
Learning Traversability Models for Autonomous
Mobile Vehicles

Michael Shneier, Tommy Chang, Tsai Hong, and Will Shackleford
National Institute of Standards and Technology

Gaithersburg, MD 20899

Abstract
Autonomous mobile robots need to adapt their behavior to the terrain over which they
drive, and to predict the traversability of the terrain so that they can effectively plan their
paths. Such robots usually make use of a set of sensors to investigate the terrain around
them and build up an internal representation that enable them to navigate. This paper ad-
dresses the question of how to use sensor data to learn properties of the environment and
use this knowledge to predict which regions of the environment are traversable. The ap-
proach makes use of sensed information from range sensors (stereo or ladar), color cam-
eras, and the vehicle’s navigation sensors. Models of terrain regions are learned from
subsets of pixels that are selected by projection into a local occupancy grid. The models
include color and texture and traversability information obtained from an analysis of the
range data associated with the pixels. The models are learned entirely without supervi-
sion, deriving their properties from the geometry and the appearance of the scene.

The models are used to classify color images and assign traversability costs to regions.
The classification does not use the range or position information, but only color images.
Traversability determined during the model-building phase is stored in the models. This
enables classification of regions beyond the range of stereo or ladar using the information
in the color images. The paper describes how the models are constructed and maintained,
how they are used to classify image regions, and how the system adapts to changing envi-
ronments.

Keywords: Learning, traversability, classification, color models, texture, range, mobile
robotics

1. Introduction
If autonomous mobile robots are to become more generally useful, they must be able to
adapt to new environments and learn from experience. To do so, they need a way to store
pertinent information about the environment, recall the information at appropriate times,
and reliably match stored information to newly-sensed data. They also must be able to
modify the stored information to account for systematic changes in the environment. This
paper describes an approach that addresses these problems for the situation where an
autonomous vehicle must traverse unknown outdoor terrain and learn during travel how
to distinguish areas that are traversable from those that are not.

The approach is to make use of data from range sensors, color cameras, and position sen-
sors to describe regions in the environment around the vehicle and to associate a cost of
traversing each region with its description. Models of the terrain are learned using an un-
supervised scheme that makes use of both geometric and appearance information.

drussell
Submitted to the Journal of Autonomous Robots.

The vehicles we have developed run using a control hierarchy called 4D/RCS (Albus and
Meystel, 2001;Albus et al., 2002). 4D/RCS provides a hierarchical organization of con-
trol nodes, each of which divides the system into sensory perception (SP), world model-
ing (WM) and behavior generation (BG) subsystems. Each 4D/RCS node is designed to
carry out specific duties and responsibilities. Each node is assigned a specified span of
control, both in terms of supervision of subordinates, and in terms of range and resolution
in space and time. Interaction between SP, WM, and BG give rise to perception, cogni-
tion, and reasoning. At lower levels in the hierarchy, representations of space and time
are short-range and high-resolution. At nodes higher in the hierarchy, representations of
space and time are long-range and low-resolution. This enables high-precision fast-
action response from the low level control nodes, while higher level nodes are generating
long-range plans and abstract concepts over broad regions of time and space. Typically,
planning horizons expand by an order of magnitude in time and space at each higher level
in the hierarchy. Within the WM of each node, a knowledge database provides a model of
the external world at a range and resolution that is appropriate for the behavioral deci-
sions that are the responsibility of that node.

This paper is concerned mainly with the sensory processing and world modeling aspects
of the hierarchy. It discusses the processing of multiple sensor inputs to generate models
of terrain, and construction of traversability maps which are sent to the world model.
There they provide input to path planners that generate trajectories to take the vehicle to
its goal.

We assume that the vehicle has at least the following sensors: a color camera, a range
sensor that can measure range over an area (e.g., a stereo system), and an inertial naviga-
tion system that provides an estimate of the vehicle’s position in space. The two vehicles
for which the approach has been developed both have these sensors. NIST operates a
High Mobility Multipurpose Wheeled Vehicle (HMMWV) that has several color cam-
eras, including one mounted on top of an area-scanning ladar. As part of the Defense Ad-
vanced Research Project Agency’s (DARPA) LAGR program (Learning Applied to
Ground Robots), we also have a pair of small vehicles, each of which has twin color ste-
reo systems. Both of these platforms provide range and color information to the vehicle.
Each vehicle also has navigation sensors that provide position estimates. The vehicles
have other sensors, which may be able to provide additional information to verify the
classification results.

