
It i s the purpose of the system superstructure
described in th is *per to create M envircnment
that eases the user's development o f eoftware.
'hchniques a d software tools are described that
help oqania a system into a v.ry atmcturd anl
modular f r a m e w o r k t h a t i s conducive to
interfacing, rpSraaing, partitlartrg onto mul t ip le
computer systems, and debugging. A system
dictionary i s described that together w i t h the
modular superstructure allows the creation o f a
highly interactive enviromnent where s ing le

can be executed and where any variable or
aggregatim of variables CM be axam-, +X&,
displayed ormcdified.

Frogrms or any level of aqgregaFan o f g=grams

htxcduction

The Industrial Systems Division of the National
Bureau o f Standards has been work i ng for over a
decade on real- time amtrol sptms. Ih6 ~i"pry
application o f this work i s in the real - trme
sensory -interactive cuntrol of robots. Wfer-s
[l]through [3] document this work and describe
the application of the urderlying atnrtun, to the
controlof an automated manu faau t - systun biq
developed at N0S.

This paper presents a broader view o f t h i s work.
It describes the implementation technique9 &nd
developed software tools used to a t the large
number of computer programs into an organized
framewxk. 'his system superstructure hzm been
fourd to aid cpnsiderably in tk inter-
In all aspects of software design, impiemmtation.
deb-- ard mint-. Ths W - & e Cartto1
System (RCS) p r e s e n t l y used for sensory -
i n t e r a c t i v e robot control a t NES has been
implemented w i t h this supersttucturc inclulhgall
of the described tools.

This paper i s partitioned into three sections.
SetionIdescribes the high level of the
system superstructure. Section I1 describes
Lmplementaticn tghniquss a d s o f t w a r e teals usd
t3 impress th is superstructure onto a sof tware
system. Section I11 describes some speci f ic
exanples f r o m FCS to i l l u s t r a t e the use of this
superstructure w i t h real - time control software.

Raviorp .~~mi-at MQS in th develop& of
large system moftware much am r e a l - t i m econtrol
systems h a m indicated a nod for higher love1
structur ing and greatar .acl. of-in-

the application of structured p
techniqwm [43, wh i le knping th individual
rwt i rv l l inanmageab le6am, a ~ d y l d t o
alarg.aanpleuMer-hical p r q r a m rtructurs of

of thir structure togetha w i t h th practical
problemm of recompiling and relinktng new or
modifidnnatina, cditirgd-cs $I ard out
o f routines, etc. make. t h i m system awkward to
track, ampmhad, daXq ardmaintain. Hame the
phenomenon that once a large syntea i s finally
made relatively tnq-fra, it L dedrp ard 1-0-
one dare6 to venture in andmodify the code for
fear of creating emxm that might b difficuLt or
impmsible to track down.

tha provided by Immt-j qmua#.mal

M ~ sof wutin~~[5,63. Ih. ~ a r ydm

This phenomenon i s clomely linked to the
d i f f icul ty of tha human programer to deal w i t h
very much information a t any given time.
-vidualv,thark. to tb dircipl irr of

a l lyBnallwell-structurd
are thereforebounded so

wilymdarseood. mea18made rp of inm3rds of
these wel l - stnrtured mutinm,-ea, mpresert
vast anmnta of intar-rel&ted indormatian that can
quickly exceed human l i m i t a t i o n s o f
information managwent [6J. These 1imiat.i.u~
re la te to the apparent inability of people to
manage more than seven pieces of information a t
any time c73.

This bmic @lenti a addresad b r e by a rigom-
higher leve l structuring techniqueor style to
format large noloftware symtems. This paper
preaentm the concept of a supersuurtwe to
organize sets o f programs in much a m m a r am to
alwaya allow the user to focua QI my level o f
detail in a amnplex ay8tem Md
deal w i t h mt more than seva,
information. Therefore, rather thanallwing the
uncontrolled growth of numbere o f routines into
large hierarchies, th is superstructure, through
its implementaticn techniquea a d e ~ f t w a m teals,
controls system growth and creates bounded
structures o f manageable size a d prw idee an
organized frameuork for their ~rteract.~~~.

7 -2 8

seation 11. I.plssont.tion

ngu~I surur i zos tba relatiemship k t w o a the
cornpamat kahoiquos and tools a d the armtion of
th qat.. suporstruotulr and i n t e r a o t i r e system
environment. This seotion desoribea in some

tool8 and system dict ionary and discusses the
mtiamlo fcr thir u...

--

dohi1th.# IrrplO.mhtim techniques, SOf tW8re

+

FIGURE 1

-A. Implaont8tion Tsohniques

Ihme b m i C technlquea a m usad to aid the m e r i n
structur ing a large soitware system. The g o d i s
t o p a r t i t i o n the proasssing in to comprehensible
unik o f a standard format and than assemble thoae
u n i t s i n t o an organgzed framework. This
superstruoture causes the processing to be always
i d e n t i f i a b l e as a o o l l e c t i o n o f simple bounded
units that can be examined at any leve l o f d e t a i l
with never mora than a small number o f parameters
t o be considered. The techniques used include
the struoturing o f a well-bounded set o f programs
i n t o a unit module, a standardized processing
sequence format, and a generic higher l e v e l
clustering of ' the unit modules to accomplish large
complex func t ions . The f o l l o w i n g t h r e e
subsections elaborate on these techniques.

1. Use o f well-bounded function as building block

This technique has much in common with the goals
o f s t r u c t u r e d p r o g r a m m i n g , n a m e l y , t h e
par t i t ion ing of a system in to smal l subunits.
Each o f these subunits has been s e t up t o
encompass a well-bounded computatim - a simple
function that i s t o t a l l y contained with in a
rou t ine of a few condi t ional t e s t s and a sma l l
amount o f computation. The d i f f e r e n c e here i s
that these modules are c l e a n l y de l ineated f rom
ea& other by the speci f icat ion of their input and
output data interfaces (Figure 2). These modules
might c a l l s u b r o u t i n e s t o comp le te t h e i r
calculations but the i r e n t i m function Ls tota l l y
defined within a s m a l l se t o f these subroutine
cal la , and are c l e a r l y sep8rat.d f r o m a l l o the r
modulea by a defined input and output data
struotum.

