The NIST DMIS Interpreter
Version 2

Thomas R. Kramer
Frederick M. Proctor
William G. Rippey
Harry Scott

Intelligent Systems Division
National Institute of Standards and Technology
Technology Administration
U.S. Department of Commerce
Gaithersburg, Maryland 20899

NISTIR 6252
October 29, 1998

NIST DMIS Interpreter Version 2

Disclaimer

No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied.

Acknowledgements

Partial funding for the work described in this paper was provided to Catholic University
by the National Institute of Standards and Technology under cooperative agreement
Number 70NANB7H0016.

1.0

2.0

NIST DMIS Interpreter Version 2

CONTENTS
INEFOAUCTION ...t e e e 1
0 A = - od (o] {0 U o SRR 1
1.1.1 ArChiteCture ProJECEccciiiiieeeeee e 1
1.1.2 Enhanced Machine Controller Project...........ccccvvviiiiiiiiiiiiiieeeeeeeee 1
1.1.3 Next Generation Inspection System Projectccccuuvveeeeeiiiiiiiineeennnn. 1
1.1.4 DMIS Interpreter FirSt VErsioN..........coovvvviiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeevineanaans 1
1.1.5 DMIS Interpreter VErSION 2....ccociv ettt e e e e e e eeeeeeeeens 2
1.2 Overview Of the DMIS LaNQUAGE........cuuurmmmiiiiieeeeeeeeeeee et e e e e e e e e aaeeeeees 2
022 A [11 Yo [T 1 o 2
1.2.2 Statements, Lines, Major Words, Minor Words............cccceeeeeieiieeeeeeenn. 3
1.2.3 PrOQEIAMS ...ttt e e ettt e e e e e eat e e e e e eeta e e e e e eennn e e eaeennn 3
1.2.4 Program SUDUNIES......ccciiiiiiiieiieii ittt 3
1.2.5 GEOMELIC FEAUIEScee e ettt 3
1.2.6 TOIBIANCESottt e e e e e e e e e e e e e e e eeeseenannnnans 4
O A O 410 1= o | £ TR 4
Overview oOf the INterpreter ... 4
2.1 INterpreter KEINEL.. ... 4
2.2 INtEIPreter INTEITACESuiiiiiiiii e 5
2.2.1 Telling the Interpreter What t0 DO.......ccooveeiiieiiiiieieeeeecee e, 5
2.2.2 Getting Data from the INterpreter ... 6
2.2.3 Telling the CMM What t0 DO......ccoviiiiiiiiiiiiiiiieciiieeeeeeeee e 6
2.2.4 Getting Data from the External World...............cccceeeeeiiiiiiiiiiiiiieeins 7
2.2.5 Extracting Feature Parameters from Arrays of POINtS...........cccceeeeeeennn. 8
2.3 Integrated or Stand-Alone OPEratioN..........cccuuuiiiiiiiiiiiiiiieee e 8
P2 Tt R - U T = o] o = 9
2.3.2 Integrated with EMC Control System..........cccceeeeeeiiiiiiiieeieeeenn 10
2.4 Major DMIS Interpreter Design DeCISIONS........cccovvviiiiiiieeieiiiiiee e 11
2.5 Division of RESPONSIDIITIES......ccooiii i 12
P2 T8t R o T o 1 1 (o ISR 12
2.5.2 LANQUAGESieitiiieiiie ettt anan 12
2.5.3 DMIS QUIPUL ...ttt e e e eaa s 12
2.5.4 CoOrdiNate SYSTEIMSuuuiiiiiiiiiiiiiiiee e e e e e e e e e e e e e e eeeas 12
2.5.5 Features, Tolerances, and Variablescccccccciiiiiiiiiniiiiiiiii 12
2.5.6 UNIES ittt a e e e e e e e e e e a e 12
2.5.7 SBINSOIS ..ttt e e e et e aaee 13
2.6 Variables and EXPreSSIONScccoiiiuuuiiiiiiiiiiiiiiere et e e e e e e e e e e e e e e s sabbebeeeeeeees 13

