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ABSTRACT

It is the purpose of the system superstructure
described in this paper to create an environment
that eases the user's development of software.
Techniques and software tools are described that
help organize a system into a very structured ard
modular framework that is conducive to
interfacing, upgrading, partitioning onto multiple
computer systems, and debugging. A system
dictionary is described that together with the
modular superstructure allows the creation of a
highly interactive enviromnent where single
programs or any level of aggregation of programs
can be executed and where any variable or
aggregation of variables can be examined, traced,
displayed or modified.

Introduction

The Industrial Systems Division of the National
Bureau of Standards has been working for over a
decade on real-time control systems. The primary
application of this work is in the real-time
sensory-interactive control of robots. References
[1] through [3] document this work and describe
the application of the underlying structure to the
control of an automated manufacturing system being
developed at NBS.

This paper presents a broader view of this work.
It describes the implementation techniques and
developed software tools used to format the large
number of computer programs into an organized
framewcrk. This system superstructure has been
fourd to aid considerably in the user interactions
in all aspects of software design, implementation,
debugging and maintenance. The Real-time Control
System ( RCS ) presently used for sensory-
interactive robot control at NBS has been
implemented with this superstructure including all
of the described tools.

This paper is partitioned into three sections.
Section I describes the high level concepts of the
system superstructure. Section II describes
implementation techniques and software tools used
to impress this superstructure onto a software
system. Section III describes some specific
examples from RCS to illustrate the use of this
superstructure with real-time control software.
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Section I. Concepts of a System Superstructure

Previous experience at MBS in the development of
large system software such as real-time control
systems has indicated a need for higher level
structuring and greater eass of user interaction
than provided by most programming systems. Even
the application of structured programming
techniques {4], while keeping the individual
routines in a manageable foxrm, can easily lead to
a large complex hierarchical structure of
many hundreds of subroutines [5,6]. The very size
of this structure together with the practical
problems of recompiling and relinking new or
modified routines, editing diagnostics in amd out
of routines, etc. makes this system awkward to
track, comprehend, debuy and maintain. Hence the
phenomenon that once a large system is finally
made relatively bug~fres, it is sealeid wp amd no~
one dares to venture in and modify the code for
fear of creating errors that might be difficult or
impossible to track down.

This phenomenon is closely linked to the
difficulty of the human programmer to deal with
very much information at any given time.
Individual programs, thanks to the discipline of
structured programming, process only small well-
bounded sets of information and are therefore
easily understood. Systems made wp of hundreds of
these well-structured routines, however, represent
vast amounts of inter-related information that can
quickly exceed human limitations of
information management [6]. These limitations
relate to the apparent inability of people to
manage more than seven pieces of information at
any time [7].

This basic problem is addressed here by a rigorous
higher level structuring technique or style to
format large software systems. This paper
presents the concept of a superstructure to
organize sets of programs in such a manner as to
always allow the user to focus on any level of
detail in a complex system and only be required to
deal with not more than seven pieces ar chunks of
information. Therefore, rather than allowing the
uncontrolled growth of numbers of routines into
large hierarchies, this superstructure, through
its implementation techniques and software tools,
controls system growth and creates bounded
structures of manageable size and provides an
organized framework for their interactions.



Prograa testing is another area that becomes more
diffioult as system size inoreases. Testing of
individual routines involves considerable overhead
in ting test ocalling routines and test data
or !/o routines for user specification of test
data. There is also the additional burden of
larger amounts of time required for sach recompile
and relink of the larger sets of routines. To
deal with this situation, a system dictionary has
been implemented that uses a single set of generic
tools to create a highly interactive user
interface to all components of the system at any
level of detail. The use of this systen
dictionary in support of additional diagnostic
graphic displays and communication mechanisms will
be described.