PROCESS MAW

0
INPUT PROCESS OUTPUT

Functionally Bounded. Nmmod Module
Functionally Bounded Module8 are Independently Ex~cutable

FIGURE 2

If "An requ i res data that "Er produces, then "En

executes, generates i t s output buffer. "A" then
exmutes and uses that data in i t s execution. "An

does not ca l l *B" midway throw i t s processingin
order t o p ick up any r e q u i r e d data. T h a t i s , the
ent i re input set mqulred by "An must be available
when " An executes. If *B" cannot execu te
independently f r o m "An, then "€In i s not a w e l l -
defined un i t module and must be included as p a r t
o f "Ar.

These unit modules become the fundamental building
blocks for tho whole system. The larger functions
o f which they are t h e component un i t s are bui l t ,
not by assembling these uni ts i n to a norma l
h i e r a r c h i c a l c a l l i n g relationship, but rather by
executing l i s t s , o r se ts o f these separate we l l -
def ined component units. Each u n i t module can
always be executed stand-alone, with i t s input and
output data r e t r i e v e d from and s to red i n to a
common memory area. This uni t module i s a
function o f only a smal l number o f variables. I t s
p r o c e s s i n g i n v o l v e s o n l y a s m a l l number o f
dec is ions and/or ca l cu la t i ons . As such, i t i s
easi ly comprehensible.

7.29

2. Use o f a standard processing format----
Each o f tho above unit modules performs some
prooessing t o oa lcu la te an output data s e t as a
functioa o f its input data set. All processing i s
on symbolic variablos. No numeric constants are
permi t ted . This processing can be p a r t i t i o n e d
in to a standard format o f t preprocess, decision -
process, a d postproooss (Figure 3).

FIGURE 3

The preprooossing i s usod to aondition and reduce
t h o number o f v a r i a b l e s i n t o a convenient
reprosentat i o n f o r the major decision -prooessing
o f the function boing calculated within the
mdule.
The decis ion - prooossing i s the algori thm or
procedure tha t ropresents t h e function being
c a l c u l a t e d . It should c l e a r l y i d e n t i f y the
relevant parameters md r x p l i o i t l y represent the
various tes t condit ioas required. The resultant
output procedures fw of these tested states
a m also cle8rly i d m k i f i e d within th is section o f
processing.

The pos tp rocess ing i s used t o cleanup the
processing o f the function. It performs such
tasks as re fo rmat t ing data i n t o a prescr ibed
output structure, or updating i n t e r n a l var iab les
suoh as counters, or saving certain values for the
next aalculatirm of the lunation.

The following i s a simple example i n pseudo-code
us& to i l l u s t r a t e this format.

-process

scaled-value X (new-value- thresh-Val 1 l scalar
soa1.d-diff z saaled-value - old- scalevalue

Ikcision -Process

if scaled-diff (W) test- value then c a l l OUT-1
if scaled d i f f (LT) test-value then c a l l OUT-2
i f saaledldiff (CT) test-value then c a l l OUT-3

mstprocess

old-scaled-value = scaled-value

The f u n c t i o n o f t h i s u n i t module i s t h e
c a l c u l a t i o n o f output 1, 2, or 3 depending on
whether a par t i cu la r value is equal to, less than
or greater than the t e s t value.

The preprocessing 1s used t o c rea te the r e a l
variable o f in teres t (scaled -diff) f r o m the input
variables new-Val, thresh-Val, scale - factor, and
the state -variable old-scaled-val.

The in format ion i s now i n a form f o r a clean
spec i f i ca t ion o f the t e s t condit ions where t h e
only in format ion o f concern i s how the value o f
the sca led - di f f compares t o that o f test- value.
Both the tes t conditions and output ca lcu la t ions
are contained in the decision -processing sectioc.
Itwill be noted that the un i t module can make
subroutine ca l l s to appropriate output procedures.
However, the unit module is tho largest structural
oomponent that c a l l s subroutines. Bow la rge r
systems am bui l t f r o m tbmse units is discussed i n
tho f O l l O U i n g subsectioa.

I n the postprooessing roc t i on o f the nodule, the
soa ld value l a s a v d in old-se8ld-valw for use
i n tG next oalcu lat ion o f the preprooeasing
section.

This partitioning o f the processing allows f o r the
isolation o f the major fuurwrtional caloulations i n
a clear format in the decision -processing sscrtion.
Preprocessing evaluates, .soales, reduces and
transforms the input data inb a more appropriate
set o f var iab les f o r t h i s decision -processing.
Postprocess ing p i cks up the extraneous, but
necessary, add i t iona l processing to keep t h i s
processing f r o m c lu t te r i ng or aonfusing the main
functional calculation of the module.

When used as a standard processing format, t h i s
technique does much to ease the user's interaction
and oomprehension o f each un i t module. T h i s
standard processing format can be applied to the
la rger system components (levels) as well. mis
will be described in the following section.

---3. Use of s s r s t r u c t u r e &organize system

b mentioned above, thu unit module i s the largest
component that issues subroutine cal ls . It i s a
very limited,w e l l controlled program hierarchy o f
a small manageable s i ze performing a well-bounded
function. But, it i s only one component o f a much
la rger system. To organize un i t modules i n t o a
larger framework, a superstructum i s proposed.

Anormalprocedure for dealing with large so f tware
systems i s t o develop a h ierarchy o f c a l l i n g
routines ln a top-down structured approach. Each
laye r i n t h i s h ie ra rchy p a r t i t i o n s out f i n e r aad
f iner component procedures. The l e f t hand side o f
F igure 4 i l l u s t r a t e s such a program h ie ra rchy
where each box represents a module or subroutine.
The h ighest l e v e l rou t i ne has the choice o f
c a l l i n g subrout ine A, B, C, o r 0 depending on t h e
values o f i t s inputs. Each o f the subrout ines A,
8, C, and D perform a s im l l a r evaluation and make
ca l l s to their appropriate submutlnes.