NIST DMIS Interpreter Version 2

2.7 HOW the INterpreter RUNS.... ...ttt 14
2.8 INterpreter MOAE!eeeii e a e e 16
2.9 SPEEA. .t a e e e e et ————————— 16
2.10 Limitations of the INterPreter........ooo i 16
B0 INPUL e 16
TNt R O) V=T V1o TSP PPPPPPPPPPPPTTTRN 16
3.1.1 Case, White Space, Line Continuations, Comments.cccceeeeerens 16
3.2 INPUL STAEMENTS. ... e e e e e e e 17
3.2.1 Format of a DMIS Statement.............ooovviiiiieiiiiiiiiieee e 17
3.2.2 NUIMDBIS et e e e e e e e e e e aaeeaaaeenans 18
3.2.3 VaN@ABIES ..o 18
3.2.4 LINE NUMDET ... e e 18
3.3 WOrds RECOGNIZEA.......cce et e et s s e e e e e e e e e e e e eeeerannes 18
7 O o] o Tod [0 {0 o 1SR 20
RETEIENCES ... e et e e 21
Appendix A Software DetailScoooeeveiiiiiiieiieee e 22
Al Overall APProach.........ouuiii i 22
A.1.1 Major Change from First VEersion...........ccccevviiiiiiiiiiiiiiiiinn e 22
A.1.2 DMIS Object Classes and Access FUNCHONS.........ccceveeeeeeeiiiiiiiiiiiinnnne 22
A.L3 YACC QN IEX .ttt ettt e e e e e e e e e 22
A.1.4 Read First, Then EXECULE........ccouuiiuiiiiiiiiei e 23
A2 SOMWAre MOAUIESeeeeiiieie e 25
A.2.1 Stand-Alone and Integratedccuuviiiiiiiiiiiiiiie e 25
A.2.2 Stand-Alone ONIYcooiiiiiecee e 25
A.2.3 Integrated ONIYcoooiiiiiiiiiiie e 26
A.3 Source Code DOCUMENTALIONcceeeeeiiiiiiiiieiiiiiiieee e e e e e e e e 26
Appendix B Interpreter Interface FUNCLIONScccoeiviiiiiiiiinc e, 27
B.1 Functions That Extract Data From the Interpreter..........ccccccceeiiiiiiiiiiinne 27
B.2 Functions for the Interpreter to Call to Get World Model Data 27
B.3 Functions to Tell the Interpreter What to DO............cvvvuviiiiiiiiiiieeeeeeeeeeeeeiiinns 28
B.4 Functions to Tell the Rest of the System What to DO..........cccccceeeiiiiiieeeennnn. 30

NIST DMIS Interpreter Version 2

B.4.1 DISCUSSION AN ISSUEScevveriiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeraeann e s s e e e e e eeeeeaeeeens 30
o Y/ o 1T S PP 31
B.4.3 FUNCHONS.....coiiiiiiiiiiiiiee e e e e as 33
B.5 Functions to Get Feature Parameters from Arrays of Points.cc..ee... 43
Appendix C Building a Stand-Alone Executablecc.cccooeevviiiiineeee, 46
Appendix D Transcript of @ SESSIONccceeviiiiiiii i 47
Appendix E Error Handling and Error Messages.........ccceevvvvvveivnnneeenne. 48
e O Y 1 o | g =T o |11 T U 48
E.2 Sources Of ErTOr MESSAQES.ccoviiiiiiiiiiiiiiiee e e e e e e e e e e e e et a e e e e aaeaaas 48
e O (0 T\ TS TST= T PP 49
Appendix F YACC and Lex Specificationsccceuveiieeiriiiiiieeeeeeiinnnn 54
Ot R [0110 To [0 To{ 1 o] o SO UPPPPPPPPPRTPPPRN 54
F.2 LeX SCANNET ...ttt e ettt e e e e et e e e e e e e et e e e e e eenaans 54
F.2.1 Changes from the First VEISiONeeeeieeiiiiiiiiiiiieiiiieee 54
F.2.2 Summary Of LEX RUIES ..c.coveiiiicii e 54
B 3 Y A C C e 55
F.3.1 Changes from FirSt VEIrSIONciiiiiiiiiiiie et a e 55
F.3.2 Formal SPecCifiCatiONccccuuiiiiiiiiiiiiee e 56

\Y

NIST DMIS Interpreter Version 2

NIST DMIS Interpreter Version 2

FIGURES
Figure 1. Interpreter INterfacesccoceeviiiiiiii e 5
Figure 2. Stand-Alone INErPretervvvie i 10
Figure 3. Interpreter Integrated in Controllerccccoooevviiiiiiiiiveiiieeeee, 11
Figure 4. Sample DMIS_variables File ..., 13
Figure 5. DMIS Class HierarChycccoiiii i 24

vii

NIST DMIS Interpreter Version 2

TABLES
Table 1. CMM Canonical CommandsS..........ccceuuuiiiiiiiiiiiiieeeeeeiien e 7
Table 2. Interpreter Internal Model.............ccooiiiiiiii e, 15
Table 3. DMIS Words Implemented in the Interpretercccccceeeveeeees 19
Table 4. Interpreter State TranSitioNS..........ooooviiiiiiiiiiiiii s 29
Table 5. Makefile for INterpreter.........ooeei i 46

viii

NIST DMIS Interpreter Version 2

1 Introduction

The National Institute of Standards and Technology (NIST) DMIS interpreter is a software
system that reads control code programs in the DMIS language (described below in Section 1.2),
produces calls to a set of canonical commands for coordinate measuring machines, digests the
results of taking measurements, and produces a file describing measured features and tolerances.
The canonical command calls made by the interpreter can be used to drive a coordinate measuring
machine. This report describes Version 2 of the DMIS interpreter (in this report “the interpreter”).

1.1 Background
1.1.1 Architecture Project

The NIST Manufacturing Engineering Laboratory (MEL) has conducted an architecture project
for several years. Three MEL divisions have participated in the project. The primary objective of
the project is to develop a reference model control architecture to support intelligent control
systems for manufacturing. The architecture being developed is called the Intelligent Systems
Architecture for Manufacturing (ISAM) [Albus].