Seotion II. Implementation

Figure 1 summarizes the relationship between the
component techniques and tools and the creation of
the system superstructure and interactive systea
environment. This section describes in some
detail these implementation techaniques, software
tools and system dictionary and discusses the
rationale for their use.
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A. Implementation Techniques

Three basic techniques are used to aid the user in
structuring a large softvarse system. The goal is
to partition the processing into comprehensible
units of a standard format and then assemble those
units into an organized framework. This
superstructure causes the processing to be always
identifiable as a collection of simple bounded
units that can be examined at any level of detail
with never more than a small number of parameters
to be considered. The techniques used include
the structuring of a well-bounded set of programs
into a unit module, a standardized processing
sequence format, and a generic higher level
clustering of "the unit modules to accomplish large
complex functions. The following three
subsections elaborate on these techniques.
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1. Use of well-bounded function as building block

This technique has much in common with the goals
of structured programming, namely, the
partitioning of a system into small subunits.
Each of these subunits has been set up to
encompass a well-bounded computation - a simple
function that is totally contained within a
routine of a few conditional tests and a small
amount of computation. The difference here is
that these modules are cleanly delineated from
each other by the specification of their input and
output data interfaces (Figure 2). These modules
might call subroutines to complete their
calculations but their entire function is totally
defined within a small set of these subroutine
calls, and are clearly separated from all other
modules by a defined 1input and output data
struocture.

PROCESS name

INPUT PROCESS OUTPUT

Functionally Bounded, Named Module
Functionally Bounded Modules are independently Executable

FIGURE 2

If "A" requires data that "B"™ produces, then "B"
executes, generates its output buffer. "A" then
executes and uses that data in its execution. "A"
does not call "B" aidway through its processingin
order to pick up any required data. That is, the
entire input set required by "A" must be available
when "A" executes. If "B" cannot execute
independently from "A", then "B" is not a well-
defined unit module and must be included as part
of "A“,

These unit modules become the fundamental building
blocks for the whole system. The larger functions
of which they are the component units are built,
not by assembling these units into a normal
hierarchical calling relationship, but rather by
executing lists, or sets of these separate well-
defined component units. Each unit module can
always be executed stand-alone, with its input and
output data retrieved from and stored into a
common memory area. This unit module is a
function of only a small number of variables. Its
processing involves only a small number of
decisions and/or calculations. As such, it is
easily comprehensible.



2. Use of a standard processing format

Each of the above unit modules performs some
processing to calculate an output data set as a
function of its input data set. All processing is
on symbolic variables. No numeric constants are
permitted. This processing can be partitioned
into a standard format of: preprocess, decision-
process, and postprocess (Figure 3).

input Oeta Process Output Deta

A Standard Precessing Format of Preprocess, Decision Process and
Postprocess is Used for £ach Functional Module

FIGURE 3

The preprocessing 1is used to condition and reduce
the number of variables into a convenfient
representation for the major decision-processing
of the function being calculated within the
module.

The decision-processing is the algorithm or
procedure that represents the function being
calculated., It should clearly identify the
relevant parameters and explicitly represent the
various test conditions required. The resultant
output procedures for each of these tested states
are also clearly identified within this section of
processing.

The postprocessing is used to cleanup the
processing of the function. It performs such
tasks as reformatting data into a prescribed
output structure, or updating internal variables
such as counters, or saving certain values for the
next calculation of the function.

The following is a simple example in pseudo-code
used to illustrate this format.

Preproceas

scaled_value = ( new_value- thresh _val ) & scalar
scaled dirt =z socaled _value - 0ld ¢ scale value
'Decision-Process

if scaled diff (EQ) test_value then call OUT_!
if scaled di!‘f {LT) test value then call OUT 2
if scaled ditf (GT) test value then call 00'1‘__3

Postprocess

old_scaled value = scaled value

The function of this unit module is the
calculation of output 1, 2, or 3 depending on
whether a particular value is equal to, less than
or greater than the test value.

The preprocessing i3 used to create the real
variable of interest (scaled diff) from the input
variables new_val, thresh val, scale_factor, and
the stats-variable old acaled _val.

The information is now in a form for a clean
specification of the test conditions where the
only information of concern is how the value of
the scaled diff compares to that of test_value.
Both the test conditions and output calculations
are contained in the decision-processing section.
It will be noted that the unit module can make
subroutine calls to appropriate output procedures.
HBowever, the unit module is the largest structural
component that calls subroutines. How larger
systems are built from these units is discussed in
the following subsection.

In the postprocessing section of the module, the
soaled value is saved in old _scaled value for use
in the next ollculation of the preprocessing
section.