7.30

n

000000000n
Equivakntr of Normi Hiwardmi Strucwmd PFglnm Set To Their

Format in the Described Structure

FIGURE Y

This nesting can repeat a l a r g e number o f t imes
f o r a large sof tware system, such as a real - t ime
c o n t r o l system. The resu l tan t s t r u c t w becomes
supr is ing ly awkward t o deal with e s p e c i a l l y i f
modi f ica t ions are t o be made. Even though t h i s
hferarchy consists o f wel l - s t ructured rout ines
designed I n a top-down fashion, tes ted each step
along t h e way, the f i n a l s t ruc tu re i s complex.
This complexity i s largely a result the very size
o f the system.

Tlle proposed superstructure i s a technique for the
hor izontal part i t ioning o f this program hierarchy
i n t o a number o f leve ls . These l e v e l s a re smal l
manageable groupings o f a number o f unit modules
These l e v e l s a re t o t a l l y separated f rom one
another and become independent e n t i t i e s .
Subroutine cal ls cannot be made f r o m one leve l to
t h e next , as i n the programming h ie ra rchy .
Rather, the name o f the subroutine to becalladi s
encoded as p a r t o f the output data s t ruc tu re o f
one l e v e l i n a manner ve ry s i m i l a r t o the use o f
stubs as a tes t i ng technique during the tap-down
design. But here, the calling l ink i s never made.
All information that passes between levels is i n
data i n t e r f a c e s t r u c t u r e s o f def lned input and
output bufrers for each level. Each leve l behaves
as a separate processing un i t o f the input,
process, output type shown i n f igure 2.

The leve l i s a much larger structure than the unit
module shown i n f igure 2, but i t s processing i s
f o r m a t t e d i n t h e same manner (f i g u r e 5).
Preprocessing I n a l e v e l consists fn executing a
l i s t o f preprocessing modules. Thei r outputs are
the necessary s e t o f va r i ab les (l ess than seven)
for the major decision -processing o f the function
o f t h i s l e v e l . P o s t p r o c e s s i n g c o n s i s t s f n
executing l i s t s o f postprocessing mcdules.

In the example program h ie ra rchy i l l u s t r a t e d on
the l e f t s i d e o f F igure 4, the highest l e v e l
modu le uses i t 3 s e t o f input v a r i a b l e s t o
determine which o f the major subroutines. A, B, C,
o r D, should be executed next. It c a l l s t he

appropr iate one and processing o f the function
c o n t i n u e s wi th that subrou t ine e v a l u a t i n g
additional input variables t o determine which of
its subroutines should be called.

I

FIGURE 5

The proposed superstructure, however, clusters the
subroutines, A, E, C, and D, as unit modules
u i t h f n a s i n g l e l e v e l . This reorganizat ion
separates out the major dec is ion processing o f
each routine f rom any addit ional prooewing. It
collects a l l the variable conditioaing into a set
o f preprocessing modules and a l l the extraaeaous
processing into a set o f postprocessing modules.
Only the major decision -processing and functional
output calculations remain i n each o f the modules
A, B, C, or D.

As an example, the highest leve l module evaluates
i t s set o f inputs and and determines that module C
should be called to continue the processing. This
request o r command i s encoded as par t o f t h i s
l e v e l ' s output data which becomes the input data
t o the nex t lower l e v e l . This l o w e r l e v e l f i r s t

7.31

executes i t s l i s t o f preprocessing modules and
cond i t i ons the app rop r i a te t e s t va r i ab l es . The
request in the input data f r o m the l e v e l above to
"execute C" causes this l e v e l to pick "C" f r o m i t s
poo l o f poss ib le modules and execute it. This
LnvoLves evaluating the s e t o f test conditions o f
m o d u l e "C" us ing t h e v a r i a b l e s s e t up by
preprocessing and t o decide on the appropr iate
output procedures. P a r t o f t he processing i n the
se lec ted output procedure i s t o decide on the
appropriate module f m m the next lover l eve l to be
executed and t o encode i t s name i n the output
data.

To b e t t e r unde rs tand t h e e f f e c t o f t h i s
structuring on the overa l l system processing, this
process v i11 be examined f r o m a sl ight ly d i f fe rent
point o f view. The e n t i r e funct ional processing
can be described as a very large decision tree o f
the Same basic shape as the programming hiemrchy
bu t containing many more branches a t each leve l .
The complete evaluation o f the function comes by
determin ing a path P r o m the top t o t h e bottom o f
the t r e e where each node i s a t e s t on an input
var iable and the path or branch chosen depends on
the present value o f that variable.

Each module shown on the l e f t s ide o f Figure 4
represents the tes t ing o f severa l var iables t o
d e t e r m i n e which pa th t o f o l l o w t o continue
processing. When the high l e v e l module chooses
subrout ine C, it means tha t it has tested i t s
input va r i ab les and based on t h e i r values, t h e
so lu t ion o f the fpnction can be found fn that part
o f the dec is ion t r e e encompassed under C. O r ,
conversely, the solution willnot be found in the
remainder o f the tree under A, 8, and D.

Subroutine C then evaluates i t s s m a l l se t o f
a d d i t i o n a l input v a r i a b l e s and nar rovs the
solution paths t o those found in that part o f the
t r e e contained under a par t i cu la r one o f i t s
subroutines.

Viewing the funct ion i n this manner, one finds
that t h e l e v e l s o f the superstructure p a r t i t i o n
t h i s l a r g e d e c i s i o n t r e e h o r i z o n t a l l y . The
uppermost l e v e l evaluates a defined limitedset o f
v a r i a b l e s and, i n t h i s examplo, chooses one o f
four regions (A, B, C, o r D) o f the dec is ion t r e e
t o continue down. It encodes t h i s choice Ln i t s
output data. This message i s par t o f the input
data o f the next l o v e r leve l . It i s a token that
marks the path i n t h e dec is ion tree a t vhich to
p i c k up and cont inue the processing. This next
lover l e v e l has four mutually exclusive start ing
points (A, B, C, o r D l f r o m which t o continue don!
the tree. But v i th in th i s l e v e l , these four
modules are to ta l l y separate and independent and
can be represented as such.