1.1.2 Enhanced Machine Controller Project

The MEL Intelligent Systems Division (ISD) is carrying out an Enhanced Machine Controller
(EMC) project. The primary objective of the EMC project is to build a testbed for evaluating
application programming interface standards for open-architecture machine controllers. The EMC
project has built several controllers. These are most often run in a research environment at NIST,
but commercial installations of EMC controllers have also been done [Proctor].

1.1.3 Next Generation Inspection System Project

To advance the state of the art in inspection, ISD established the Next Generation Inspection
System (NGIS) project. NGIS goals are (1) to maintain a next-generation inspection testbed for
experimenting with open architecture controllers, interface standards, and multiple advanced
sensors, and (2) to achieve fast, accurate, and flexible coordinate measurement of complex parts.
A testbed has been assembled that consists of a coordinate measuring machine and advanced
sensors, with a NIST Real Time Control System (RCS) architecture controller.

1.1.4 DMIS Interpreter First Version

As part of the architecture project, it was decided to put two levels of EMC controllers above the
NGIS controller. The capability to interpret control programs was put in the control level
immediately above the NGIS controller. DMIS was selected as the language for control programs.

There are several DMIS interpreters available commercially, but they connect directly to specific
commercial machine tool controllers. The architecture project required an interpreter that could
be driven by function calls from the controller in which it was resident, could drive lower control
levels by an open programmatic interface, and could communicate with the environment and a
feature-fitting mathematics module via open interfaces. The required interfaces are shown in
Figure 1 on page 5. Such an interpreter is not commercially available, so it was decided to build
the software at NIST.

A DMIS interpreter was built by the authors in 1996 and used in the control system for a
coordinate measuring machine (CMM). A report on that first version of the interpreter [Kramer2]

NIST DMIS Interpreter Version 2

was published in April, 1997. All information from that report relevant to Version 2 of the
interpreter is included in this report, so it is not necessary (or useful) to read that report in order to
understand Version 2.

1.1.5 DMIS Interpreter Version 2

In mid-1997, research work at NIST developed the requirement that the DMIS interpreter be able
to handle a series of small, related inspection programs. The DMIS language provides the
capability to pass information from one program to a program run later. The capability is enabled
by the existence of common variables in DMIS, but common variables had not been implemented
in the first version of the interpreter. It was decided, therefore, to implement common variables.
Study of how to do this indicated that a major revision would be required. It was decided to build
Version 2 of the interpreter, and Version 2 was built during the middle of 1997. This report
documents Version 2. Changes from the first version to Version 2 are discussed in Section 2.6,
Appendix A.1.1, Appendix F.2.1, and Appendix F.3.1 of this report.

1.2 Overview of the DMIS Language

This section gives an overview of the DMIS language. Further details of the meaning of DMIS
code are given in Section 3 of this report.

1.2.1 Introduction

DMIS (pronouncedEE-missand standing for Dimensional Measuring Interface Standard) is a
standard programming language for numerically controlled dimensional measuring equipment,
primarily coordinate measuring machines (CMMs). Coordinate measuring machines from many
manufacturers can be operated using programs written in DMIS.

DMIS was developed by the Consortium for Advanced Manufacturing - International. The most
recent version of DMIS is Revision 3.0, which was completed in 1995 [CAM-I] and is ANSI
American National Standard “ANSI/CAM-1 101-1995.” Both versions of the interpreter conform
to Revision 3.0.

The DMIS specification [CAM-1] is large — 389 pages. It describes both an input language and
an output language. The DMIS input language supports the following functions:

defining and measuring features (planes, circles, cylinders, lines, etc.)

defining and measuring tolerances

defining coordinate systems (and activating and deactivating them)

defining sensor characteristics and changing sensors

setting machine parameters (feed rates, probe tip radius, etc.)

machine motion - probing and free-space motion
The output language supports reporting the results of measuring features and tolerances and also
serves as a log of input statements.

The general outline of a typical DMIS program is to define and measure some features on a part
that serve to establish the coordinate system in which further measurements will be taken. Then,
more features and tolerances on and among features are defined and measured in the newly
established coordinate system. The measurements are analyzed, actual tolerances are calculated,
and the results are saved in a file.

NIST DMIS Interpreter Version 2

1.2.2 Statements, Lines, Major Words, Minor Words

DMIS is based on statements. A statement normally fits on a single line (a series of ASCII
characters terminated by a carriage return and line feed). However, lines may be continued by
putting the line continuation symbol (the $ character) as the last printable character on a line, so
that a single statement may span several lines.

A typical statement consists of a major word, followed by a slash, followed by a mixture of minor
words, labels, and numbers, for examM&AS/PLANE, F(POCKET_BTM), 3. Semantically,

each statement represents a single command that is embodied in the major word. The minor
words, the numbers, and the way in which the minor words and numbers are grouped specify
parameters to the command and shades of meaning of the command.