This partitioning of the processing allows for the
isolation of the major fumctional calculations in
a clear format in the decision-processing section.
Preprocessing evaluates, .scales, reduces and
transforms the input data into a more appropriate
set of variables for this decision-processing.
Postprocessing picks up the extraneous, but
necessary, additional processing to keep this
processing from cluttering or confusing the main
functional calculation of the module.

When used as a standard processing format, this
technique does much to ease the user's interaction
and comprehension of each unit module. This
standard processing format can be applied to the
larger system components (levels) as well. This
will be described in the following section.

3. Use of superstructure to organize system

As mentioned above, the unit module is the largest
component that issues subroutine calls. It is a
very limited, well controlled program hierarchy of
a small manageable size performing a well-bounded
function. But, it is only one component of a much
larger system. To organize unit modules into a
larger framework, a superstructure is proposed.

A normal procedure for dealing with large software
systems is to develop a hierarchy of calling
routines {n a top-down structured approach. Each
layer in this hierarchy partitions out finer and
finer component procedures. The left hand side of
Figure 4 illustrates such a program hierarchy
where each box represents a module or subroutine.
The highest level routine has the choice of
calling subroutine A, B, C, or D depending on the
values of its inputs. Each of the subroutines A,
B, C, and D perform a similar evaluation and make
calls to their appropriate subroutines.
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FIGURE 4

This nesting can repeat a large number of times
for a large software systea, such as a real-time
control system. The resultant structure becomes
suprisingly awkward to deal with especially if
modifications are to be made. Even though this
hierarchy consists of well-structured routines
designed in a top-down fashion, tested each step
along the way, the final structure is complex.
This complexity is largely a result the very size
of the system.

The proposed superstructure is a technique for the
horizontal partitioning of this program hierarchy
into a number of levels, These levels are small
manageable groupings of a number of unit modules
These levels are totally separated from one
another and become independent entities.
Subroutine calls cannot be made from one level to
the next, as in the programaing hierarchy.
Rather, the name of the subroutine to be called is
encoded as part of the output data structure of
one level in a manner very similar to the use of
stubs as a testing technique during the top-down
design. But here, the calling link is never made.
All information that passes between levels is in
data interface structures of defined input and
output buffers for each level. Each level behaves
as a separate processing unit of the input,
process, output type shown in Figure 2.

The level is a much larger structure than the unit
module shown in Figure 2, but its processing is
formatted in the same manner (Figure 5).
Preprocessing in a level consists in executing a
list of preprocessing modules. Their outputs are
the necessary set of variables (less than seven)
for the major decision-processing of the function
of this level. Postprocessing consists in
executing lists of postprocessing modules,

In the example program hierarchy illustrated on
the left side of Figure 4, the highest level
module uses 1{t3 set of input variables to
determine which of the major subroutines, A, B, C,
or D, should be executed next. It calls the
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appropriate one and processing of the function
continues with that subroutine evaluating
additional input variables to determine which of
its subroutines should be called.

mi= =Rimi
100 i
[0 == (L

Executing Owner TASK LEVEL
0 Preprocess

e Decision Procees
e0  Postprocess
FIGURE 5

The proposed superstructure, however, clusters the
subroutines, A, B, C, and D, as unit modules
within a single level. This reorganization
separates out the major decision processing of
each routine from any additional processing. It
collects all the variable conditioning into a set
of preprocessing modules and all the extraneaous
processing into a set of postprocessing modules.
Only the major decision-processing and functional
output calculations remain in each of the modules
A, B, C, or D.

As an example, the highest level module evaluates
its set of inputs and and determines that module C
should be called to continue the processing. This
request or command i{s encoded as part of this
level's output data which becomes the input data
to the next lower level. This lower level first



executes {ta list of preprocessing modules and
conditions the appropriate test variables. The
request in the input data from the level above to
"execute C" causes this level to pick "C" from its
pool of possaible modules and execute it. This
fnvolves evaluating the set of test conditions of
module "C" using the variables set up by
preprocessing and to decide on the appropriate
output procedures, Part of the processing in the
selected output procedure is to decide on the
appropriate module from the next lower level to be
executed and to encode its name in the output
data.

To better understand the effect of this
structuring on the overall system processing, this
process will be examined from a slightly different
point of view. The entire functional processing
can be described as a very large decision tree of
the same basic shape as the programming hierarchy
but containing many more branches at each level.
The complete evaluation of the function comes by
determining a path from the top to the bottom of
the tree where each node is a test on an input
variable and the path or branch chosen depends on
the present value of that variable.