P a r t o f t h e input data t o each l e v e l , therefore,
s p e c i f i e s a p a r t i c u l a r module which i s a smal l
subset o f the dec is ion t ree t o execute. The
rema inde r o f the input data i s the s e t o f
variables or the i r precursors to be tested within
t h i s sma l l reg ion o f the o v e r a l l dec is ion tree.
The path through this region f o r the present state
l a determined and t h i s p o i n t i n the o v e r a l l t r e e

i s encoded i n a data st ructure t o be sent t o tha
next lower l e v e l vhich uses t h i s informat ion as
the s ta r t i ng p o i n t i n i t s region of the decis ion
tree to continue processing.

This processing continues down through a l l o f the
l e v e l s unt i l the en t i r e t ree has been evaluated
and the function determined as one completo path.

The major b e n e f i t o f t h i s type o f structur ing i s
i n always kOePing the t o t a l processing that the
human sees as small contained units. In eaoh
l e v e l , t h e r e a r e a number o f s m a l l t o t a l l y
indopendent sets o f processing that do a very
s m a l l t r e e search using small numbers (seven o r
less) o f variables. The resu l tant output l a the
starting point f o r the continued searching a t the
next l o v o r leve l . In t h i s manner, no mat ta r how
large o r complex tho iunotiao being emlwtad, the
user never has to sea or deal v i t h mora than a
very l i a i t e d t r e e search i n an iso la ted module -
It i s the ln to r8c t ion o f a l l o f the leve ls that
creatos the large complex t rae march, but the
user's view of the syste8 door not r a f h c t t h l s
complexity as it would i f the system had been
programmed in the t yp t cs l large hierarch ioa l
programming strmcturo that would mimic tb oomplex
dWoisia tm to k O V 8 l m t . d .

The hor iaontr l broaking of the system by the
levels makes it appear aa i?tim modules a n s t i l l
in the s u l l simple test format with *stuburn b.W
used fo r a l l the res t o f the system tha t i s QOt
present. But, unlike the normal prolr?@)lrIkfng
hierarchy whore the "stubs@a m rop1ao.d b~ the
r e a l prooodura oalls, hem, t b y always remain .nd
are par t of tho input and output data a t
level.

Further benef i ts g8inad fro8 thls s u p e r s t r W t ~
o f levo18 inolude tho ease of incorporatlng neV
bnnohea vfthin the over811 doafsion troe. Tho
r i g i d par t i t ion ing into levels, groups modules
concerned vi th the same goneral leve l o f the tree
structure. lhla aids considombly in identiipins
which l e v e l i s appropriate f o r the i n c o r p o l r t i a
o f additional nodules.

This s t ruc tu re can repeat 8s i s appropr iate f o r

complex the system, tho mom levels tht vi11 be
required. But, each l eve l i s a t o t a l l y bounded
en t i t y , and a l l l e v e l s are s im i l a r in tho amount
o f coaplexity o f their p;aoessing, vhioh la alvays
kept small. I n addition, the leve ls am s i r i l a r

i s useful in idontlfylng the proper pl8uam In the
cod. farmodiflatian. Srme ouah l e
a small sot o f indep.ndont modules,
one o f threo categories, rumaly propmaa8aing,
decision -processing or postprocessing, onti@t h e
user knows what ch8nges need t o be made, it C a n
e a s i l y be determined vhere the changes should
occur. The superstructun o f tho bystem embod8 a
great deal o f i n fo ru t i on about tb p
the iuoction, a d allows the w t;o o
the change t o be made, r a t h e r than h8Ting to
figure out the linkage8 with tho res t o f tho

the CO6pleXity O f tb f U l C t i W . That 18, th B O m

~n tbr fwaeat or tb pFO00MiIIg vithiattt~ami8

SJrstem OT the rrlationshlp O f tb. 8odUh V i a tb

1.32

other modules. In th i s way, the superstructure
i t s e l f can limit the amount o i documentationrequired. S h a e tk rslatioaships o f the nodules
i s defined by theirpasition within the struatum,
documentation need only be aoncernd with the
funotion performed by the module.

I n addition, sinoe each o f the modules within a
leve l i s an indopadent function with w e l l defined
input and output data sets, the superstructure
h8s created a system i n which t h e v a r i o u s
fuoot ioml modulea may b6 treated as blaok boxes

without e f f a t i n g tho m a t o f the system. b long
as two components meet t h e i r i n te r face b u f f e r
format speaifiaation, they may be successfu l ly
integrated.

allOWiag ulsir interrah.ngwblilty MdnodifiUation

nI0horiZOIlt&lmitioillgO f tb. system f U i C t i 0 0
a l a 0 lends i t s e l f t o implementat ion on a
8UltiprOaOMOr system. Sinae the link8ges betwwn
thr level^ is only throw tkir input aad output
data sets and not through a d i r e c t prooess t o
p m m protoool o r oalllngstrwtum, eroh of the
l e v e l s can be implemented t o execute on a
sepanta aomputers (or evm dlfferent aamputers).
I n addition, they may even be wr i t ten using
d i f f e r m t pmgruming languages under d i f f e ren t
operating systems. As long as there i s some
m e a h i s m far supplying ea& level with its input
and output data sets, through common memory
bu f fe rs f o r example, l e v e l s may bedeveloped and
tested in isolation, and integrated a t some la te r
tis..

