Robot Sensor Language

Stephen Leake
National Bureau of Standards

Abstract

‘RSL (Robot Sensor Language) is a data-driven, semi-interpreted, hierarchical, user extensible, robot
task description language. It provides four levels of task decomposition, with structures and syntax
specialized for each level. The user can add commands for new sensors appropriate to the task at hand.
The language is highly interactive, easing debugging and algorithm development. It may also be used as
an interface to a task planning system.

Introduction

RSL is a response to the need for a robot language that supports user-designed sensors, along with
hierarchical task decomposition and real-time execution. It is written in RCS, the NBS - developed
Real-time Control System!, and runs on 8086 based Multibus hardware.

RSL is a high-level language, specialized for sensor-interactive robot tasks. It is data-driven in the
sense that all data relating to a particular task is separated from the control process that executes the
task. This makes programming different tasks a matter of changing data files, rather than changing
control code, leading to a much more reliable control system. Data describing a robot task is of two
types: environmental data, such as object sizes and positions; and algorithms, which give information
about what sequence of steps are needed to complete the task. RSL supports representation of both
types of data in high-level source code. In order to speed execution, this high-level source code is first
compiled into a linked list representation stored in common memory, which is then interpreted by
control levels. Any piece of RSL source code can be edited and re-compiled at any time; the linked lists
are updated, with garbage collection, and the result can be executed immediately. It is not necessary to
re-compile an entire application to make small changes.

RSL supports hierarchical task decomposition. The high-level language is explicitly hierarchical,
decomposing tasks into paths, path-points, and trajectories. The compiler and control levels also follow
this hierarchy, and are highly modular. This structure makes it easy to add new sensors, or new
functional capabilities at any level. .

The rest of the paper is organized as follows: section 1 gives an introduction to RSL structures, and
introduces a short example task used to illustrate the language. Section 2 discusses the implementation
of the compiler and control levels. Section 3 gives a brief overview of some applications that have used
RSL. Finally, section 4 concludes with a discussion of future work.

Commercial equipment is identified in tins paper in order to adequately describe the systems under development. In no case
does such identification imply recommendation by the National Bureau of Standards, nor does it imply that this equipment
was necessarily the best for the purpose.

This paper was prepared in conjunction with the official duties of United States Government employees, and is not subject to
United States copyright.

Author’s current address: National Bureau of Standards, Bldg. 220, rm B127, Gaithersburg, MD 20899

Robot Sensor Language
Section 1 : RSI, structures
Task decomposﬁtion

It is helpful to use a simple example to illustrate the task decomposition. Consider moving a box from a
truck to a conveyor, using a forklift end-effector equipped with sonar range sensors and proximity
sensors. The first level of task decomposition (called the task level), yields the following sequence of
steps: .

1) Move the fork to the vicinity of the truck.

2) Using long range sensors, find the approximate position of the box on the truck, then use short
range sensors to align the fork tines with the box, and insert the tines under the box.

3) Lift the box clear of the truck.

4) Move to near the conveyor

5) Gently set the box on the conveyor. (The position of the conveyor is known to the robot
controller, so no sensors are needed for this step.)

6) Remove the tines from under the box, and move clear.

The next level of decomposition is the path level. Each of the steps in the task level descriptions is, in
fact, a path. Continuing the example, the path for step 2 decomposes into:

1) Scan across the truck, reading the long range sonars.

2) Goto 20 inches (as measured by sonar) in front of the closest point seen in the scan.
3) Move to the pickup side of the box.

4) Use several sonars to align with the floor of the truck, and the side of the box.

5) Insert the tines under the box, using proximity sensors to avoid hard collisions.

Each step in a path is called a path-point. The names path and path-point are derived from the notion of
thru-points along a path used to go around obstacles, but the meaning here is generalized to include the
use of sensors in various ways. A pre-planned path is a simple case, where no sensors are used.

The last level of decompos;ition is the trajectory level. Each path-point decomposes into one or more
trajectories. For example, step 1 in the path above decomposes simply into a Cartesian straight-line
trajectory, while step 4 involves several sensor-servoed rotations.

Each level of decomposition is now discussed in more detail, starting from the bottom.
Trajectory

A trajectory is an algorithm for commanding the position of the end-effector as a function of time. It
may be calculated solely on the basis of a priori information (as in " goto the truck "), or incorporate
sensor feedback (as in " align to the box "). The trajectory algorithms typically take parameters
describing the goal pose and limits on the velocity and acceleration. Sensor-based algorithms will have
- more parameters describing how to use the sensor data. RSL provides four trajectory commands:
Cartesian straight-line and joint interpolated for point-to-point motion, and two others for real-time
Cartesian sensor servo?, The user may add other trajectory commands as needed.