Each module shown on the left side of Figure U
represents the testing of several variables to
determine which path to follow to continue
processing. When the high level module chooses
subroutine C, it means that it has tested its
input variables and based on their values, the
solution of the function can be found in that part
of the decision tree encompassed under C. Or,
conversely, the solution will not be found in the
remainder of the tree under A, B, and D.

Subroutine C then evaluates its small set of
additional input variables and narrows the
solution paths to those found in that part of the
tree contained under a particular one of 1its
subroutines.

Viewing the function in this manner, one finds
that the levels of the superstructure partition
this large decision tree horizontally. The
uppermost level evaluates a defined limited set of
variables and, in this example, chooses one of
four regions (A, B, C, or D) of the decision tree
to continue down. It encodes this choice in its
output data. This message is part of the input
data of the next lower level. It is a token that
marks the path in the decision tree at which to
pick up and continue the processing. This next
lower level has four mutually exclusive starting
points (A, B, C, or D) from which to continue down
the tree. But within this level, these four
modules are totally separate and independent and
can be represented as such.

Part of the input data to each level, therefore,
specifies a particular module which 1is a small
subset of the decision tree to execute. The
remainder of the input data is the set of
variables or their precursors to be tested within
this small region of the overall decision tree.
The path through this region for the present state
is determined and this point in the overall tree
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is encoded in a data structure to be sent to the
next lower level which uses this information as
the starting point in its region of the decision
tree to continue processing.

This processing continues down through all of the
levels until the entire tree has been evaluated
and the function determined as one complete path.

The major benefit of this type of structuring is
in always keeping the total processing that the
human sees as small contained units. In each
level, there are a number of small totally
independent sets of processing that do a very
small tree search using small numbers (seven or
less) of variables. The resultant output i{s the
starting point for the continued searching at the
next lower level. In this manner, no matter how
large or complex the function being evaluated, the
user never has to see or deal with more than a
very limited tree search in an isolated module.
It is the interaction of all of the levels that
creates the large complex tree search, but the
user’s view of the systeam does not reflect this
complexity as it would if the system had been
progranmed in the typical large hierarchical
programaing structure that would mimic the complex
decision tree to be evaluated.

The horizontal breaking of the system by the
levels makes it appear as if the modules are still
in the small simple test format with "stubs® being
used for all the rest of the systea that is not .
present. But, unlike the normal prograaming
hierarchy where the "stubs® are replaced by the
real procedure calls, here, they always remain and
are part of the input and output data at each
level.

Further benefits gained from this superstructure
of levels include the ease of incorporating new
branches within the overall decision tree. The
rigid partitioning into levels, groups modules
concerned with the same general level of the tree
structure. This aids considerably in identifying
which level is appropriate for the incorporation
of additional modules.

This structure can repeat as is appropriate for
the complexity of the function. That is, the more
complex the system, the more levels that will be
required. But, each level is a totally bounded
entity, and all levels are similar in the amount
of complexity of their processing, which is always
kept small. In addition, the levels are similar
in the format of the processing within thes. This
is useful in identifying the proper places in the
code for modification. Sinoe each level contains
a small set of independent modules, grouped into
one of three categories, namely preprocessing,
decision-processing or postprocessing, once the
user knows what changes need to be made, it can
easily be determined where the changes should
ocour. The superstructure of the system embeds &
great desl of information about the prooessing of
the function, and allows the user to coansider oaly
the change to be made, rather than having to
figure out the linkages with the rest of the
system or the relationship of the module with the



other modules. In this way, the superstructure
itself can limit the amount of documentation
required. Since the relationships of the modules
is defined by their position within the structure,
documentation need only be concerned with the
function performed by the module.

In addition, since each of the modules within a
level is an independent function with well defined
input and output data sets, the superstructure
has cocreated a system in which the various
functional modules may be treated as black boxes
alloving their interchangeablilty and modification
without effecting the rest of the system. As long
as two components meet their interface buffer
format specification, they may be successfully
integrated.