The statement formats recognized by the interpreter are presented in a formal specification
language in Appendix F. This includes about a quarter of the entire DMIS language, but it is the
most heavily used quarter and covers perhaps 90 percent of what might be seen in typical
inspection programs.

1.2.3 Programs

Statements may be collected in a file to make a program. A program consists of a DMISMN
statement at the beginnihgan ENDFIL statement at the end, and any number of other types of
statements in between. The specification is not clear whether statements are intended to be usable
outside of a program (as manual data input, for example). The interpreter requires an entire
program.

1.2.4 Program Subunits

DMIS includes program subunits. A program subunit is a sequence of statements that forms a
functional group. [CAM-I] defines ten types of program subunits. The interpreter implements
only two of these types: measurement sequence and motion sequence. Each type of program
subunit requires a particular type of first statement and a particular type of last statement.

A measurement sequence has a MEAS statement at the beginning and an ENDMES statement at
the end. The function of a measurement sequence is to measure one feature. The significant

statements inside a measurement sequence are PTMEAS statements, each of which is a command
to measure a point.

A motion sequence has a GOTARG at the beginning and an ENDGO at the end. The function of a
motion sequence is to move around in free space. Only GOTO statements may occur inside a
motion sequence.

In the interpreter, we use the word “block” to mean either a statement or a program subunit.
1.2.5 Geometric Features

In DMIS, inspecting a part is done in terms of features and tolerances. Features in DMIS are
mostly simple geometric elements. A complete list of DMIS feature types iscaote, cone,
cparln, cylinder, ellipse, gcurve, gsurfine, object, parpln patterrplane, point, rectangle, and
sphere. The underlined five are implemented in the interpreter. DMIS features (such as the

1. By “DMISMN statement” we mean a statement using the major word DMISMN. In general, “XYZ
statement” means a statement whose major word is XYZ.

NIST DMIS Interpreter Version 2

cylindrical side of a hole) may be visible on a part being inspected or they may be purely
conceptual (such as the line that is the axis of a cylindrical hole).

A DMIS program usually does not try to provide a complete description of the part to be
inspected. Only those features that are to be measured or used indirectly for definitions need to be
defined. There is no requirement on how much of the geometry of a feature must be present. For
example, a line joining the centers of two circles is common in a DMIS program, even though
there is no trace of it on the actual part.

DMIS does not provide a general geometric modeling capability. DMIS provides no capability to
describe topology and no capability to perform modeling operations such as boolean subtraction
of a feature from a part.

Each feature is considered to have both a nominal description, which is the one used when the
feature is first defined, and an actual description, which is derived later on the basis of one or more
measurements. The DMIS specification does not state whether a single nominal feature may
correspond to more than one actual feature, but seems to assume that the correspondence is one-
to-one.

Each nominal feature has a label that serves to identify it within a DMIS program. No other
feature may share that label in the same program. The actual feature(s) corresponding to a
nominal feature is (are) identified by the same label as the nominal feature.

1.2.6 Tolerances
DMIS tolerances also have labels that are unique among tolerances within a program.

Tolerances in DMIS do not belong to individual features. Tolerances are defined without reference

to specific features and may be applied repeatedly. For example, a diameter tolerance of 0.1 mm
might be defined and labelled DTOL1. Then a dozen circles might be tested to see if they meet

DTOL1.

DMIS supports tolerances according to the ASME Y14.5-1994 Standard for Dimensioning and
Tolerancing. Twenty-two types of tolerance are included. The interpreter implements seven of
these to one degree or another: coordinate position, cylindricity, diameter, flatness, parallelism,
perpendicularity, and relative position.

1.2.7 Comments

A DMIS program may include comments. A comment is a line that has two dollar signs as the
first two characters. Such lines are to be ignored by the system executing DMIS statements.
Comments may contain information useful to humans writing or using the program.

2 Overview of the Interpreter

2.1 Interpreter kernel

The inside of the interpreter is called the kernel in this report. Most of the software for the
interpreter is part of the kernel. The kernel is accessible in a program only through the interfaces
(which are not part of the kernel). The kernel will print error messages directly visible to the user,
however.

NIST DMIS Interpreter Version 2

2.2 Interpreter interfaces

The interpreter has five interfaces, as shown in Figure 1. Each interface is a collection of function
calls; there is an application programming interface (API) for each such collection. Arrows show
the direction of function calls. Return values (shown in parentheses) move in the reverse direction.
cmm_do_something calls do not return anything, so nothing goes in the reverse direction.

input file
interpreter_do_something omm_do_something
do g | DMIS
(status) INTERPRETER
world_give_data
(C++ simple type)
INTERPRETER
interpreter_give_data WORLD MODEL
- extract_feature
(C++ simple type)

(status and results)

output file

Figure 1. Interpreter Interfaces

The five APIs have been defined in the C++ programming language. For convenience, the
function prototypes for all five APIs are given in a single header file. For each API there is a

separate file that gives the definitions of the functions in the API. In this section we give only the

names and arguments of the functions. More details are given in Appendix B, including a

description of what each function does.