Several software tools have been designed and
implemented to support the appl iaat ion o f the
above struaturing techniques and to areate a

These too ls inalude language extensiaw tht set
up a olustering o f membra undor mad ownom to
a id wi th the superstructure implementation, a
system d i a t i o n o r y t h a t i s t h e basis f o r an
in te rac t i ve user In ter face, and a common memory
for the interfaua data bu f ie rs that addi t ional ly
s imp l f i es communications and real - t ime trace
diagnoatiaa. The following three subreations
e h b o r a k o t k s e tools.

h i a l y bhXW2tiTe system d O T e l O p M ~ t mVim9Ot.

-1. Owner-Unber Struoturo

Aa dosaribed above, in this superstructure, the
unit module i s the la rges t en t i ty oontaining a
normal p m g n u i n g hlewahy ofmllingroutines.
?m the Wgor orgaaizatidstmrotuma (tht is,
tb.lovela).gygticrro f una. mlt modules into
exautable l i a t l l a doar threw a set o f language
ertenr iona. The extenaiona a n higher l e v e l
programming struatures f o r establ ishing owner -
member relationehips t o cause a grouping o f a
n u b of routed items under a nard o m r .

There u9 thrru h w i c omar-ae&ar extensions that
hnr b a a implementad. 011. aluskrs variables o f
any trp. into ormad buf fo ra (muah l i k e roaords) t o
org~iutho input and output data seta of moduler
QP level& lb aluatore unit modulea into a

n a m d execution l i s t to organize the preprocessing
un i t modules i n t o a s ing le s t r u c t u r e and the
postprocessing modules i n t o a s ing le execu tab le
struatura fo r each level. Execution o f that owner
executes a l l the member unit modules i n the
sequence spec i f ied . The t h i r d extension clusters
the major decision -processing unit modules o f a
l e v e l under a named ouner and causes execution o f
jus t one o f i t s members based on the input data
f r o m ths next higher level.

must these t h e extensions organize a l e v e l into
the o v e r a l l s t ruature o f input data, process,
output data, and format the processing i n t o a
pmproceaslng block, a demision -processing b lock
and a postprocessing block. Expl ic i t examples o f
theM extensions a m g i vm in S e a t i o n 111.

2. (la-line System Dictionary--
TbO system d i C t i O M v lY the -jot' structum that
has enhanced the in te rac t i ve nature o f t he user
in ter face. It is essent ia l l y a data -base - like
st ructure maintained i n memory f o r high speed
access (F igure 6). The aompilers and above
mentioned language extension t o o l s have been
mod i f i ed so t h a t as programs a r e compi led,
v a r i a b l e s a r e dea la red and member - owner
relationships established, a l l of the named i tems
are entered into th i s dict ionary along with
information that gives the memory address of each
routine, each rar ioble, each owner as w e l l as
other data concerning type and i n t e r r e l a t i o n s h i p
between entries.

8-

This then becomes the major component o f a set o f
powerful interactive tools. Ind iv idual rout ines
a t any l e v e l can be executed stand -alone a t any
time. Any variable can be interrogated or changed
a t any time. Any c l u s t e r o f programs can be
executed as wel l as say cluster o f data specified
by the member-owner extensions can be interrogated
a& modifid.

1.33

Thus, no matter how large o r complex the function
being calculated, the user alvays has immed ia te
access t o any por t ion o f the system a t any l e v e l
o f detail. The system becomes t o t a l l y interaot lve
to the user without the burden o f wr i t ing any
addi t ional so f tware other than the one - time
c rea t i on o f the system dict ionary mechanism and
its astwciated generic tools.

--3. col.on Pie8ory - Ce6nunlcations e Diagnostics

Ttm use o f the above superstrmturr alcag with the
well-bounded fuaotioo module has oreatmi a system
o f separak e n t i t l e s (leve ls and modules) that
interaot oaly through their input and output data
interfaces. To conneot any two oomponents, the
Output data o f one must beaoae the input data o f
the other. This impl ies that there must be some
method t o transfer data between these components,
especially if one module e x w u k a 011 one aomputer
and t h e o t h e r on a second c o m p u t e r . A
communications mechanism has been implemented that
uaes a common memory area. A copy o f the output

data i s moved t o a d q l i c a t e bu f f e r area i n common
memory and f r o m there moved i n t o t h e input data
b u f f e r of the o the r module. Figure 7 shows a
hardware configuration of several microproeeasors
and a common memory connected on a comnon bus, A
communications process t r a n s f e r s data bstueen
modules o r l e v e l s on the computers thraugh the
common memory.

,L

I

FIGURE 8

7.34

The use o f a common memory buffer area as a double
buffering mechanism f o r a communications system
of fers a number o f benefits. Interfacing between
separate systems becomes straightforward since the
data b u f f e r s de f i ne natura l in ter faces. The
buffering o f these data i n common memory becomes a
convenient structural mechanism fo r communications
since it el im ina tes any need f o r timing between
sending and r e c e i v i n g modules. Data moves f r o m
the f i r s t module to common memory whenever tha t
module i s ready t o send it,and moves f r o m common
memory to the second module whenever i t Is ready
t o receive it t o t a l l y asynchronous with the f i r s t
modules t1m i n g requi rsments.

The existence o f the d u p l i c a t e copy i n common
memory makes available to an addit ional process,
such as a diagnost ic prooess, the present values
o f a l l o f the c r i t i c a l va r iab les i n the system.
If the communications nechmism i s executed as a
synchronous process, then them l a a period out o f
e v e r y commun ica t i on c y c l e (equf .va1ent t o a
calculation cycle or control cycle) w h e n the data
i n common memory i s stable and not being wr i t ten
over . The d iagnost ic process can read th i s data
during th is t ime per iod every interval and provide
a rea l - t ime t r a c e that can be placed on mass
storage f o r l a t e r r e t r i e v a l or displayed in real -
t ime on a terminal or graphics system.

F i g u r e 8 i s a summary i l l u s t r a t i o n o f t h e
techniques and t o o l s descr ibed above. The next
section will provide an example using a real - time
control system.