The horizontal partitioning of the system function
also lends 1itself to implementation on a
sultiprocessor system. Since the linkages between
the levels is only through their input and output
data sets and not through a direct process to
process protocol or calling structure, each of the
levela can be implemented to execute on a
separste computers (or even different computers).
In addition, they may even be written using
different programming languages under different
operating systeamas. As long as there is sone
mechanisa for supplying each level with its input
and output data sets, through common memory
buffers for example, levels may bedeveloped and
tested in isolation, and integrated at some later
tm.

B. Implementation Tools

Several software tools have been designed and
implemented to support the application of the
above structuring techniques and to create a
highly interactive syatem development eavironment.
These tools include language extensions that set
up a olustering of meabers under named owners to
aid with the superstructure implementation, a
system dictionary that is the basis for an
interactive user interface, and a common nemory
for the interface data buffers that additionally
simplfies communications and real-time trace
diagnostics. The following three subsections
elaborate on these tools.

1.

Owner-Member lList Structure

As described above, in this superstructure, the
unit module is the largest entity containing a
norsal programming hierarchy of calling routines.
for the larger organizational structures (that is,
the levels) aggregation of these unit modules into
executable lists is done through a set of language
extensions. The extensions are higher level
prograsaing structures for establishing owner-
member relationships to cause a grouping of a
number of related items under a named owner.

There are three basic owner-member extensions that
have been implemented. One clusters variables of
any type into named buffers (much like records) to
organize the input and output data sets of modules
or levels. The second clusters unit modules into a
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named execution list to organize the preprocessing
unit modules into a single structure and the
postprocessing modules into a single executable
structure for each level. Execution of that owner
executes all the member unit modules in the
sequence specified. The third extension clusters
the major decision-processing unit modules of a
level under a named owner and causes execution of
Jjust one of its members based on the input data
from the next higher level.

Thus, these three sxtensions organize a level into
the overall structure of input data, process,
output data, and format the processing into a
preprocessing block, a decision-processing block
and a postprocessing block. Explicit examples of
these extensions are given in Section III.

2. On-line System Dictionary

The system dictionary is the major structure that
has enhanced the interactive nature of the user
interface. It is essentially a data-base-like
structure maintained in memory for high speed
access (Figure 6). The compilers and above
mentioned language extension tools have been
modified so that as programs are compiled,
variables are declared and member-owner
relationships established, all of the named items
are entered into this dictionary along with
information that gives the memory address of each
routine, each rariable, each owner as well as
other data concerning type and interrelationship
between entries. :

System

System
Superstructure

Dictionary

The System Dictionery Provides the User interface Mechaniam For
b Moditying snd Exscuting Any Veriable or Program in the
System in a Totally interactive Mode

FIGURE 6

This then becomes the major component of a set of
powerful interactive tools. Individual routines
at any level can be executed stand-alone at any
time. Any variable can be interrogated or changed
at any time. Any cluster of programs can be
executed as well as any cluster of data specified
by the meamber-owner extensions can be interrogated
and modified.



Thus, no matter how large or complex the function
being calculated, the user always has immediate
access to any portion of the system at any level
of detail. The system becomes totally interactive
to the user without the burden of writing any
additional software other than the one-time
creation of the system dictionary mechanism and
its associated generic tools.

3. Common Memory - Communications and Diagnostics

The use of the above superstructure along with the
well-bounded function module has created a system
of separate entities (levels and modules) that
interact only through their input and output data
interfaces. To connect any two components, the
output data of one must become the input data of
the other. This implies that there must be some
method to transfer data bstween these coaponents,
especially if one module executes on one coamputer
and the other on a second computer. A
communications mechanism has been implemented that
uses a common memory area. A copy of the output

data is moved to a duplicate buffer area in common
msemory and from there moved into the input data
buffer of the other module., Figure 7 shows a
hardware configuration of several a{croprocessors
and a common memory connected on a common bus. A
communications process transfers data between
modules or levels on the computers through the
cCOmmMOn Memory.
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The use of a common memory buffer area as a double
buffering mechanisam for a communications system
offers a number of benefits. Interfacing between
separate systems becomes straightforward since the
data buffers define natural interfaces. The
buffering of these data in common memory becomes a
convenient structural mechanism for communications
since it eliminates any need for timing between
sending and receiving modules. Data moves from
the first module to common memory whenever that
module is ready to send it, and moves from common
memory to the second module whenever it i{s ready
to receive it totally asynchronous with the first
modules timing requirements.