2.2.1 Telling the Interpreter What to Do

The functions in this interface (called interpreter_do_something in Figure 1) are:
interp_init()
interp_open_program (char * dmis_file_name)
interp_execute_next()

interp_close_program()
interp_exit()

NIST DMIS Interpreter Version 2

2.2.2 Getting Data from the Interpreter
The functions in this interface (called interpreter_give_data in Figure 1) are:

interp_line()
interp_sensor_tip_diameter(char * sensor_name)

2.2.3 Telling the CMM What to Do
This interface is called cmm_do_something in Figure 1.

One of the main purposes of the interpreter is to tell the controller what the DMIS program says
the equipment should do. To do the telling, a language is needed. A set of “CMM canonical
commands” was developed to serve as that language. The CMM canonical commands are listed in
Table 1.

The CMM canonical commands are atomic commands. Each command produces a single action.

The correspondence between executing a DMIS statement in the interpreter and the interpreter
calling a CMM canonical function is usually one-to-one. Occasionally it is one-to-two. On the
other hand, executing many DMIS statements (any statement that is a definition of a feature or
tolerance, for example) requires no work on the part of a CMM. In such cases, the “advisory”
CMM canonical function is called just to show that the interpreter did something. The “advisory”
command contains a message but produces no CMM action. Without the “advisory” command,
there would be many cases where the execution of a DMIS statement would result in no call to
any CMM canonical command.

The canonical commands used in the interpreter were devised with three main objectives in mind.
First, all the functionality of the existing NGIS had to be covered by the commands; for any
function the NGIS can perform, there has to be a way to tell it to do that function. Second, it must
be possible to interpret DMIS statements into canonical commands. Third, the canonical
commands had to conform to the division of responsibility between the interpreter and the rest of
the system, as described in Section 2.5.

Two sets of definitions for the CMM canonical functions have been written, and either set can be
linked into the interpreter. The first set is used in the EMC controller for the NGIS testbed.
Executing a function from this set causes a command message to be generated. When this
command message is executed, the machine’s actuators are activated. The second set is used in
the stand-alone DMIS interpreter. Executing a function from the second set causes a line of text
containing the command to be written to standard output or to a file.

NIST DMIS Interpreter Version 2

ADVISORY (char * message)

ASSIGN_SENSOR_TO_SLOT(char * sensor_name, int slot_number)

CATCH_UP()

CHANGE_SENSOR(char * sensor_name)

DEFINE_SENSOR(char * sensor_name, double x_offset, double y_offset, double z_offset,
double tip_diameter)

LOGGING_OFF()

LOGGING_ON(char * log_name)

MEASURE_POINT(double x, double y, double z, double i, double j, double k)

MESSAGE(char * text)

PROBE_RADIUS_COMPENSATION_OFF()

PROBE_RADIUS_COMPENSATION_ON()

PROGRAM_END()

PROGRAM_START(char * text)

ROTATE_TABLE(double position, CANON_DIRECTION wiseness)

SCAN_TO_POSE(double x, double y, double z, double i, double j, double k)

SET_COORDINATE_SYSTEM(double origin_x, double origin_y, double origin_z, double z_axis_x,
double z_axis_y, double z_axis_z, double x_axis_x, double x_axis_y, double x_axis_z)

SET_DISTANCE_APPROACH(double distance)

SET_DISTANCE_CLRSRF(double distance)

SET_DISTANCE_DEPTH(double distance)

SET_DISTANCE_RETRACT(double distance)

SET_DISTANCE_SEARCH(double distance)

SET_FEED_RATE(double rate)

SET_PLANE(CANON_PLANE plane)

SET_ROTARY_RATE(double rate)

SET_ROTARY_ZERO(double angle)

SET_SCAN_DIST_INTERVAL(double dist_interval, CANON_AXIS axis)

SET_SCAN_INTERVAL_TYPE(CANON_INTERVAL_TYPE interval_type)

SET_SCAN_RATE(double rate)

SET_SCAN_TIME_INTERVAL(double time_interval)

SET_SCAN_TYPE(CANON_SCAN_TYPE the_type)

SET_TRAVERSE_RATE(double rate)

STRAIGHT_TRAVERSE(double x, double y, double z)

USE_ANGLE_UNITS(CANON_UNIT_ANGLE u)

USE_LENGTH_UNITS(CANON_UNIT_LENGTH u)

USE_TEMPERATURE_UNITS(CANON_UNIT_TEMPERATURE u)

Table 1. CMM Canonical Commands
Function arguments are written in ANSI C style. All functions return nothing.