Section 111. Examples from RCS--
The d e s c r i b e d superstructure has been used t o
organ ize the complex information processing f o r
a robo t r e a l - t i m e sensory - in teract ive c o n t r o l
system. A robot task, such as “Assemble Uotor n,
may be commanded to the systen, and the resulting
outputs which eventually are the dr ive signals t o
the actuators o f the robots are generated basd on
senso ry d a t a t h a t measure the s t a t e o f the
environment.

To manage the complexity o f this function a R e a l -
t i m e C o n t r o l S y s t e m (R C S) [S I has been
implemented as a number o f generic control levels
(F i g u r e 9) us ing t h e p r e v i o u s l y desc r ibed
techniques and tools. The s t ruc tu re o f the RCS
resembles the figurn on the far right hand size of
F i g u r e 4. Each of t h e square boxes i s an
individual level. Each leve l decomposes the task
Into simpler subtasks. Each levo1 has a narrowly
defined con t ro l capability that resu l ts i n c lear
i d e n t i f i c a t i o n o f the type o f sensory processing
r e q u i r e d a t each l e v e l , t h e type o f s t a t u s
feedback mcessary and the kind o f output commands
t h a t should be generated. I n t e r a c t i o n between
l e v e l s occurs by encoding the request f o r a
p a r t i c u l a r ac t i on i n t o the output data s e t Of an
upper l e v e l t o be i n t e r p r e t e d as input t o the
lower l e v e l when it executes.

An i n d i v i d u a l c o n t r o l l e v e l has i t s function
b roken down i n t o p r e p r o c e s s i n g , d e c i s i o n -
processing and postprocessing. me preprocessing

ASSEMBLE ,HOTOR

ACQUIRE SHAFT

FIGURE 9

rout ines t ransform input commands, sensory data
and sta tus feedback in to a fo rm that will be
convenient for the decision - processing routines.
Each o f these preprocessing routines i t s e l f has a
sma l l se t o f input var iab les , performs a w e l l -
defined funat ion and generates a limited output.

One o f the decision making rout ines i n t h e l e v e l
i s se lec ted l o r execut ion by the output command
f rom the upper l eve l . One o f tho funct ions o f
eaoh decision making rout ine f o r a l e v e l i s t o
generate the o a l l s t o the appropr ia te output
procedures that will encode the command t o the
n e x t l e v e l . T h a t i s , i t does a p a r t i a l
decomposition o f i t s input task command into the
appropr iate subtask command f o r the next leve l .
The command sent i s depmdont on the Input data t o
th i s l e v e l as we l l as processed feedback data that
r e p r e s e n t s t h e s t a t e o f t h e s y s t e m and i t s
environment (Figure 10).

/
/

FIGURE 10

Postprocessing routines transform the results f r o m
the output procedures into a form convenient f o r
t h e next l e v e l t o use, and maintain i n t e rna l
variables such as counters and state variables.

7.35

As an example, one l e v e l i n the RCS coordinates
p r i a i t i v e motions o f the robot and i t s gr ipper.
Inputs t o th is l e v e l cons is t o f commands l i k e
nRELEASE*, nAPPROACH n o r *GRASP*. The funct ions
performed by these commands are encoded i n the
decision -pmcessing routines in thLs level. Th.8e
were represented by the modules A, B, C, and D i n
the e a r l i e r system description. A GRASP command,
which i s equivalent t o *execute C in the Wtion
11 discussion, requ i res tha t the gr ipper clone
without moving the object . Sensory data t o th is
l e v e l are from touch sensors that ind ica te if
contac t wi th an o b j e c t has been made, force
sensors that measure how much f o r c e 1s being
a p p l i e d by the g r ippe r and p o s i t i o n sensors that
indicate the size of the gripper openlng.

The v a r i a b l e owner (VO) that def ines the input
data set to this l e v e l Lsr

VO level -input -data

l v input-comand
3 3 2ra TC1 (data From touch sensor 1)
3 3 2:a T I 2 (data from touch s a m r 2)

i v grip -position
i v grip - force

T I 1 and T I 2 are each 3 by 3 two dimensional armys
(2 : ~) tha t contain the data f r o m the nine touch
sensors i n each f inger o f the gripper. The
in teger v a r i a b l e (i v) input-command encoder the
command (inthis example, GRASP) f rom the next
higher level .

'Ihe preprocessing Functions for t h i s l e v e l include
a rout ine t o threshhold the touch sennor data t o
determine If contact i s made and another t h a t
determines the actual gripper opening f r o m the
pos i t i on sensor data. The fol loving example
process ing module s e t s t h e va lues f o r t h e
variables 'touch-sensor-1" and %owh-sonsor-F to
CONTACT or NOCONTACT depending oo whether the r w
data values f rom the sensors are greater than a
speci f ied thtashhold value.

routine DFTERnINeCONTACT
i s 0
touah-smsor#l t E O N T A C T
touah-sensorI2 t WocOWTNT
repaat
If TCl [il (CT) threshhold

end i f
then touch-sensor#l = CONTACT

i f T I2 [il (GT) threshhold

endif
iII (+I1

then touch-smsor#2 X CON?ACT

unti l i (Ep) 9 end-repeat
end-routine

This r o u t i n e has a sma l l s e t o f input values and
c a l c u l a t e s a w e l l - d e f i n e d c l e a r l y bounded
function. It reduces the information contained in
18 words o f da ta i n t o t h e two pleoes of
i n f o r m a t l o n requ i red to car ry out p a r t o f the
major decision -processing for this level, MIIelJ,
whether e i t h e r side of the gripper has contacted
the object. This routine i s grouped along with the

other prepromrsi4 routinor for thir ler.1 In tho
executing owner (EO) c a l l e d PRLPROCESS -I(OIIT0R.
The programs within th is owner are loosely ooupled
and can execute e n t i r e l y stand alone. TWr a m
c l u s t e r e d i n t o t h e o w n e r t o e n l o r o e an
organizatioo onto their exeoution. mla civ1#~ Is

causes the execution o f each o f i t s members i n
sequonoe.
e X W U t d (W10e pW COfitrolCycle M d i t 8 @-ti-

p SCALE-POSITION-DATA

p SET-NEU-COrmWPFLui
p DEERMINE -CONTACT

...
The i n t e r a c t i v e user in te r face by way o f the
nystem d i o t l o r u r y 81lows the e n t i r e PREPROCESS -
MOllITOR to be executed, o r eaoh member of tut
owner t o be executed individual ly. Eaoh of the
n l a t d v8riables may bo interrogated ind iv idu l ly
OT as Cluurters thmugh their ~ m douoors through
m y pwt o f tho ex.outioa.