The existence of the duplicate copy in common
memory makes available to an additional process,
such as a diagnostic process, the present values
of all of the critical variables in the system.
If the communications mechanism is executed as a
synchronous process, then there 1s a period out of
every coamnmunication cycle (equivalent to a
calculation cycle or control cycle) when the data
in common memory is stable and not being written
over. The diagnostic process can read this data
during this time period every interval and provide
a real-time trace that can be placed on mass
storage for later retrieval or displayed in real-
time on a terminal or graphics system.

Figure 8 is a summary i{illustration of the
techniques and tools described above. The next
section will provide an example using a real-time
control system.

Section III. Examples from RCS

The described superstructure has been used to
organize the complex information processing for
a robot real-time sensory-interactive control
system. A robot task, such as "Assemble Motor",
may be commanded to the system, and the resulting
outputs which eventually are the drive signals to
the actuators of the robots are generated based on
sensory data that measure the state of the
environment.

To manage the complexity of this function a Real-
time Control System ( RCS ) (8] has been
implemented as a number of generic control levels
(Figure 9) using the previously described
techniques and tools. The structure of the RCS
resembles the figure on the far right hand size of
Figure U, Each of the square boxes is an
individual level. Each level decomposes the task
into simpler subtasks. Each level has a narrowly
defined control capability that results in clear
identification of the type of sensory processing
required at each level, the type of status
feedback necessary and the kind of output commands
that should be generated. Interaction between
levels occurs by encoding the request for a
particular action into the output data set of an
upper level to be interpreted as input to the
lower level when it executes.

An individual control level has its function
broken down into preprocessing, decision-
processing and postprocessing. The preprocessing
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routines transform input commands, sensory data
and status feedback into a form that will be
convenient for the decision-processing routlines.
Each of these preprocessing routines itself has a
small set of input variables, performs a well-
defined function and generates a limited output.

One of the decision making routines in the level
is selected for execution by the output command
from the upper level. One of the functions of
each decision making routine for a level is to
generate the calls to the appropriate output
procedures that will encode the command to the
next level. That is, it does a partial
decomposition of its input task command into the
appropriate subtask command for the next level.
The command sent is depemdent on the input data to
this level as well as processed feedback data that
represents the state of the system and its
environment (Figure 10).
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Postprocessing routines transform the results from
the output procedures into a form convenient for
the next level to use, and maintain internal
variables such as counters and state variables.



As an example, one level in the RCS coordinates
primitive motions of the robot and its gripper.
Inputs to this level consist of commands like
"RELEASE", "APPROACH" or "GRASP". The functions
performed by these commands are encoded in the
decision-processing routines in this level. These
were represented by the modulea A, B, C, and D in
the earlier system description. A GRASP coammand,
which is equivalent to "execute C" in the Sectiom
II discussion, requires that the gripper close
without moving the object. Sensory data to this
level are from touch sensors that indicate 1if
contact with an object has been made, force
sensors that measure how much force is being
applied by the gripper and position sensors that
indicate the size of the gripper opening.

The variable owner (V0) that defines the input
data set to this level is:

VO  level-input-data
iv input-command
33 2:a T¢t ( data from touch sensor 1)
33 2:a T#2 ( data from touch sensor 2)
iv grip-position
iv grip-force

T#1 and T#2 are each 3 by 3 two dimensional arrays
(2:a) that contain the data from the nine touch
sensors in each finger of the gripper. The
integer variable (iv) input-command encodes the
command (inthis example, GRASP) from the next
higher level.

The preprocessing functions for this level include
a routine to threshhold the touch sensor data to
determine 1if contact is made and another that
determines the actual gripper opening from the
position sensor data. The following example
proceasing module sets the values for the
variables "touch-sensor-1" and “touch-sensor-2" to
CONTACT or NOCONTACT depending on whether the raw
data values from the sensors are greater than a
specified threshhold value.

routine DETERMINE-CONTACT
i=0
touch-sensor#! = NOCONTACT
touch-sensor#2 = NOCONTACT
repeat
if T# {i]l (GT) threshhold
then touch-sensor#1 = CONTACT
endif
if T#Z (1] (GT) threshhold
then wouch-sensor#2 = CONTACT
endif
Lt =1 ()1
until 1 (EQ) 9 end-repeat
end-routine

This routine has a small set of input values and
calculates a well-defined c¢learly bounded
function. It reduces the information contained in
18 words of data into the two pieces of
information required to carry out part of the
major decision-processing for this level, namely,
whether either side of the gripper has contacted
the object. This routine is grouped along with the

7.36

other preprocessing routines for this level in the
executing owner (EO) called PREPROCESS-MONITOR.
The programs within this owner are loosely coupled
and can execute entirely stand alone. They are
clustered into the owner to enforce an
organization onto their execution. This owner is
executed once per control cycle and its executionm
causes the execution of each of its members in
sequence.

