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The B-spline is a commonly used tool for solving problems in computer-aided
design. A procedure for describing the curve shape and discontinuity conditions at
input coordinate locations is outlined for non-uniform B-splines.
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plines have been used to interpolate curve data for

many years in various industries. The B-spline,

with its defining polygon, has become extremely

popular, because of the increased use of interac-
tive graphics [1-4]. Instead of a strict interpolation proce-
dure, many engineers using B-spline curves in shape design
force the user of the software to begin by defining or
sketching the so-called defining polygon. This polygon deter-
mines a B-spline curve. Once this curve is generated along
with its defining polygon, the designer can interactively
modify the defining polygon to obtain a locally modified B-
spline curve of desired shape.

Non-Uniform B-Spline Input Interpolation
Procedure

The procedure examined here begins not by inputting the
defining polygon; rather it uses known or available curve
shape or property information. The particular way this
existing information should be input is very dependent upon
the particular facility, hardware availability, and associated
software.

This information should be handled a certain way once
input to the computer. An overview of the procedure for an
interpolation for a first approximation by a non-uniform B-

spline curve (the parameterization is not from zero to one for
each segment) is called for. Existing mathematical routines
are mentioned and an effective way to organize the informa-
tion to define curves using these splines is outlined, in the
context of transferring the information needed to generate
the desired curve shape.

The types of conditions desired at given input coordinate
points are outlined, and mathematical concepts and required
algorithms are discussed. Lastly, ways in which the input
information should be processed so that the algorithms might
be applied are described.

Imposing conditions at the input points. There is nothing
sacred about the number of or nature of possible conditions.
They can be easily changed depending on the particular
application or flexibility one wishes the curve form to have.
The option information will be transferred through a code
procedure (an integer array will carry the information as to
which option has been selected for each point). The use of a
code to transmit curve property information has been sug-
gested by others [3, 5], but details of an implementation have
not been included.

For simplicity of discussion, we restrict our attention to
the case of a B-spline curve of order 4 (degree 3) and of
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s second derivatives.

Fig. 3 A B-spline curve, with the fourth displayed point from the

loft being the start of a straight line segment.
a curvature discontinuity.

At this point there is

Fig. 2 A B-spline curve that has a tangent discontinuity at a
point.

Fig. 4 A B-spline curve defined from the top right point to the
bottom right point. At the fourth point a straight line starts; there is a
tangent discontinuity at this point.

dimension 2. We are considering the construction of a
parametric cubic spline in the x—y plane. We first assume
that we will be supplied with a sequence of coordinate points
[x(1),¥(1)), (x(2), ¥2)),. . . . ,(x(m),y(m))] that we wish the
B-spline curve to interpolate in the given order with the
increasing parameter value.

At each of these points, a number of properties can be
specified that will determine the character of the curve in the
vicinity of the point. The number of available options for
first and last points will be limited as ¢ompared to the other
points. We will first list the options that are available for
points other than the two end points:

(1) The given point in the string of input coordinate points
has a continuous second derivative. This is the standard
spline condition (Figure 1).

(2) The given point will locate a tangent discontinuity (Fig-
ure 2).

(3) The given point is the start of a straight line segment. At
this point there will be a curvature discontinuity (Figure 3).
(4) The given point is the start of a straight line segment. At
this point there will be a tangent discontinuity (Figure 4),
(5) The given point is the end point of a straight line
segment. A curvature discontinuity exists at the point (Fig-
ure §).

(6) The given point is the end point of a straight line segment
and a tangent discontinuity exists at this point (Figure 6).
(7) The given point is the end point of a straight line segment
and the start of another (Figure 7).

To accomplish the information transfer, we used an inte-
ger array, NCODE(]), I=1,. . . . ,m, and for each of the I-
points (I not equal to 1 or m) we assigned one of the values 1
through 7. The default for each point was 1; if the user
wished a different condition he/she could make the appropri-
ate change.

At the first or last point of the sequence, two conditions
are allowed. Either the second derivative is taken to be
zero—a commonly used approach—or it is the start of a
straight line segment. The zero second derivative is the
default condition and the NCODE( ) value is 1. If the first
point is the start of straight line segment, NCODE(1) is given
the value 3, and if the last point is the end of a straight line
segment, NCODE(n+1) is given the value of 5.

Underlying mathematical problem. The underlying math-
ematics for B-spline interpolation of arbitrary order for non-
uniform spacing of the knots has been well formulated in the
literature [5,6). How the knots, data points, and other
interpolation information is related to the defining polygon is
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Fig. 3 A B.spline curve that starts with a straight line and
blends iInto a curved segment. At the transition point there is a
curvature discontinuity.