The deoision -prooessin# funatioa o f th i s l e v e l
UMI tho prooosad foadbmk data to Qaidow h i o h
O f tb. powible 8UubooBuniS O f ib inprt 00m.19P
should be isrued next. The re loo ted deoialon -
procersing module e r a l u a t e r tha main tbrk

required to deal w i tb 'a s r a l l se t o f v8riables.
Tho pnprooo884 b s boon used to reduoe a lar-
nuabar o f simplor input variables into tho s u l l e r
s e t o f h i g h e r - l e v e l v a r i a b l e s that are the
relevant dooision variables for determining the

dWOrpO~ i t iOnO f the 1eTe1, but i t i s s t i l l only

next step in t& t8Ok deoompo8i t l~a t this h T e l .

The output procedures required by tho GRASP
coarand may be determined using the algorithm

i s to hare the gripper gm8p UI o b j w t without
roving tho objmt , r e g ~ d l e s ro f tho in i t i a l
pos i t ion o f the objoot with n 8 p W t t o the
gippa.fingers. lbeae output proooduna ewode
the 8eloot ion o f the appropriate bnnab o f the
dWi8i00 t m to be exeou td by the aext lower

shorn in ?imn 11. T b tuootia O f thL QOIIud

1 W e l 80 the Output 008880d t o beIMt to t&t
h T . 1 l

?igun 11 has i l l u s t r a t e d tb. deoisim -prpeeuing
aodule denoted b7 the GRASP coamand a t th i s
cont ro l l e v e l i n the format o f an 'if - then - else n

struaturo. Clow inspartloo o f this figulr shown
that it i s difficult to o l m r l y d i i fwen t ia te tb.
deois ion paths and t o be p o s i t i v e o f what
conditions r e l a t e t o what act ions when they a m

'Ihis l a another instance o f the problea o f dealing
with information processing inlarge hierarchical
structures. In order to simpl i fy tho stateamt o f
the condit ional tests o f the various input states,
a s t a t e - t a b l e f o r m a t f o r programaing i s
recommended and used within RCS. Each l i n e o f a
state table can be considered a production rule o f

m X p m ~ 8 s . 6 in this # S t d 'if-thend18e " 8tl'WtUta.

the type

IF " this input condition
TIiM "generat. this output' ENDIF

7.36

mi8 makes each t 0 S t . d input st8te M d i t s related
output procedures a bounded unit module. The
evaluation o f an input command l i ke GRASP becomes
the process o f stepping through t h e l i s t o f t e s t
input condit ions u n t i l one o f the l i n e s matches
the present s ta te o f the input var iables. I t s
output pmcedws are then exwuted. In this way,
every poss ib le t e s t condi t lon i s a stand -alone
isolated statement o f a possible state the system
Oao bO in.adtb I'OsUltMt O u t p u t .

F igu re 12 shows t h e e q u i v a l e n t s t a t e t a b l e
rep resen ta t i on o f t he algor i thm f o r the GRASP
command. The f i v e l e f t hand columns are the set o f
values representing the current input t e s t values.
The right hand columns represent the corresponding
output procedures that should be executed i f the
conditions i n the input s t a t e are met. Every
cyc le o f a con t ro l l e v e l , the current status o f
these var iab les are compared with preprogrammad
sets o f possible input conditions contained in the
lines o f the table.

IFcomm.nd n GRASP
THEN IF twch-.or # 1 = CONTACT

THEN IF touch Maor # 2 = CONTACT

THEN IF grip fore0 ..p.Eitkd
THEN IF g r i p oponing - o b i si=

THEN puI = PAUSE = QRASP-F. OW*IN-HAND
ELSE pIl1:ICLOSE .lMM = GRASPEX. FORCE
ENMF

ELSE IF g r i m = c l d
THEN w T = PAUSEa= GRASP-F, NO-OBJ-IKHAND
ELSEMIPAUSE = GRASP-F. NOT-OBJ.
ENMF

ENDIF
ELSE puI = CLOSE .1 MM,MOVE -.05 MM, GRASPEX. CONTACT
ENBlF

ELSE-ic&h u(u01# 2 = CONTACT
THENPyI = CLOSE .1 MMcMOVE+.OS MM. SIdf = GRASPEX. CONTACT
ELSE puI = CLOSE .lMY, = GRASPEX. NO-CONTACT
ENMF

ENDIF
ELSE OTHER COMMANDS

Exampk of program to CIOHrobot grippw without moving object to
bo gra8p.d.

FIGURE 11

FTGURF 12

7.37

This technique makes v i s i b l e a l l the r e l e v a n t
cond i t ions o f the high l e v e l v a r i a b l e s and t h e i r
associated output procedures. It makes i t simpler
Cor a user t o r e t u r n t o these p rog rams and
d e t e r m i n e t h e i r f u n c t i o n s i n c e a l l o f the
condi t ions r e q u i r e d f o r a se t o f outputs are
e x p l i c i t l y stated. Addi t iona l s i t u a t i o n s may be
added a t a l a t e r t ime by adding lines t o the state
table without concern for a l ter ing the af fec t o f
the previously entered tes t conditions.

A 1 1 the state tables (dwision -processing modules)
f o r a c o n t r o l l e v e l a re c lus te red under a s ta te -
t a b l e owner. For eaoh l e v e l , the member s ta te -
t a b l e s a r e t h e dec is ion - process ing modules
required t o decompose t h e input commands they
represent i n t o the next subcommand required i n
order t o execute the task. For t h i s l e v e l , the
fol lowing state - table owner (SO) i s defined.