The use of stereo vision has the advantage that the color and range data are already regis-
tered. It has the disadvantages, however, of having a limited range, depending on the ste-
reo baseline, and requiring sufficient texture in the scene to ensure that disparity can be
measured. Ladar-based range sensors require registration with a color image and usually
do not provide the same pixel resolution as a color camera, meaning that a window of
color pixels may correspond to a single range measurement. On the other hand, ladar is
fast, provides range to a greater distance, and is less affected by scene characteristics.

Both types of sensor are suitable for our approach. The examples in this paper will be
taken from the stereo cameras mounted on the LAGR platform, which is currently the
most active research platform for this work.

The availability of range information enables a robot to navigate largely using the geome-
try of a scene. Another viable approach is to use topology of the surrounding space
(DeSouza and Kak, 2002). Sensor processing is usually aimed at determining where the
vehicle is and what parts of the world around it are traversable. The robot can then plan a
path over the traversable region to get to its goal. Where range information is missing or
unreliable, navigation is not so straightforward because it is less clear what constitutes
clear ground. A typical range sensor will not be able to provide reliable range very far in
front of the vehicle, and it is part of the aim of this work to extend the traversability
analysis beyond the range sensing limit. This is done by associating traversability with
appearance, under the assumption that regions that look similar will have similar traver-
sability. Because there is no direct relationship between traversability and appearance, the
system must learn the correspondence from experience.

The appearance of regions in an image has been described in many ways, but most fre-
quently in terms of color and/or texture. (Ulrich and Nourbakhsh, 2000b) used color im-
agery to learn the appearance of a set of locations to enable a robot to recognize where it
is. A set of images was recorded at each location and served as descriptors for that loca-
tion. Images were represented by a set of one-dimensional histograms in both HLS (hue,
luminance, saturation) and normalized Red, Green, and Blue (RGB) color spaces. When
the robot needed to recognize its location, it compared its current image with the set of
images associated with locations. To compare histograms when matching images, the Jef-
frey divergence was used. The location was recognized as that associated with the best-
matching stored image.

In (Ulrich and Nourbakhsh, 2000a) the authors also addressed the issue of appearance-
based obstacle detection using a single color camera and no range information. Their ap-
proach makes the assumptions that the ground is flat and that the region directly in front
of the robot is ground. This region is characterized by color histograms and used as a
model for ground. In the domain of road detection, a related approach is described in
(Tan et al., 2006). In principle, the method could be extended to deal with more classes,
and our algorithm can be seen as one such extension that does not need to make the as-
sumptions because of the availability of range information for regions close to the vehi-
cle.

Learning has been applied to computer vision for a variety of applications, including
traversability prediction. (Wellington and Stentz, 2003) predicted the load-bearing sur-
face under vegetation by extracting features from range data and associating them with
the actual surface height measured when the vehicle drove over the corresponding terrain.
The system learned a mapping from terrain features to surface height using a technique
called locally weighted regression. Learning was done in a map domain. We also use a
map in the current work, although it is a two dimensional (2D) rather than a three dimen-
sional (3D) map, and we also make use of the information gained when driving over ter-

rain to update traversability estimates, although not as the primary source of traversability
information. The models we construct are not based on range information, however, since
this would prevent the extrapolation of the traversability prediction to regions where
range is not available.

(Howard et al., 2001) presented a learning approach to determining terrain traversability
based on fuzzy logic. A human expert was used to train a fuzzy terrain classifier based on
terrain roughness and slope measures computed from stereo imagery. The fuzzy logic
approach was also adopted by (Shirkhodaie et al., 2004), who applied a set of texture
measures to windows of an image followed by a fuzzy classifier and region growing to
locate traversable parts of the image.

The problem faced by a robot of finding a path to a goal point is a feedback control prob-
lem. The sensed feedback information comes from the cameras, Global Positioning Sys-
tem (GPS), etc. The actuators are the drive motors on the wheels. The on-board com-
puter implements the feedback controller that drives the vehicle position (part of the
state) to the goal position. It is for this reason that there are similarities between learning
methods for robots and the field of adaptive control (sometimes called learning control).
The closest relationships are to the area of “on-line approximation based feedback con-
trol” (Spooner et al., 2002), and in particular the “indirect adaptive control strategy”
where a parameterized nonlinear map (e.g., implemented by a fuzzy or neural system) is
adjusted to represent the process (environment) and then control decisions are based on
that map. Stability, convergence, and robustness analysis is conducted for such feedback
systems and principles of operation offer insights into the design of navigation methods
for learning robots (e.g., the use of the notion of “probing” the environment vs. making
progress toward reaching the goal, one of the most central ideas in adaptive control).
Moreover, extended notions of adaptive control use learned models for planning and
route selection by marrying ideas in adaptive and “model predictive control” (Passino,
2005). Indeed, the map-based strategy here is an excellent example of how successful
such approaches can be.