2.2.4 Getting Data from the External World
This interface is called world_give_data in Figure 1.

The functions in this interface are called by the interpreter. These functions primarily obtain data
that is collected during probing. The functions are:

NIST DMIS Interpreter Version 2

CANON_MEASUREMENT_STATUS MEASURE_POINT_STATUS()
double CANON_PROBE_X()

double CANON_PROBE_Y()

double CANON_PROBE_Z()

double CANON_CURRENT_X()

double CANON_CURRENT_Y()

double CANON_CURRENT_Z()

int CANON_LOG_SIZE(char * log_name)
double CANON_LOG_X(char * log_name, int n)
double CANON_LOG_Y(char * log_name, int n)
double CANON_LOG_Z(char * log_name, int n)

2.2.5 Extracting Feature Parameters from Arrays of Points

Each function in this interface takes an array of points and extracts parameters for a feature from
it. The returned value is used only to indicate either OK or error.

The interpreter uses source code for these fitting functions provided by the NIST Algorithm
Testing System (ATS) [Rosenfeldl, Rosenfeld2].

int extract_circle(double points [][3], int how_many, double tolerance,
double * center_x, double * center_y, double * center_z,
double * normal_i, double * normal_j, double * normal_k, double * diameter)

int extract_cylinder(double points [][3], int how_many, double tolerance,
double * center_x, double * center_y, double * center_z,
double * direction_i, double * direction_j, double * direction_k, double * diameter)

int extract_line(double points [][3], int how_many, double tolerance,
double * point_x, double * point_y, double * point_z,
double * direction_x, double * direction_y, double * direction_z)

int extract_plane(double points [][3], int how_many, double tolerance,
double * point_x, double * point_y, double * point_z,
double * normal_i, double * normal_j, double * normal_k)

int extract_point(double points [][3], int how_many, double tolerance,
double * point_x, double * point_y, double * point_z)

2.3 Integrated or Stand-Alone Operation

The interpreter runs integrated with the EMC control system or as a stand-alone system. The
program interfaces to the interpreter kernel are the same in the two cases. The interfaces seen by a
user in the two cases are completely different. The stand-alone system provides a simple text-
based command interface for the user; this interface is focused entirely on the interpreter. The
EMC control system has a variety of textual and graphic interfaces, only a little of which deals
with the interpreter.

In either case, the interpreter first reads the entire DMIS file and stores it as a data structure. The
file reading includes a complete syntax check, as described in more detail in Appendix E. Then,
the interpreter executes statements one at a time. If there is an error at any point, the interpreter

NIST DMIS Interpreter Version 2

sends a message identifying the nature of the error and stops running. If the error occurs during
execution, execution stops at the statement where the error occurred, and it is not possible to
restart the program from that point. To use a program that causes an interpreter error, the program
must be edited to remove the error, and the program must be restarted at the beginning. Further
details of error handling are given in Appendix E.1.

In both modes of use, if a DMIS output file is to be written (if there is a FILNAM statement in the
input program) the interpreter always writes a DMIS output file named “output.dms”.

2.3.1 Stand-alone

The stand-alone mode is valuable because it allows a user to pre-test a DMIS program without
having to run it on the machine controller. Any computer for which the stand-alone interpreter can
be compiled can be used to pre-test DMIS programs. Pre-tests are conclusive tests of whether a
program is interpretable or not because the interpreter runs exactly the same way in the stand-
alone mode as it does integrated with the control system. Pre-tests do not show whether the
program does what is intended, of course, and real-world data may defeat a program that runs
happily in stand-alone mode using dummy data.

The architecture of the stand-alone interpreter is shown in Figure 2. A key feature of the stand-
alone architecture is the dummy model of the external (outside the interpreter) world. This
dummy model is essential because most DMIS programs require that data (primarily the location
of measured points) be fed back into the program interpreter. To fill this need, the dummy model
is changed by the cmm_do_something commands, and the world_give_data commands get data
out of the dummy model. All dummy data is as close to nominal as possible. In the case of
measuring points, for example, the dummy world modeler pretends that the location of the actual
measured point is the same as the location of the nominal point.

In the stand-alone interpreter, the cmm_do_something functions each print a line of text (in
addition to manipulating the dummy world model). The text goes to the user’s terminal by default,

but may be redirected to a file. The main part of the line of text just echoes the function call. Each
line also includes the sequence number of the function call (1, 2, 3, etc.) and the line number from
the preprocessed DMIS file that gave rise to the function call.

The stand-alone interpreter has two modes of use: with or without a command interface.

With the command interface, the user has a finer level of control. It is started by giving the shell
commanddmis. This brings up a command interface that understands a handful of commands (a
list of which is printed if the commantelp is entered). To interpret a DMIS program line-by-
line, the user first gives an interp_init() command, then an
interp_open_program(input_file_name) command (which causes the entire file to be read and
an internal representation built), then a seriesntérp_execute_next() commands (each of
which executes one statement from the program), themtanp close_ program() command.
Either aninterp_exit() or a quit command will quit the command interface. Also from the
command interface, the user may giverun_program(input_file_name) command, which
opens, executes, and closes the program.

