ))2 log 2

Ω(·) =
∑∞

n=0
(1+c)n(1+c)n
(2+c)n(2+c)n

· −αn
1

n!

Ω(·) = 0

∴ limd→∞
∂h
∂d = 0 =⇒ limt→∞

∂I(q,p,t)
∂t = 0
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Radiation Mapping

Stability Analysis

Proposition
Consider the gradient field defined by the control input ui. Then the
system stabilizes at configurations that (locally) minimizes the
information flow from each robot, as expressed by the product
I(q, p, t)f (‖q− pi‖), for i = 1, . . . , n.
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Radiation Mapping

Outline of Proof

∂(I(q,p,t) f (‖q−pi‖))
∂pi

= ∂f (‖q−pi‖)
∂pi

I(q, p, t) + f (‖q− pi‖)∂I(q,p,t)
∂pi

Lyapunov function candidate:
W(P) = (

∑
i

∫
Vi(P) f (‖q− pi‖)I(q, p, t) dq)−1

Ẇ(P) =
∑

i
∂W(P)

∂pi
ṗi + ∂W(P)

∂t

Ẇ(P) = −W(P)2 ∑
i

[ ∫
Vi(P)

∂f (‖q−pi‖)
∂pi

I(q, p, t)dq +∫
Vi(P) f (‖q− pi‖)∂I(q,p,t)

∂pi
dq

]2
−W(P)2 ∑

i

∫
Vi(P) f (‖q− pi‖)∂I(q,p,t)

∂t dq

If it does not stabilize at configurations ∂I(q,p,t)f (‖q−pi‖)
∂pi

= 0,
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Radiation Mapping

The contradiction

∣∣∣∂(I(q,p,t)f (‖q−pi‖)
∂pi

∣∣∣ > ε ∀t > T

W3(ε) , W(P)2 ∑
i

∫
Vi(P) ε2dq

β(t) , −W(P)2 ∑
i

∫
Vi(P) f (‖q− pi‖)∂I(q,p,t)

∂t dq

Ẇ(P) ≤ −W3(ε) + β(t) ≤ −(1− θ)W3(ε)− θW3(ε) + β(t),
where 0 < θ < 1

limt→∞
∂I(q,p,t)

∂t = 0 =⇒ limt→∞
∫

Vi(P) f (‖q− pi‖)∂I(q,p,t)
∂t dq = 0

After suffiecent time, τ , −θW3(ε) + β(t) ≤ 0 ∀ t > τ
=⇒ Ẇ(P) ≤ −(1−θ)W3(ε) , γ̇(t) =⇒ γ(t) = γ(0)− (1−θ)W3(ε)t
Comparison Lemma gives
W(P) ≤ γ(t) = γ(0)− (1− θ)W3(ε)t =⇒ W(P) < 0

But by construction W(P) ≥ 0!
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Results and Conclusion

Implementation issues

Ideally

For each point p, and total counts c collected there, update f (α|c, χ, r)
through Bayes rule.

Issues
Numerical instabilities: the incomplete gamma function
Γ(1 + c, α1dχ)
The assumption on uniform prior: f (α) = 1

α2−α1

Convergence speed
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Results and Conclusion

Algorithm implementation

Outline of Algorithm
Area discretized into 100 x 100 cell grid, initially uniform f (α)
Five time periods for each measurement cycle
Update the total counts collected at cell (i, j): c̄+

i,j = ci,j·(Mi,j−1)+c̄i,j

Mi,j

Update uniform f (α) at cell (i, j): δ , min{| c̄i,j

χd − α1|, | c̄i,j

χd − α2|};
α+

1 = c̄i,j

χd − δ, α+
2 = c̄i,j

χd + δ

Speed up by updating neighborhood: ci,j =
⌊

c
χdi,j

⌋
How probable is this "remote" count? F =

f (α)·f (̄ci,j|α,χ,r(t))
fc (̄ci,j)

· σ

New candidate for αi,j α′ =
1

α2−α1
·α1+α2

2 +F·ci,j

1
α2−α1

+F

Is that candidate better? F′ =
f (α′)·f (̄ci,j|α′,χ,r(t))

fc (̄ci,j)
· σ

If F < F′, update α+ = α′,
and bounds α+

1 = α − 1
2·F′ , α

+
2 = α + 1

2·F′
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Results and Conclusion

Simulation Results

Radiation Map
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Average difference between real and estimated map is .42 counts/sec
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Results and Conclusion

Experimental results

Khepera II robot: Wireless RF turret
RADDS multi-robot coordination
software environment
Light intensity instead of radiation

Poisson filtering of IR readings
Crossbow Cricket network for
localization

Interference issues with wireless
data transmission
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Results and Conclusion

Experimental Results (cont’d)

Experimental Test

Mutual Information
Mutual Information Map
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Results and Conclusion

Conclusion

Outcomes
Cooperative coordination of robot team for radiation mapping
Decentralized execution
Stable and fault tolerant

Open issues
Vehicle dynamics
Robot localization
Complete decentralization
Obstacle avoidance
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Results and Conclusion

Lessons from flocking

Local interaction

ui = −
∑
j∈Ni

(vi − vj)−
∑
j∈Ni

∇riVij(‖rij‖)

Force symmetry and Lyapunov stability

W(r̄, v) =
1
2

N∑
i=1

(Vi + vT
i vi) ⇒ Ẇ =

N∑
i=1

vT
i ∇riVi − vTLv−

N∑
i=1

vT
i ∇riVi
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Results and Conclusion

Need a different approach

Why it will not work here
The canceling terms result from "kinetic" + "potential"
In the mapping problem: different Lyapunov function

Alternatives

Make collision configurations "uninteresting"

I(q, p, t)
∏

i,j∈{1,...,N}

ϕ(‖pi − pj‖)
0.2 0.4 0.6 0.8 1

Distance
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Results and Conclusion
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