The notions of learning we use in this paper arose in the field of psychology. First, the
most basic low levels of learning represented by the notions of “habituation” and “sensi-
tization” (Domjan, 1998) are embedded in our algorithms. If the robot learns via multiple
sensor inputs that an area is traversable, then it has been habituated to that input (it has
learned to ignore information and go ahead and travel in a direction). Correspondingly, if
the robot has learned that some sensory inputs correspond to a lack of traversability, then
if such situations are encountered again the robot is sensitized and hence may not make
the same attempts to travel through nontraversable areas as it did in the past. Such learn-
ing in the form of habituation and sensitization sets the foundation for the elements of
“classical and operant conditioning” (Domjan, 1998) that occur in our robot. Our cell up-
date strategies correspond to learning strategies where via repeated sensory inputs it can
learn to associate sensed features with a lack of traversability or good traversability so
that the basics of classical conditioning are present. Indeed, our robot can exhibit the
property of “blocking” since in learning it can initially use some sensed information to
determine traversability, and then later when there are other learning opportunities, it will

at times ignore new sensory information (model updates) since it is confident that for in-
stance more sensory verification of the model is not needed. With respect to the “behav-
iorist” approach to operant conditioning, if the robot senses some scene and it has learned
that certain features are associated with rewards (getting closer to the goal by making
forward progress), it will try to apply the same actions that were successful before, lead-
ing to the “Thorndike’s effect” similar to what occurs in a “Skinner box” (Domjan,
1998). And, such opportunities for conditioning can occur during a single attempt by the
robot to find a goal point via storage, updating, and later use of information in our maps
as the robot travels. Moreover, our learned maps can be used between trials so that on
successive attempts the robot learns how to direct its behavior to succeed even faster;
hence, a basic property of “speed-up” in the rate of reward acquisition seen experimen-
tally in rats in mazes (Domjan, 1998) can also be exhibited by our system. Finally, we
note that our use of maps is quite similar to the idea that animals and humans build
(learn) and use “cognitive maps” of their environment for planning spatial movement
((Halliday and Slater, 1983); (Schultz et al., 1997); (Gray, 1999)).

The contributions of this paper include a fast learning algorithm that requires no training
data to learn associations between appearance and traversability and a histogram-based
representation of models that provides a well-defined way of comparing the models and
matching them with sensed data. The models are described in terms of color and texture
features that do not rely on range data. This enables them to be used to classify regions
for which no range data are available. The models are learned from data selected to be
close together in space, making it more likely that they are from the same physical re-
gion. A further contribution is the introduction of a “ring” representation for recording
the heading directions that are considered traversable by the learning system.
These modules extend the 4D/RCS architecture by including learning of entities both in
the maps kept by the World Model and as symbolically represented objects.

The rest of the paper is organized as follows. First we introduce the problem to be ad-
dressed. Next, we explain the algorithm and discuss how models are learned and how the
classification is carried out. We then describe how the results are represented in both an
occupancy grid and a data representation called a ring structure. We then present some
examples to further explain how the system performs, and we end with a discussion.

2. Learning Traversability

Many robotic vehicles can navigate successfully in open terrain or on highly constrained
roads. Frequently, this capability is due to a careful provision of relevant information
about the domain in which the vehicle will operate. The problem we address in this paper
is to determine how to introduce a learning capability to the robot that will enable it to
decide for itself the traversability of the terrain around it, based on input from its sensors
and its experience of traveling over similar terrain in the past.

The DARPA LAGR program (Jackel, 2005) aims to extend the navigation capabilities of
robotic vehicles by enabling them to learn from experience, from examples, and from be-

ing taught. Through monthly tests, new challenges are introduced to the LAGR partici-
pants, whose software must evolve to operate in more and more complex environments.
The LAGR project provided the robotic platform to the participants (Figure 1) and by the
nature of the tests ensures that the vehicles and their low-level control systems would re-
main unaltered. This ensures that all the development focuses on perception and control
strategies that learn to improve their performance. The primary sensors on the LAGR ve-
hicles include two pairs of stereo cameras, physical and infra-red bumpers in front of the
vehicle, and a position-detection system consisting of a Global Positioning System (GPS)

sensor and an inertial navigation system.