Path-points

A path-point is an algorithm for a single motion of the end-effector, usually involving a sensor. For
example, path-point number 2 above commands a motion towards a point, and uses the sonar to
measure the distance remaining. When the distance drops to 20 inches, the motion is halted. This is a
motion terminated by a sensor condition. On the other hand, the path-point that aligns the fork with the
floor is sensor controlled: the sonars give the distance to the floor, and a rotation is computed that

2

Robot Sensor Language
moves towards alignment. The orientation of the fork is servoed to the floor orientation.

There is typically a group of path-point commands for each type of sensor. For example, sonars are
used in scan, range, and align path-points. Each path-point command takes parameters which identify
the individual sensor to use, and give information on how to use the sensor data. For example, the align
path-point command has parameters identifying two sonars, a rotation axis, and a goal orientation.

The base RSL system provides only the goto path-point command, which moves the end-effector to a
given location, using no sensors. Users must add other path-points to use their sensors. Since the
language was designed with user extensions in mind, this is easy to do.

Paths

A path is an algorithm for a simple task, such as moving between locations or grasping objects. The
algorithm may be simply a path in space that guarantees no collisions, or it may involve sensors to help
locate the object when its position is not accurately known. In the above example, the first path uses no
sensors - it simply moves to the truck. The second path uses sensors to find the box. For simplicity,
paths consist of a linear sequence of path-points. Any branching or looping must be done within a
path-point, or at the task level.

Individual paths are identified by a path type and parameters. The parameters typically consist of named
locations, objects, and tools that are involved in the task. The path type gives the intended purpose of
the path, and is used in the task level decomposition. There are six path types provided by RSL;
move-to, approach-pickup, depart-pickup, approach-release, depart-release, and
named. The first five path types are used in the TRANSFER task, discussed below. They
correspond to the paths in the example: step 1 is a move-to path, step 2 is approach-pickup, step 3
is depart-pickup, step 4 is move-to, step S is approach-release, and step 6 is depart-release.

The sixth path type, named, is provided mainly for debugging; it provides a simple way to test small
pieces of more complex paths. It also provides a way to program simple tasks that do not need a task
level of decomposition.

The path parameters are handled in a way that allows a single path definition to be used for several
related tasks. For example, the approach-pickup path that finds the box on the truck could also be
used to find the box anywhere else, or it could find different sized boxes, since the location of the truck
and the size of the box are path level parameters.

Tasks

For the task level, the term "task” is used in a specific way; RSL tasks are algorithms for high-level
functions such as transferring pallets from a truck to a conveyor, or deburring machined parts.

All tasks are decomposed into a sequence of path types; the specific path to be executed is identified by
_the path type and the parameters of the current task. The user provides paths for each path
type/parameter combination required.

The base RSL system provides two tasks; MOVE-TO and TRANSFER. MOVE-TO simply moves
the robot to a goal location, by executing the move-to path that connects the current location to the
goal. TRANSFER transfers objects from a source location to a goal location. This is the task used in
the example. The sequence of paths for the TRANSFER task is;

Robot Sensor Language

TRANSFER object, source location, goal location

1) move-to object , current location, source location
2) approach-pickup object , source location

3) depart-pickup object , source location

4) move-to object , source location, goal location

5) approach-release object ,goal location

6) depart-release object ,goal location

This sequence decomposes the transfer task into six steps, each of which is programmed by the user as
a path. The sequence is repeated if either the source or the destination is an array. Note that the user
may treat each object / location combination differently, using different sensor based strategies, while
maintaining the high-level TRANSFER task definition. For example, transferring a large box from a
table would involve using sonar sensors to find the box, while transferring a small machined part from
the same table would involve a vision sensor. The user would provide two different sets of paths,
identified by the object type. The TRANSFER command would automatically select the appropriate
path, based on the object type in the task parameters.

The user can add other tasks to RSL, to fit the user’s application.