Fig. 7 A B-spline curve with two adjacent distinct line seg-
ments. The start of one line segment is the end of the other.

Fig. 6 A B-spline curve that starts with a straight line segment

and ends with a general curved segment. At the transition point
there is a tangent discontinuity.

Fig. 8 A B-spline curve thst is a composite of the seven curves
of Figures 1-7.
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explained. It is shown that the defining polygon can be
determined by solving a linear system of equations.

The knot sequence T = T(i)72¥, contains real
numbers such that k<n, T())<T(i+ 1), and T()<T(i+k) for all
i, and has a corresponding sequence of B-splines of order %,

(B)-. The spline S, is a vector

D=2 b BN, TK)* <t = Tn+1)"
j=1

where each bj = (bx;,by;) is a point of the defining sequence
for the defining polygon.

To solve for the defining points of the defining polygon n
interpolation must be given. This information could be
coordinate information or derivative information at a partic-

ular parameter value ¢. In fact, when r=1,, for some i, it may
be necessary to distinguish whether r=7()" or =T()"
because of derivative discontinuities (see Figure 2).

In our implementation, we followed Butterfield’s sugges-
tion [5] and incorporated this type of information with that of
the derivatives in an array ND(i). In particular, if (P;)=, are
the parameter values where the spline has specified deriva-
tive values g()=(gx(i),gy(i})), i=1, . . . n, then ND(i) is a non-
zero integer such that (IND(i)I—1) is order of the derivative
at

pi- if ND())>0
1. =

{

pi- if ND(N<0, i=1, ... ,n
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Fig. 9 The B-spline curve of Figure 8 with its defining polygon displayed. (a)A B-spline curve defining polygon; (b)the defining polygon of (a)
along with the B-spline curve; {¢)the B-spline curve generated by the above defining polygon.
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where A I8 n X n matrix, bbmxmmandfsa .
nxnsmmx(mbongmednwondmspace i.e., 2-dim,
3-dnm4-d|m)
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NOTE:
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lmutsnk.x tnd, io
n = no. of interpoiation points
k = order of the b-apiine |

(1), . . . %(n+K) are the knots which the b-splines are defined in
torms of. For the b-curve the independent parametsr x is such that

x(k) Jox -
Jex(n«H)

1), . t(n)ueﬁ\evmmMspeaﬁeddewmvalues
lregrven

nd(1), ..

00Oﬂnﬂnnﬂﬁﬂ066000606060060000006060.

. nckn) are non-zero integers giving the order of the

usma-m.uu;gmumn

25

‘Subroutine bamat (n, K.’K.tﬂ‘.l &!l.m abbck o)

s

" gorivatives at the 1(i) vakues. The order of the derivative at 1(i
is given by abs(nd(i)) — 1 and the value of x
s gven b .

is required by
pi = i) plus ¥ nd(i)

gto
pi = i) minus # nd(i) #0

Outputs: A, ni{ ), integs (i.j)
A is 8 n X nmatrix in
knmadasamalmy

or{ ).-anmyvmehmmmsofmelaslrowsoi
noN-zero slements in the ith colunn of a, i.e., for column i the
number ne(i) is the last row which hes a non-zero value for this
eolumn. '

inlegs(,): ﬁngermymoﬂhebbckmdureof
. matrix A,

irmegs(1,i) = no. of rows of block | = nrow
. -#iegs(2.i) = no. of columns of block i = Rcol
08808(3,i) = no. of elim. seps in block i = last
i=12...nbloks.

The linear system is of order
or = sum (iMegs(3.i), i=1, . . . nbloks),
but the total no. of rows in the blocks is
nbrows = gsum(imegs(1.i); i=1, . . .,nbloks)

MNote: tf j = {i—1)sk then,
aj+1), .. .Mj+k) is the ith
Mdhmanbrmemrpolahonproblem

OOﬂﬂﬁﬂnaﬂﬂoﬂ'ﬂﬂﬂﬂﬂGﬂbnﬂc‘léoﬂﬁﬁﬂﬂﬂﬂﬂbﬁ

The restrictions on the p;’s are:
Tk =p, = Tn+1)~,

THt = pi = Ti+k),

and if

T()* = p; = TG+1)7, then 1;* < p,,,

the defining coordinate points are determined by solving the
system

5 b5

J=1

V) = gl) = (gx)), gy()), i=1, .. ., n,

where ;= I, = (IND(i)|—1) and B/"™ denotes the mth
derivative of B;. This can be written in matrix form as

AB = G,

where A is a n X n matrix, B is a n-row matrix of the defining
coordinate values to be determined, and G contains the
interpolation information. (We coded Butterfield’s algorithm
to determine A and then solved this system using routines
supplied by deBoor [6].)