The tests in the LAGR program take the form of navigating the vehicle from a defined
start point to a fixed goal point. This requires avoiding obstacles such as trees, fences, or
various objects introduced into the environment by the LAGR administrators conducting
the tests. The vehicle uses its sensors to build a model of the world around it and plans a
path from the start to the goal. In many cases, obstacles are placed along the path in such
a way as to ensure that a straight-line path to the goal is not traversable. Also, the course
may be set up in such a way that by the time the stereo sensors or bumpers detect an ob-
stacle, the vehicle has entered a region that requires a long detour to reach the goal.
Teams are given three chances to reach the goal. The idea is that early runs will enable
the robot to learn which regions to avoid and which to seek out, so that by the third run it
has determined the most efficient path. The vehicle has no a priori knowledge of the kind
of terrain it will traverse, so it must learn as it goes along, by observing both the geome-
try and the appearance of the terrain.

Learning may include remembering the path the vehicle took in previous runs or the re-
gions seen by the sensors during those runs. In our approach, both of these types of learn-
ing are included but, as described in this paper, we also try to learn a relationship between
the appearance of the terrain and its observed traversability. An advantage of this kind of
learning is that regions that are too far away for reliable stereo (and hence reliable obsta-

Figure 1. The LAGR vehicle

cle detection) can be identified as either desirable or undesirable for the vehicle to trav-
erse. This enables the vehicle to plan further ahead and avoid entering traps that prevent it
from reaching the goal. Remembering the learned models also allows the vehicle to navi-
gate when stereo is not available

3. The Algorithm

The autonomous vehicle relies on its sensors to describe the terrain over which it is trav-
eling. Sensor processing must interpret the raw data and extract from it information use-
ful for planning. This includes topological information, such as slopes and ditches, and
feature-based information, such as obstacles and ground cover. While some of the topo-
logical information can be extracted from the range data fairly easily, other features are
harder to identify and their properties are not usually obvious from analysis of the sen-
sory data. For example, the traversability of tall grass cannot be determined from range
and color information alone, so additional information must be provided through some
other means. Often, this is part of the a priori information built in to the system, meaning
that the vehicle only has to recognize regions as tall grass to be able to associate a traver-
sability value with them. In this paper, we develop a method that enables the vehicle to
learn the traversability of different regions from experience.

We develop an algorithm that first analyzes the range data to locate regions correspond-
ing to ground and to obstacles. Next, this information is used, along with the range and
color data, to construct models of the appearance of regions. These models include an
estimate of the cost of traversing the regions. Finally, the models are used to segment and
classify regions in the color images. Associating regions with models enables traversabil-
ity costs to be assigned to areas where there is no range data and thus no directly measur-
able obstacles. As the vehicle traverses the terrain, more direct information is gathered to
refine the traversability costs. This includes noting which regions are actually traversed
and adjusting the traversability of the associated models. It also involves adjusting the
traversability of regions where the vehicle’s mechanical bumper is triggered, and where
the wheels slip or the engine has to strain to move the vehicle.

3.1. Building the Models

First, we construct a local occupancy map (Figure 2) consisting of a grid of cells, each of
which represents a fixed square region in the world projected onto a nominal ground
plane. Currently we use an array of 201x201 cells, each of size 0.2 m square, giving a
map of size 40 m on a side. The map is always oriented with one axis pointing north and
the other east. The map scrolls under the vehicle as the vehicle moves, and cells that
scroll off the end of the map are forgotten. Cells that move onto the map are cleared and
made ready for new information. Note that if the vehicle moves far enough, the entire
map will change. If it then returns to a place it has previously traversed, the information
known about that location will be lost. In principle, it would be straightforward to re-
member all information learned as the vehicle moves about. Alternatively, we could use

maps of different resolutions and a strategy for storing abstracted information for later
use into a global map as the occupancy grid moves out of a region. Simultaneously, the
cells that the occupancy grid moves into can be filled in using the pre-stored abstract in-
formation and this can be better than using no information at all. Such a strategy was
found to be highly effective in learning control in a feedback system (Kwong and Pass-
ino, 1996). However, for our application the storage of all information or even abstracted
versions of it is not generally useful because of errors in the navigation system, which
grow as the vehicle moves. This means that when it comes time to restore the contents of
a cell it may be hard to decide which stored cell should be used.