90 LEVEtSIATE -TABLE

s
s
S
s
s...

RELEASE
APPROACH
GRASP
GOT0
GORPIU

n

Like members i n an execut ing owner, each s ta te
t a b l e (s) may be executed i nd i v i dua l l y and i t s
outputs inspected a t any l e v e l o f detai l , This i s
again because of the p o i n t e r s maintained by the
system dictionary.

All the p o s t p r o c e s s i n g rou t i nes requ i red t o
complete the ca l cu la t i ons fo r t h i s lave1 a re
grouped in an executing owner n a m e d POST-PROCESS-
MONITOR. This owner provides a s t ruc tu re which
groups a l l o f t he rout ines that a r e r e q u i r e d i n
t h e l e v e l t o update data fo rma ts , ma in ta i n
i n te rna l var iables, inc rement counters etc. It
has the same properties as the PREPROCESS -UONITOR
i n t h a t the who le group o f programs may be
executed as a whole, or each o f i t s members may be
executed alone In order t o determine i f it i s
functioning corroc t1y.

Thus, each complete con t ro l l e v e l performs a
p a r t i a l deconposltion o f the t o t a l oomplex task
f o r this robot control system Ihe overal l control
syst.a l a a r e t o f oontrol levels a l l organized as
a supe rs t r uc tu re system (Figure 13). A 1 1
processing vlthln the leve l is done within nodules
th8t r e p r e s e n t we l l - de f ined c lea r l y bounded
funatloas th8t generate outputs based on smal l
input data sets. All rout ines u l th fn a l e v e l

1J
7.38

perform their function as a sequence o f
preprocess ing , decision -processing and
postprocessing. The level i t s e l f has a small
wel l defined input data set and executes i t s task
decomposition function through the use .,f
preprocesslng, decision -processing (in state -
t a b l e format) , and postprocessing program
aggregates.

Since the ent ire system i s made up of a nlrmber of
these similarly s t t uc tu rd levels, tk user has a
reference point to begin any system interrogation:
whether to add to or m o d i f y the system, or to
track down routines that do not seem to do the i r
expected function.

Bnclusion

The described superstructure imposes a rigorous
programming style. It lays out a prescribed
method o f modularizing d e , spezifying input and
output data b u f f e r s and restructur ing the
processing o f each module or l e v e l i n to
preprocessing, decision -processirq am3 post -
processing. Implementat ion tools have been
described that help enforce thio format a d have
been successfully us& in the KS. This rigxous
formal style has prmidd the very largebenefit
that d i f f e r e n t people on a programming team, as
welL as the originill programmer, can easily read,
maiify ark1 debug each other's code. It i s sim l e
to ident i fy which part icular level contains &e
relevant processing and w i t h i n that Level whether
it i s contained in the preprocessing, decision -
processing or post-processing section. A quick
search * d o w n the L i s t in that secticn isolates the
rnoduLe of in teres t with i t s bx -ding set of input
a d O u t p u t data-

h e to the highly interactive environment provided
by the system dictionary, the user has been able
to very quickly m d i f y any d e and test it stand-
alone or execute any portion of the system to
v e r i f y i t s operation. Oata can be in terac t ive ly
examined andadified. The interact iveness has
encouraged a much higher Jegree o f test ing to
v e r i f y program correctness because of the ease
w i t h which it can be done. The user does not have
the burden of writ ing t e s t ca l l i ng routines or
editing in diagnostic print statements.

The use of this superstructure art.i the interactive
programmmg environment have been directed a t
reducing the apparent mpLexity of large s f t w a r e
systems .Md greatly specding up the responsiveness
of the system rn that the user can not only maMge
a l l of the information processing, but can also
quickLy interact w i t h it.

PrkrcWl~~~

Developnent of the NBS W - T i m eaontrolSystem i s
partially supported by fundinJfrun the Navy
Manufacturing 'R&mologyProgram.

This a r t i c l e was prepared by Uni ted S t a t e s
Government employees as part o f t h e i r o f f i c i a l
dut ies and i s there fore a work o f the U. S.
Govenment a d mt subject to w i g h t .

References

1. Barbera, AJ.. Fitzgerald, M.L. and Albus,
J.S., '"Concepts for a Real -Time Sensory -
In te rac t i ve Control System Architecture, "
Rocedings of the 14th Southewtern Symposiun cz1

System l h e o r y 8 April 1982.

2. Albus, J.S., %Lean,C.R., Barbera, A.J., and
Fitzgerald, M.L. "Hierarchical Qnkol&xk b o t s
in an Autanated &%e-,'Lhfrteenth 1sw- t~7
Symposium Roceedingr, April1983.

3. Albus. J.S., Barbera, AJ., and Nagel, R.N.,
"Theory and Practice o f Hierarchical Control, "
Twenty-thirdIEEEmputer Society International
Qnference, September 1981.

4. Kernighan, B.W. and Plauger, P.J., "The
Elements o f Programing Style, " McGraw -Hill
Publishing ChnpMy, New Y a k , 1974.

5. Schneider, G.M., Weingart, S.W., and Perlman,
D.M., "Fn Intrcducth to Prograrmnirg ami pmblem
Solving w i t hPascal,"John Wiley 6 Sone, New York,
1978.

6. Wulf, W.A., "Next Generation o f-ramming
Languages", 10th Anniversary Symposium a t the
Computer Science Deprtrnent, Qrnegie -Mellon
Wversity, 1977.

7. M i l l e r , G.A., "The Magical Number Seven, P lus
or Minus Two: Some L im i t s on Our Capacity for
Processing Information ", Psychology Review,
American Psycblogy Associatim, Inc.,Vol 63, RJ.
2, March 1956.

9. Barbera, A.J., Fitzgerald, M.L., ALbus, J.S.,
and Haynes, LS., "RCS: The NBS Real-Time Control
System", Proceedings o f Aobots/VIII Conference,
Detroit,June 1984.

7.39