Using the input information. The input coordinate arrays
x(i), y(i), i=1, . . . ,m are supplied. The knot sequence will
be provided by Tables I-IIl. To facilitate construction of
these tables, the following notation is introduced:

s(1) = 0.0 and
s(iy = s(i—1)+SQRT((x()—x(i—1))**2+(v(i)— v(i— 1))*%2),
for i=2, . . . ,m. Also for the ith input coordinate point set:

PG1) = s()+(s(i+1)—s())/3
P(,2) = s(i)+2s(i+ 1)—s(i))/3
X1 = x())+(x(i+1)=x(D))/3
X(i,2) = x()+2(x(i+ 1)—x()))/3
Y(i,1) = y()+ i+ 1)—y@)/3
Y(i.2) = y(i)+2(y(i+1)—y(i))/3

The NCODE values determine how many duplicate knot
values will be added to the knot sequence for a particular
input coordinate point (except for the first and last point) and
parameter values and numerical function values for the
function evaluation. Three tables have been prepared for the
possible cases. One table is the first point, one table is for
any point between the first and last point, and one table is for
the last point.
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- - ghmension nd(1).K1).X(1),0r(50) A(400) integs(3.50)
L cimension 8n(16) :

F. 77 oesl ana(s.4) -

K

v

o
ek fel=1 .
[ nr480 40 is = jo1

" dntngei3,nblock) = § — jo
~HWOWS = 1 . .

B |

[ ¢ . . . . ‘
-=¢  nitialize index for b-gpline basis 40 - mlis—k+1) = i-1
FC. jo=ij
jo=k c )
nblock = 0 ¢ i
1 nrows = 0 ¢ - For the determination of the derivative of the b-spline
. e c bases n{j.k), see algorithm bspivd (which calis bspivb)
c c
c set loop index i to parameter index (row no. of matrix) c
c . : 50 continue
¢ =i
do 100 i=1,n do 51ia=1,3
mows = nrows + 1 #ix(il) ne. x(il+1) )goto 53
4 B=i+1
c set bounds for knot interval search 51 continue
c 53 ti =)
c R nderiv = iabs(nd(i))
| = max(k.i,jo) call bspivd(x.k.ti,il,aaa,dn,nderiv)
w = min{i+k-1,n} c
if(nd(i) K. O)goto 25 c
ifind(i) .eq. 0O)go to 200 c foad the a matrix with the appropriate nd values
it 4 x(1))go to 200 c
do 20 j=1,u c
it M x(j+1))goto 35 ns = k«(nderiv —1)
20 continue nf = (i-1)+k
9o to 200 do52js =1k
25 #{t(i) e. x(1))go to 200 52 a{nf + js} = dn(ns + js)
do 30 j=1.iu 100  continue
i) Je. x(j+1)goto 35 c
30 continue c
go to 200 1 =jo —k +1
35 ifi .eq. jo)goto 50 do 110 i=ki,n
c 110 nr(i)=n
c nbilock = nblock+1
c set nr(i}, the {ast row in which a non-zero element can exist in the integs(1,nblock) = nrows
c fth column of a integs(2,nblock) = k
c integs(3,nblock) = k
[ integs(i,j)values will be loaded. go to 999
c 200 write(i0,201)
¢ 201 format(‘error exit’)
nblock = nblock + 1 999 continue
integs(1,nblock) = nrows — 1 return
integs(2,nblock) = k end
Determine the B-spline defining polygon. With the arrays | Conclusion

of the last section, the B-spline defining polygon can be
determined. This is a two-step procedure:

® Determine the matrix A of Section 3. This can be accom-
plished by an application of an algorithm [5]. (This algorithm
has been coded in Appendix A.) The arrays 7( ). pt ), ND( )
are used by this algorithm along with a call to subroutine
BSPLVD, a coded version of which can be found in [6].

® With the matrix A and the arrays gx( ), gy( ) a special-
ized banded linear matrix solver is used to determine the
solution of the linear system, i.e., the solution being the B-
spline defining polygon points,

bj = (bxjyb.\.j)-j = l, Y (B

A coded form of such a solver can be found in the appendix
of {6].

With the B-spline defining polygon points determined, B-
spline curve coordinate values can be compiled with a
sequence of calls to routine BVALUE of [6]. This procedure
was carried out to generate figures in the article.

The described procedure is easy to use and simplifies
design since it employs one constructive definition. It allows
us to define a general curve using one form of a vector
equation. Curvature and tangent discontinuity conditions
can be constructed. It also facilitates the addition of options
to this general procedure. 0
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