The next step is to process the range data and locate obstacles and ground regions. Obsta-
cles are defined as objects that project more than some distance d above or below the
ground. Positive obstacles are detected in the range images, while negative obstacles are
detected in the world model map (Chang et al., 1999). The algorithm scans column by
column in the image, starting with a point known to be on the ground. An initial ground
value is assigned at the location where the front wheels of the vehicle touch the ground,
known from Inertial Navigational System (INS) and GPS sensors. A pixel is labeled a
positive obstacle if it rises high enough and abruptly enough from the ground plane. The
negative obstacle detection algorithm maintains its own high-resolution ground map cen-
tered on the vehicle. This ground map contains all the projected ground pixels detected
by the positive obstacle detection module. The algorithm first identifies the pixels in the
range image that potentially correspond to a negative obstacle because they are below the
ground level and are large enough. For efficiency, the algorithm detects only the borders
of negative obstacles. The algorithm is described in detail in the Appendix.

The model-building algorithm takes as input the color image, the associated and regis-
tered range data (x, y, z points), and the labels (GROUND and OBSTACLE) computed
by the obstacle-detection step. It builds models by segmenting the color image into re-
gions with uniform properties. Note that only points that have associated range values are
used. The process works as follows:

When a data set becomes available for processing, the map is scrolled so that the vehicle
occupies the center cell of the map. Each point of the data set consists of a vector contain-
ing three color values, red (R), green (G), and blue (B). The vector also contains the 3D
position of the point (x, y, z), and a label from the obstacle detection step. Currently we
consider only OBSTACLE and GROUND labels, although the obstacle detection algo-
rithm identifies other regions, such as overhanging objects. Each point is processed as
follows.

Figure 2. An occupancy grid with the vehicle in the center.

1. If the point is not labeled as GROUND or OBSTACLE, it is skipped (Other labels

can be treated without significant changes to the algorithm). Points that do not
have associated range values are also skipped.

2. Points that pass step 1 are projected into the map. This is possible because the x,

y, and z values of the point are known as is the pose of the vehicle. If a point pro-
jects outside the map it is skipped. Each cell receives all points that fall within the
square region in the world determined by the location of the cell, regardless of the
height of the point above the ground. The cell to which the point pro-
jects accumulates information that summarizes the characteristics of all points
seen by this cell. This includes color, texture, and contrast properties of the pro-
jected points, as well as the number of OBSTACLE and GROUND points that
have projected into the cell.

Color is represented by ratios R/G, R/B, and G/B rather than directly using R, G,
and B. This provides a small amount of protection from the color of ambient illu-
mination. Each color ratio is represented by an 8-bin histogram, representing val-
ues from 0 to 255. The values are actually stored in a normalized form, meaning
that the values can be viewed as probabilities of the occurrence of each ratio. Tex-
ture and contrast are computed using Local Binary Patterns (LBP) (Ojala et al.,
1996). These patterns represent the relationships between pixels in a 3x3
neighborhood in the image, and their values range from 0 to 255. Similarly to the
color ratios, the texture measure is represented by a histogram with 8 bins, also
normalized. Contrast is represented by a single number ranging from 0 to 1.

Local Binary Patterns are computed on 3×3 windows, as follows (Figure 3). First,
the center pixel value is used to threshold the other pixels in the window (Figure
3b). Then a weighted sum is computed of the eight surrounding thresholded
points (Figure 3d). The weights are assigned as powers of 2 (Figure 3c), so that
each location has a unique weight (index). Given that there are eight surround pix-
els, and each has value 0 or 1 after thresholding, the final value assigned by the
operator to the central pixel can be represented by an eight-bit byte, making the
implementation very efficient. The LBP values are combined with a contrast
measure at each point, computed over the same window.

12 25 13

33 15 17

10 18 5

(a)

0 1 0

1 1

0 1 0

(b)

20 21 22

23 24

25 26 27

(c)

0 2 0

8 90 16

0 64 0

(d)

Figure 3. (a) A 3x3 neighborhood. (b) Result of thresholding by middle value. (c)
Weights applied to each thresholded pixel. (d) Resulting value in the center cell is
sum of the weighted thresholded values.

3. When a cell accumulates enough points it is ready to be considered as a model.
While it would be best to have a statistically meaningful way of deciding when
enough points have been seen, we currently use a threshold determined by ex-
periment. In order to build a model, we require that a minimum percentage (cur-
rently 95%) of the points projected into a cell have the same label (OBSTACLE
or GROUND). Given how small a region in space the cells represent, this is
mostly the case. If a cell is the first to accumulate enough points, its values are
simply copied to instantiate the first model. Models have exactly the same struc-
ture as cells, so this is trivial.