In the second mode of use, the user gives a single command, in response to which the interpreter
reads and interprets an entire DMIS file without bringing up any command interface. This mode is
used by giving the shell commarainis input_file_name. In this mode, printed output from
cmm_do_something function calls goes to the terminal by default but may be redirected to a file

NIST DMIS Interpreter Version 2

in the normal Unix manner, vidmis input_file_name > output_file_name. Even with output
redirected this way, the DMIS output file output.dms is still written.

input file
world
_give_data dummy world
interpreter_do » model access
interface | =———# |NTERPRETER | " 7P
driver (status)
extract_feature] NIST ATS
—————— = points-to-features
(status) functions
- . INTERPRETER J
nothin interpreter cmm_do terminal or file
implemegted _give_data WORLD MODEL _something
>
(C++
simple type)
dummy
w L world model
output file
Figure 2. Stand-Alone Interpreter

2.3.2 Integrated with EMC Control System

The architecture of the part of the EMC control system that uses the interpreter is shown in Figure
3. The grey box is the EMC controller. The interpreter software is built into the controller.

In this integrated configuration, the control system tells the interpreter when to read the file and
when to execute the next statement from the program.

The interpreter does not control machine actions directly. Rather, the interpreter calls CMM
canonical commands that generate messages that are passed back to the control system, and the
control system decides what to do with the messages.

10

NIST DMIS Interpreter Version 2

CONTROLLER E‘””“t f"eﬁ

world
interpreter_do _give_data WORLD
something DMIS >
EXECUTOR ———— C++ MODELING
(status) INTERPRETER (simple type)
interpreter extract_feature NIST ATS
_give_data — .. ®| points-to-features
— % (status) functions
(C++
simple type) INTERPRETER cmm_do
WORLD MODEL || —something _| JoB
ASSIGNER
|

\
 omis_D) Commands to

output file Subordinates

Figure 3. Interpreter Integrated in Controller

2.4 Major DMIS Interpreter Design Decisions
The following major design decisions were made regarding the interpreter.

The interpreter software runs in the same process as the executing system. This is to insure that
the interpreter can be used conveniently and quickly. With the interpreter tightly integrated this
way, communications with the interpreter consist simply of function calls and returned values.
Without this tight integration, a more complex method of communicating with the interpreter
would have been required. It would be feasible to implement the interfaces to the interpreter using
messages sent and received through a communications system.

The executing system controls the interpreter and the CMM; the interpreter does not control the
CMM directly. This does not show up in the interfaces to the interpreter. Rather, it is embodied in
the definition of the cmm_do_something functions used in the integrated system. These functions
just add things to do to the controller’s queue. Thus, deciding when to do what is in the hands of
the controller’s job assigner, where it belongs.

Actions from cmm_do_something functions may be queued, but the interpreter may assume they
are executed in order. The interpreter may direct that the queue be emptied before the interpreter
is called again. This is so that the interpreter can maintain an accurate model of the world without
having to make frequent calls to the world_give data interface functions.

The executing system handles DMIS input and output via the interpreter. This is to keep the

11

NIST DMIS Interpreter Version 2

burden of dealing with features and tolerances centralized in the interpreter and off the rest of the
executing system.

Enough of the DMIS language is implemented to meet the needs of the NGIS project and to
handle DMIS programs for two specific parts (the test part for the material removal demonstration
of the Department of Energy TEAM program, and the National Aerospace Standard 979 circle-
diamond-square test part).

The interpreter should be easy to upgrade. In particular, it should be easy to add statements that
deal with flow of control.

The interpreter must handle DMIS programs but not single DMIS statements entered by an
operator. The capability to handle single statements could be added, if needed.

2.5 Division of Responsibilities

The DMIS interpreter is part of the executing system. This section discusses how responsibilities
are divided between the DMIS interpreter and the rest of the executing system.

2.5.1 Control

The rest of the executing system performs control. The interpreter controls nothing; it only
advises the rest of the system what the DMIS program says to do.

2.5.2 Languages

The interpreter understands DMIS statements and can interpret them to produce cmm_canonical
commands. The rest of the executing system does not understand DMIS statements but can carry
out cmm_canonical commands.

2.5.3 DMIS output

The interpreter produces DMIS output as required by DMIS programs. The rest of the executing
system does not deal with DMIS output in any way.

2.5.4 Coordinate systems

The interpreter remembers all coordinate systems in a DMIS program. The rest of the executing
system deals with one active coordinate system, which may be changed. One coordinate system
both the interpreter and the rest of the system understand is the machine coordinate system. Each
change of coordinate system is expressed to the rest of the system in terms of the machine
coordinate system.

2.5.5 Features, Tolerances, and Variables

The interpreter remembers all nominal DMIS features (and corresponding actual features if and
when actual features are created). The interpreter handles all DMIS tolerances. The interpreter
handles all DMIS variables.

The rest of the executing system does not understand DMIS features, tolerances, or variables.
2.5.6 Units

The interpreter and the rest of the executing system both understand length (cm, inch, feet, m,
mm), angle (decimal degrees, radians), and temperature (centigrade, Fahrenheit) units and can
change them. It might be simpler to let the executing system deal with only one unit of each type;

12

NIST DMIS Interpreter Version 2

this would certainly be feasible.
2.5.7 Sensors

The interpreter remembers all sensor definitions in a DMIS program, but data required by the rest
of the executing system might not be in DMIS program. The rest of the system remembers sensors
by name and can remember the diameter of a sensor tip. By using an interpreter_give data
command, the rest of the system can ask the interpreter for the tip diameter of a sensor by name.
The rest of the executing system can change sensors.