Environmental data

RSL provides ways of representing poses (position and orientation) of locations and objects.
Locations can be defined in absolute world coordinates, or relative to a base location, using movetables.
Movetables provide a convenient user syntax for specifying relative transforms; the transform is built
up out of simple steps, consisting of a vector translation, or a rotation about a single axis. Some
information about sizes of objects is also represented, for use by a gripping end-effector. Locations can
be grouped into arrays, for use in palletizing operations.

Section 2 : Impl tati

RSL is implemented using the NBS Real-time Control System (RCS). RCS is a micro-processor
based system for real-time control applications. It runs on Multibus based 8086 / 8087 hardware. The
operating system is based on FORTH, but has been significantly extended to support multiple
processors, a mid-level high-speed compiled language, inter-processor communications, and common
memory. It inherits from FORTH the user-friendly features of interactive execution and incremental
compilation, making debugging a simple and easy process.

RCS is designed to support a hierarchical control structure, with all levels of the hierarchy executing in
parallel, in a cyclic manner®, A system clock defines a cycle time, and each level executes its control
process once each cycle. This cyclic execution means that each level in the hierarchy is executing the
. appropriate control algorithm at all times. This is contrasted with sequential execution in which a higher
level routine calls a lower-level routine, and the higher level waits for the lower level to complete before
itresumes executing. One advantage of cyclic execution is reaction time; since each level samples all
inputs each cycle, the system can react to an external event, at any level, in one cycle. This could be
done with interrupts in a sequential system, but it is hard to terminate the interrupt routine in a way that
aborts the current routine cleanly, and even harder to predict all of the possible interactions.

For example, consider step 2 in the example task above. The Path-point level is monitoring the sonar
sensors, and updating the command to the Trajectory level as often as possible. Meanwhile, the
Trajectory level is controlling the fork's acceleration and velocity, to maintain smooth motion. The two
levels execute simultaneously. In a sequential system, the Path-point level would have to read the

4

Robot Sensor Language

sensor, issue a command to the Trajectory level, and then wait until the command was completed before
reading the sensor again.

Another advantage of hierarchical design and cyclic execution is modularity; each level has well defined
interfaces to sensors and other levels. As long as the interface design is met, any level can be modified
independently of the others. Also, any or all levels can be single stepped while the others are running,
to help in debugging.

RSL consists of a compiler and an interpreter (see figure 1). The interpreter consists of four control
levels running on three processors; a fourth processor runs the compiler and acts as a system supervisor
and user interface. No external development system is needed; all programming is done on the final
application system. The RSL compiler compiles RSL source code describing locations, movetables,
objects and paths into a linked list representation, which is stored in common memory. The control
levels then access the common memory to retrieve the data as needed.

The four control levels in the interpreter correspond to the four levels of task decomposition. TASK,
PATH, and PATH-POINT execute on one processor. The trajectory level is split into two modules,
CARTESIAN and JOINT, which execute on separate processors, to achieve faster cycle rates. The
Joint Servo level in figure 1 is assumed to be provided by the robot manufacturer.

The input to TASK is a user command. This command is decomposed according to the task definition,
which results in a sequence of paths. One path at a time is commanded to PATH; as each path is
completed, a new one is commanded.

PATH accepts path commands, retrieves all the path parameters from common memory, and
decomposes the path into path-points, following the path definition compiled into common memory It
commands one path-point at a ime to PATH-POINT, waiting for each to complete.

PATH-POINT accepts path-point commands from PATH, retrieves the path-point parameters from
common memory, and executes the path-point algorithm. The path-point algorithm typically involves
reading a sensor, calculating an object pose based on the sensor data, and updating the parameters in the
current trajectory command.

CARTESIAN accepts trajectory commands from PATH-POINT, and retrieves the trajectory parameters
from common memory. It executes the trajectory algorithm, and outputs a pose for the robot wrist,
once every control cycle. JOINT accepts the wrist pose, converts it to joint coordinates, and commands
it to the joint servos.

The cycle time is 28 milli-seconds for a Unimation PUMA 760 or 4000, and 24 milli-seconds for an
American MERLIN. These times are determined by the servo rates in the two robots. Note that only the
trajectory level must generate new output every cycle; the upper levels are free to take as much time as
necessary to process sensor data, or decide on the next task decomposition step.

RSL is user-extensible in many ways. It is designed to allow addition of new trajectories, path-points,

paths, and tasks. The user adds routines to the appropriate level of the interpreter to execute the control
" algorithm, and also adds routines to the compiler that compile the parameters for the algorithms into
common memory. Note that the compiler is very simple compared to a typical computer language
tompiler; the syntax and structures used in RSL are very simple, so adding to the RSL compiler is
straight-forward.