If there are already defined models, the cell must first be matched to the existing
models to see if it can be merged or if a new model must be created. Matching is
done by computing a score, Dist, as a weighted sum of the elements of the model,
m, and the cell c. That is,

),(),(mcfwmcDist ii∑=
where if is either a measure of the similarity of two histograms or, in the case of
contrast, is the absolute value of the difference of the two contrast values,

cmcontrast contrastcontrastf −= . The histograms are always stored normalized by
the number of points. Various measures hf of the similarity of two histograms
(discrete probability density functions) can be used, such as a Chi Squared test or

Kullback-Liebler divergence. After trying these (plus others) we found that a sum
of squared difference measure worked almost as well and is cheaper to compute.
Thus, for each model histogram mh and the corresponding cell histogram ch ,

()∑
=

−=
8

1

2

i
cimih hhf

Cells that are similar enough are merged into existing models; otherwise, new
models are constructed. If the number of models exceeds a limit, merging of the

most similar models is forced, although it might be better to replace the oldest or
least-used model with the new one. Merging is a straightforward summation of
histograms, each normalized by its number of points. The merged contrast meas-
ure is computed as the weighted average of the two contrasts being merged.
Figure 4 shows the histograms representing three different models.

4. At this stage, there is a set of models whose appearance in the color images is dis-

tinct. Our interest is not so much in the appearance of the models, but in the
traversability of the regions associated with them. Traversability is computed us-
ing three types of information. First, when a point is projected into a cell, it
brings with it a label, either GROUND or OBSTACLE. Each cell accumulates

R/G R/ B G/B LBP

R/G R/ B G/B LBP

R/G R/ B G/B LBP

Figure 4. The histograms representing three different models. Models include other ele-
ments, such as contrast and traversability.

a count of the number of GROUND and OBSTACLE points that have
been projected into it. Second, the vehicle itself occupies a region of space that
maps into some neighborhood of cells. These cells and their associated models are
given an increased traversability weight because the vehicle is traversing them. If
the bumper on the vehicle is triggered, the cell that corresponds to the bumper lo-
cation (and its model, if any) is given a decreased traversability weight. Cells and
models that don't have known traversability from bumper hits or from being trav-
ersed are given traversability values computed as numOBSTACLE / (numOBSTA-
CLE + numGROUND). We plan to further modify the traversability weights by
observing when the wheels on the vehicle slip or the engine has to work harder to
traverse a cell.

5. When all the points in the input data have been processed, the occupancy map is

sent to the World Model (WM) as follows. First, only cells that have values that
have changed are sent. If a cell does not have an associated model, its local
traversability measure is sent. If it does have a model, the traversability computed
from the model is sent. This means that information learned in one region is
propagated to other, similar regions. An option is to send information from all
cells that match models when the model has changed since last sent to the world
model. Note that the WM has no knowledge of the local models, and receives
only traversability information rather than region identity. Each time new data
come in, the process is repeated.

6. Periodically, a sweep is made of all the models. Each model is compared to all the

others. If two models are similar enough, they are merged and the number of
models is reduced accordingly.

A question arises of what to do when points continue to map into a cell after it has
matched with a model. One option is to increment the information in the matching
model with the new data. This was rejected because of the potential for drift in the
model. As multiple cells that match the model each update the model’s distributions,
the individual cells may become poorer matches for the model. This could be the
case, for example, because the appearance of a region on the ground can be different
when viewed from far away than from close up. An alternative option was adopted
instead. This is to link the cell with the model and then zero out the local distributions
stored in the cell. Any points that now project into the cell are used to update the
cell’s local distributions. When the threshold number of points is reached, the cell is
matched with all the models again and is either merged with the best match (which
may be different from its original model) or causes the creation of a new model. This
ensures that the model associated with a cell is always as good a representation as
possible.

3.2. Classifying scenes

So far, we have dealt with model building and computing traversability for cells in the
occupancy grid. The information extracted in this way is useful for creating the internal
world model and enabling path planning, but it is limited in that it is only applicable to
points in the sensed data for which both color and range information are available. Typi-
cally, this is a subset of the points in the color images. The next step is to use the models
to classify entire scenes. Here only color information is available, with the traversability
being inferred from that stored in the models. The assumption is that regions that look
similar will have similar traversability.

The approach is to pass a window over the image and to compute the color and texture
measures at each window location. The matching between the windows and the models
operates exactly as it does when a cell is matched to a model in the learning stage. Win-
dows do not have to be large, however. They can be as small as a single pixel and the
matching will still determining the closest model, although with low confidence. In the
implementation the window size is a parameter, typically set to 16x16. If the best match
has an acceptable score, the window is labeled with the matching model. If not, the win-
dow is not classified. Windows that match with models inherit the traversability measure
associated with the model. In this way large portions of the image are classified.