EO  PREPROCESS-MONITOR

P SCALE-POSITION-DATA
p DETERMINE-CONTACT

P SET-NEW-COMMAND-FLAG

The interactive user interface by way of the
system dictionary allows the entire PREPROCESS-
MONITOR to be executed, or each member of that
owner to be executed individually. Each of the
related variables may be interrogated individually
or as clusters through their aamed owners through
any part of the execution.

The decision-procesaing function of this level
uses the processed feedback data to decide whioch
of the poasible subcommands of its input ocommand
should be issued next. The selected decision-
processing module evaluates the main task
decomposition of the level, but it is still only
required to deal with a small set of variables,
The preprocessng has been used to reduce a larger
number of simpler input variables into the smaller
set of higher-level variables that are the
relevant deciaion variables for determining the
next step in the task decomposition at this level.

The output procedures required by the GRASP
coamand may be determined using the algoriths
shown in Figure 11, The function of this ocommand
is to have the gripper grasp an object without
moving the object, regardless of the initial
position of the object with respect to the
gripper fingers. These output procedures enmcode
the selection of the appropriate branch of the
decision tree to be executed by the next lower
level as the output comsand to be sent to that
level.

Pigurell has {llustrated the decision-processing
module denoted by the GRASP command at this
control level in the format of an "if-then-else”
structure. Close inspection of this figure shows
that it is difficult to clearly differentiate the
decision paths and to be positive of what
conditions relate to what actions when they are
expressed in this nested "if-then-else® structure.
This is another instance of the problem of dealing
with information processing {n large hierarchical
structures. In order to simplify the statement of
the conditional tests of the various input states,
a state-table format for programaing 1is
reconmended and used within RCS. Each line of a
state table can be considered a productiom rule of
the type

IF "this input condition "

THEN "generate this output®™ ENDIF



This makes each tested input state and its related
output procedures a bounded unit module. The
evaluation of an input command like GRASP becomes
the process of stepping through the list of test
input conditions until one of the lines matches
the present state of the input variables. 1Its
output procedures are then executed. In this way,
every possible test condition is a stand-alone
{solated statement of a possible state the system
can be in and the resultant output.

Figure 12 shows the equivalent state table
representation of the algorithm for the GRASP
command. The five left hand columns are the set of
values representing the current input test values.
The right hand columns represent the corresponding
output procedures that should be executed if the
conditions in the input state are met. Every
cycle of a control level, the current status of
these variables are compared with preprogrammed
sets of possible input conditions contained in the

lines of the table.

\F command = GRASP

THEN

iF touch sensor # 1 = CONTACT

THEN IF touch sensor # 2 = CONTACT
THEN IF gripper opening - object size

THEN IF grip torce -- specified
THEN QUT = PAUSE STAT = GRASP-F. 08J-IN-HAND
ELSE QUT = CLOSE .1 MM STAT = GRASPEX, FORCE
ENDIF