2.6 Variables and Expressions

As mentioned earlier, the major changes between the first version and Version 2 of the DMIS
interpreter were driven by the need to implement variables. This section discusses how this was
done. Additional information about variables is given in Section 3.2.3.

In DMIS, all variables must be declared. This is done with the DECL statement [CAM-I, sec.
2.2.5,p. 5;sec. 3.1.2.2, p. 12; sec. 10.3.2, p. 272; sec. 10.3.3, pp. 273-274]. The interpreter only
implements COMMON variables of type BOOL (boolean), INTGR (integer), or DOUBLE.

COMMON variables and their values persist between DMIS program runs, even if the system is
powered down. Persistence of variables is achieved using a file named “DMIS_variables”. If a
program uses variables, this file is read just after the program is read and is written at the end of
program execution. The file lists the names of common variables, one per line, with the data type
and value of each. It is an error if a variable declared in a program is not listed in the
DMIS_variables file. The initial value of each program variable is set to the value given in the file.

If the value of any variable is reset during a program, that value is given when the file is written at
the end of the program. It is an error (and the interpreter will print an error message) if the
DMIS _variables file does not exist and a program uses variables. A short sample DMIS_variables
file is shown in Figure 4.

VARS3 double 88.77
AN_INT integer 707
INT2 integer 1234
BOO boolean true

Figure 4. Sample DMIS_variables File

A value may be assigned to a variable either by an ASSIGN statement or by an OBTAIN
statement [CAM-I, sec. 10.5, pp. 284-287]. The manual provides for a third method not
implemented in the interpreter. In the interpreter, only the parameters of nominal and actual
circles, planes, and points may be used with OBTAIN.

A variable that has been given a value may be used in place of any parameter in any DMIS
statement, so long as the variable is of the correct type. It is an error to use a variable in place of a
parameter if the value of the variable has not been set.

The implementation of variables is made more difficult by the fact that variables should not be
given values (except for those in the DMIS_variables file) or evaluated (even if included in the
DMIS variables file) when the program is read. It is necessary to wait until an explicit variable
setting statement is executed to assign a value, and to wait until a DMIS statement referencing a

13

NIST DMIS Interpreter Version 2

variable is executed to evaluate the variable. Since feature and tolerance parameters may be
variables, features and tolerances cannot be defined at read time; each is defined when a DMIS
statement is executed. Any variable in a feature or tolerance definition is evaluated when the
statement giving the definition is executed, and that value is used in the definition. If a variable
changes value during a program, that does not affect any definition that has already been made.

The interpreter implements one tiny bit of expressions: parentheses. A number or a variable name
may be enclosed in parentheses (or multiple nested sets of parentheses), and it will be recognized
as an expression. The interpreter requires that the variable name be enclosed in at least one set of
parentheses when a variable is used as a parameter value. In other words, variables are used only
in expressions.

Because (1) the value of variables may change during a program, (2) values of parameters of
features may be expressions containing variables, and (3) values of parameters of features may be
referenced, it is necessary to have two sets of values for the parameters of each feature. One set
(always called “exes” in the source code) contains the expressions and the other set contains the
numerical values of the expressions at the time the feature definition is executed. The second set is
the one that is used when the value of a feature parameter is referenced.

2.7 How the Interpreter Runs

To interpret a program, the interpreter is given an interp_init command, followed by an
interp_open_program command, followed by many interp_execute_next commands.

The interpreter maintains a model (shown in Table 2) of the machine while it interprets. The
interpreter uses the model in determining what cmm_canonical functions to call and what their
arguments should be. The model is initialized when the interpreter is started by a call to the
interp_init command.

When the interp_open_program command is given, the interpreter reads an entire DMIS program
into active memory before any of the DMIS statements in it are interpreted. Then DMIS
statements are interpreted one at a time.

In carrying out an interp_open_program command, the interpreter does the following:

1. The entire original DMIS program is read. It is stripped of comments and continued lines
are joined. The DMIS program file “dmis_temp” is written.

2. The file “dmis_temp” is read, creating a large in-core structure, usable by the interpreter,
that represents the entire DMIS program. This structure is made up mainly of
substructures representing DMIS statements.

3. If the program contains variables, the file “DMIS_variables” is read.

Calling interp_execute_next causes the interpreter to interpret the statement that should be
executed next. The statement that should be executed next is not necessarily the one on the line
after the last line that was executed.

The structure of a DMIS program is, in general, a nested hierarchy of blocks of statements. The
interpreter maintains a stack which mirrors the program structure. The stack is used to help decide
which statement should be executed next and to remember important data about each block.

After a program has reached the last command to be executed (or in the middle of a program, if
that is desired), an interp_close_program command should be given. This returns the interpreter to
the state it was in before the program was opened.

14

NIST DMIS Interpreter V