A problem arises in sending the results to the World Model, which requires a 3D location
to be associated with each point. For the part of the image used for model creation, only
points that have associated range values are processed, so the problem doesn’t arise. For
the rest of the image our approach is to make two assumptions. One is that the ground is
flat, i.e., that the pose of the vehicle defines a plane through the wheels (Figure 5). This
allows windows that match with models that are created from ground points to be
mapped to 3D locations. The second assumption is that all obstacle windows (matching
with models created from obstacle points) are normal to the ground plane. This allows
obstacle windows to be projected into the ground plane and thus to acquire 3D locations.
While the assumptions may lead to errors, they only affect regions that do not have asso-
ciated range. These regions are usually far away from the vehicle when they are first
seen, so that inaccuracies in location are not critical. If the vehicle approaches those re-
gions, they will be seen again, and eventually should fall into the field of view of the
range sensor which will provide accurate positioning. The value of observing these re-
gions from far away is that a low-resolution, long range path planner can decide to avoid
obstacles or traverse ground regions well before a finely detailed local plan needs to de-
cide exactly how the vehicle will move.

Figure 5. The plane to which objects beyond stereo range are projected

Experiments determined that directly projecting the location estimates obtained in this
way into a map is very noisy, and results in a map that causes the planner to make non-
optimal plans. The range estimates become less and less accurate as the location gets
closer and closer to the horizon. Also, very small motions of the camera, due perhaps to
roughness of the terrain, have a large effect on the range estimate. On the other hand, the
heading remains accurate. Because of this we decided to introduce a new structure to
store the data. This is a ring located at a given distance from the vehicle into which the
information about the scene beyond the stereo range is stored. This representation is de-
scribed next.

3.3. Ring Model

 The world model is the system's internal representation of the external world. Where
there is reliable range information, we create a map-based knowledge representation con-
taining estimates of the identity of spatial regions (obstacle, ground), a confidence in the
estimate, the cost of traversing the region corresponding to each map cell, and a statistical
analysis of elevation and traversability. The primary uses of the world model are for
planning safe and efficient paths and to enable temporal fusion of sensory processing
data. Multiple maps are maintained at different resolutions. The maps are updated with
inputs from the sensors including stereo vision, the navigation sensor, and the physical
and IR bumpers.

The ring representation is added to the world model to represent the world beyond the
distance that range sensors can sense. The ring is centered on the vehicle and stores the
current best estimate of what is in the region beyond the range of accurate stereo (about
6.5 meters from the LAGR vehicle). Each element of the ring represents an area defined
by an angle (currently 1 degree). The ring model is updated regularly as new information
is sent to the world model. The ring scrolls as the vehicle moves, remaining always at the
same distance from the vehicle. The data in the ring are updated by fusing new data from
the classification module with information already in the ring.

The functions included the following:

1. Ring scrolling. The ring is used to update new sensor data while keeping the vehi-
cle centered on the map. Each element in the ring is updated based on the new ve-
hicle position. Information is removed if the data moves inside of stereo range
limit or outside a range limit (currently 30 m to 60 m)

2. Ring updating and fusing. New sensor information such as terrain traversability

and distance to the object in the scene is used to compute statistical information
about sensor data for each element in the ring. The statistical information includes
average range, variance of range, minimum range, and maximum range. When an
element of the ring receives an update for a class such as an obstacle, an elevation
measurement, a terrain classification, etc., the confidence in that class is incre-
mented by a predefined constant.

Figure 6(a) shows a ring structure in the world model at the beginning of the vehicle’s
run. At this stage, no regions have been classified and the entire ring is shown as “un-
known.” After the first ground model is learned and image classification has begun, the
ring appears as in Figure 6(b). Finally, after both obstacle and ground models have been
learned, the ring appears as in Figure 6(c).

(a)

(b)

(c)

Figure 6. (a) The ring before any models have been constructed. The blue color denotes
"unknown." (b) The ring showing a region classified as ground (green). (c) The ring
with both ground and obstacle regions (brown). The white line indicates the planned
motion trajectory.

4. Experimental Results

The algorithm has been implemented on the DARPA LAGR platform and used to pro-
vide part of the information for navigation. The sensors on the LAGR vehicle include two
pairs of stereo cameras and a position sensing system incorporating a GPS receiver and
an inertial measurement unit. We present two examples below of how the algorithm

works. The first is a simple situation with man-made obstacles, while the second is a
more complex environment.