RSL source code

¥
RSL COMPILER
()

Ia - ™
common memory
Pose

Paths

Robot Sensor Language

User commands

TASK LEVEL

/
P ||I|((

2
(4]
A g

)

\ —& = pointer

.

joystick

joint values

(Joint Servo)

Figure 1. RSL control levels and common memory structures.

Robot Sensor Language
Section 3: I licati

RSL has been used successfully in three applications to date. The first is the Field Materiel Handling

Robot system, which uses a fork with sensors (very much like the example above) to off-load boxes

of ammunition (and other materie!) from trucks®. RSL was first used to program a mockup of this task

. on a PUMA 760, then the mockup was transferred to a UNIMATION 4000 robot. Many path-points
were added to the base system, to handle all the sensors.

A second apphcatxon is a cleaning and deburring workstation in the Automated Manufacturing Research
Facility at NBS4. RSL is used to program a PUMA 760 to use air-powered deburring tools to deburr
machined part edgcs A separate workstation level (running on a SUN), encodes the part geometry
into a path, with parameters indicating the tool to use, feed rates, etc. The path is down-loaded to the
RSL system, where it is compiled and run. Path-points were added to control a vise, various deburring
tools, and a tool quick-change. A deburring task and associated paths were also added. The task level
accepts commands from the workstation level, and commands paths that deburr the parts, changing
tools as required.

The third application is a satellite docking mockup?. The RSL system reads a solid-state camera,
determines the position of a satellite (as indicated by four LEDs on the satellite), and drives the robot
end-effector to dock with the satellite.

Section 4: future work

RSL does not support an explicit world model; all knowledge about how the world works, and in
particular how sensors and end-effectors interact with objects, is implicit in the tasks and paths
provided by the programmer. This makes it difficult to use more than one sensor at a time. A world
model will make it possible to combine data from several sensors, by comparing the sensor readings
with predictions, and servoing the model to the sensors>.

A second area for future work is task representation. Currently, RSL uses SMACRO code to express
the task level, and linear sequences of path-points to express the path level. (SMACRO is the computer
programming language provided by RCS: it is similar to C, but less powerful). The path level needs to
be more flexible, in particular to allow for error conditions. On the other hand, the task level should be
more restrictive. The power provided by SMACRO (or C) code is deceptive; it is too easy to write
code that works for a particular instance, but is not generic enough to be used for several tasks, or
robust enough to work reliably. There should be a task description language that allows adequate
flexibility, while guiding the programmer into writing code that works, and is generic and maintainable.
The path structure provided by RSL is a first attempt at such a language.

Another reason for developing a good task description language is that it would make an excellent
interface between a planning system and the control system. The deburring workstation application
mentioned above has shown that this approach is worth pursuing. Having a more powerful task

description language available will make it easier to incorporate task level planning for more complex
. tasks,

Acknowledgments
The author would like to thank Sandor Szabo and Karl Murphy for many useful ideas, and for using

RSL in the applications. Tony Barbera and ML Fitzgerald designed and developed the first versions of
RCS, and provided much support during the development of RSL.

Robot Sensor Language

References

1. The RCS Users Reference Manual. to be published.
2. Stephen Leake, " Cartesian Trajectory Algorithms for Real-time Sensor Sa'vo » to be published.

3. Harry G. McCain, Roger D. Kilmer, Sandor Szabo, Azizollah Abnshamxan, " A Hierarchically

- Controlled Autonomous Robot For Heavy Payload Military Field Applications ". Intelligent
Autonomous SGystems, An International Conference, Amsterdam, The Netherlands, 8-11
December, 1986.

4. Harry G. McCain, Roger D. Kilmer, Karl N. Murphy, " Development of a Cleaning and Deburring
Workstation for the AMRF", Proceedings of the Deburring & Surface Conditioning Conference,
Sept 23-26, 1985, Chicago, Tllinois.

S. Ermest W. Kent, James S. Albus, "Servoed world models as interfaces between robot control
systems and sensory data”, Robotica (1984) volume 2, pp 17-25.

6. A.J. Barbera, M.L. Fitzgeraid, J.S. Albus, L.S. Haynes, " RCS: The NBS Real-Time Control

System ", Proceedings of the Robots 8 Conference and Exposition, vol 2, pp 19-1 through 19-33,
Detroit, chlngan, June, 1984,