ELSE IF gripper = closed

THEN QUT = PAUSE STAT = GRASP-F, NO-OBJ-IN-HAND
ELSE QUT = PAUSE STAT = GRASP-F, NOT-08J,

ENDIF
ENDIF i
:LgE QUT = CLOSE .1 MM, MOVE - .05 MM, STAT = GRASPEX. CONTACT
NDIF
ELSE IF touch sensor # 2 = CONTACT

THEN QUT = CLOSE .1 MM-MOVE + .05 MM, STAT = GRASPEX. CONTACT
ELSE QUT = CLOSE .1 MM,

STAT = GRASPEX. NO-CONTACT

ENDIF
ENDIF
ELSE OTHER COMMANDS

Example of program to close robot gripper without moving object to

be grasped.
FIGURE 11
l l Gripper Opening
Force S 4" Position S
gt ouch seneor | touch sensor |  grpper P
Touch Sensor Touch Seneor commens # 2 apening ores .14 STAY
L4} #2
GRASP | NO CONTACT | O CONTACT x x CLOSE .1 GRASP-EX
anase | nocowtact | cowtact x xS | s
QRASP | CONTACT | NO CONTACT x x ve e | Gmasnx
aRass | CONTACT | cONTACT | ‘3RS | secites § cross.cmm [ ORASREX
onase | cowtact | cowtact | “WR® | speses PAUSE oases
onase | cowtact | cowracr | e x PAUSE amasne
Qrase | cowtact | cowtacr closed x PAUSE wm“ "

zxmuasmrmwmwmmnmenmmcm

Without Moving Object to be Grasped.

FIGURF 12
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This technique makes visible all the relevant
conditions of the high level variables and their
associated output procedures. It makes it simpler
for a user to return to these programs and
determine their function since all of the
conditions required for a set of outputs are
explicitly stated. Additional situations may be
added at a later time by adding lines to the state
table without concern for altering the affect of
the previously entered test conditions.

All the state tables (decision-processing modules)
for a control level are clustered under a state-
table owner. For each level, the member state-
tables are the decision-processing modules
required to decompose the input commands they
represent into the next subcommand required in
order to execute the task. For this level, the
following state-table owner (S0) is defined.

S0  LEVEL-STATE-TABLE

s RELEASE
s APPROACH
s GRASP

s GOTO

s GOTHRU

iC—
I—

’
[] ’/"
Quiput

 — - |
o Y Y —

[ e

0E

Like members 1in an executing owner, each state
table (s) may be executed individually and its
outputs inspected at any level of detail. This is
again because of the pointers maintained by the
system dictionary.

All the postprocessing routines required to
complete the calculations for this level are
grouped in an executing owner named POST-PROCESS-
MONITOR. This owner provides a structure which
groups all of the routines that are required in
the level to update data formats, maintain
internal variables, increment counters etc, It
has the same properties as the PREPROCESS~MONITOR
in that the whole group of programs may be
executed as a whole, or each of its members may be
executed alone in order to determine 1if it is
functioning correctly.

Thus, each complete control level performs a
partial decomposition of the total complex task
for this robot control system. The overall control
systen is a set of control levels all organized as
a superstructure systea (Figure 13). All
processing within the level is done within modules
that represent well.defined clearly bounded
functions that generate outputs based on small
input data sets. All routines within a level
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perform their function as a sequence of
preprocessing, decision-processing and
postprocessing. The level itself has a small
well defined input data set and executes its task
decomposition function through the use -»f
preprocessing, decision-processing ( in state-
table format), and postprocessing program
aggregates.

Since the entire system is made up of a number of
these similarly structured levels, the user has a
reference point to begin any system interrogation;
whether to add to or modify the system, or to
track down routines that do not seem to do their
expected function.

Conclusion

The described superstructure imposes a rigorous
programming style. It lays out a prescribed
method of modularizing ocode, specifying input and
output data buffers and restructuring the
processing of each module or level into
preprocessing, decision-processing and post-
processing. Implementation tools have been
described that help enforce this format and have
been successfully used in the RCS. This rigorous
formal style has provided the very large benefit
that different people on a programming team, as
well as the original programmer, can easily read,
madify and debug each other's code. It is simple
to identify which particular level contains the
relevant processing and within that level whether
it is contained in the preprocessing, decision-
processing or post-processing section. A quick
search down the list in that section isolates the
module of interest with its tmunding set of input
and output data.

Due to the highly interactive environment provided
by the system dictionary, the user has been able
to very quickly madify any code and test it stand-
alone or execute any portion of the system to
verify its operation. Data can be interactively
examined and modified. The interactiveness has
encouraged a much higher Jdegree of testing to
verify program correctness because of the ease
with which it can be done. The user does not have
the burden of writing test calling routines or
editing in diagnostic print statements.

The use of this superstructure ani the interactive
programming environment have been directed at
reducing the apparent complexity of large software
systems and greatly speeding up the responsiveness
of the system 8o that the user can not only manage
all of the information processing, but can also
quickly interact with it.
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