4.1. Open Field with Fence

The first example illustrates a simple scene where learning has obvious benefits. The ve-
hicle was placed on a flat, grassy field and given a goal about 80 meters from its starting
point. Two plastic mesh fences were installed between the vehicle and its goal, as well as
some wooden obstacles. In order to successfully reach the goal, the vehicle could not take
a straight line path, but would have to identify the obstacles and plan a route around
them.

Initially, the system had no models or prior information. The first run was used to learn
the appearances and locations of the obstacles, while later runs made use of the learned
information to plan shorter paths that bypassed the obstacles and substantially improved
the time to reach the goal. Figure 7 shows an early view from one of the cameras, in
which only one model has been learned. The stereo data is shown overlaid on the image
and the regions that match the model are shown in blue. The black overlay indicates
points extracted from stereo that have not yet matched with a model. The obstacle detec-
tion has correctly labeled the points as GROUND. The orange fence is visible in the dis-
tance, but is too far away for stereo matching and hence for a model to be built. Note that
the grass is not uniformly colored, so that not all grassy areas match with the model. The
reason that the stereo data are so sparse is because the grass is not cut very evenly. Some
parts are significantly longer than others, and these regions are not recognized as ground
although they are not high enough to be considered obstacles. Adjusting thresholds in the
obstacle detection algorithm will change the number of points labeled as ground.

Figure 7. A view from one of the cameras on the vehicle with the
range data overlaid. At this point only the first model has been cre-

ated, shown in blue. The black overlay shows the 3D points extracted
from stereo that are not yet associated with a model.

In Figure 8 a second model has been created, shown in green. This model represents
grass in shadow or dark vegetation. Both this model and the first model are labeled as
GROUND and are considered highly traversable. The fact that there are now two models
representing ground points is intentional. The aim of the system is not to develop a single
model for ground and another for obstacles, but to capture the appearance of different
regions in the scene, be able to recognize them in subsequent scenes, and to be able to
associate a label and traversability cost with the recognized regions. In Figure 9 the re-
sults are shown of classifying the entire scene using the two models constructed so far.
As can be seen, the classifier has filled in the sparse labels based on range information
and has labeled most of the image correctly. The fence and the sky are not labeled be-
cause there is no model that matches closely enough with their appearance. The trees in
the background are classified as dark vegetation, which has the side-effect of labeling
them as traversable because the only dark vegetation seen close up has been on the
ground. This mislabeling will be corrected if the vehicle approaches the trees closely
enough to get range information and hence to allow it to construct a model.

Figure 8. A view showing the creation of a second model, shown in
green. It is rather difficult to see, but appears in the shadow cast by
the vehicle, and corresponds to darker grass (grass in shadow).

Figure 9. The result of classifying the image of Figure 8 in terms of
the two models currently constructed. Note that the sky and the
orange fence are not classified because they do not match either of
the models.

As more images are processed, the system continues to learn. It can learn new models
and it can determine that models it has already constructed should be merged. The next
stage of the example shows the results of both of these processes. In Figure 10 the vehicle
has approached the orange fence and has started to get stereo readings from it (shown in
black because the image was acquired before the model was constructed). This allows the
system to learn a new model of the fence. At the same time, the vehicle has continued to
see examples of ground regions. This has led it to merge the models for light and dark
ground into a single ground model, shown in blue in Figure 11. Here the whole fence has
been classified even though only a small portion was used to create the model. The
ground has also been classified into a single model. Note that the shadow of the vehicle
and the trees in the background no longer match the ground model and so are not classi-
fied in this image.

From this point on, the fence will be recognized as an obstacle both when it is close
enough to be seen by stereo and when it is further away. This enables the vehicle to plan
a path around the fences without having to explore them from close up.

Figure 10. A view where the vehicle is close enough to the fence to get stereo responses.

Figure 11. The result of classification with the merged ground model and the fence model.

4.2. Predicting Traversability at a Distance

In the second example, the vehicle starts on a trail that leads into some woods. As before,
the system has no models when it starts, and must learn to recognize traversable regions

from its color and range data. This example illustrates how the algorithm is applied to
regions beyond the stereo limit. We show the results in the format in which they are pre-
sented by our Operator Control Unit (OCU), which displays the results of both sets of
stereo sensors. Note that although we only show the results for the midfield beyond ste-
reo range, the near-field will also be classified by the algorithm.

Figure 12 shows a view of the OCU shortly after the vehicle has started its mission. The
robot is moving parallel to a fence, heading for the woods. In the Figure, we show only
the results of processing for the region beyond the range of stereo. The stereo results are
used to construct the occupancy grid for the first six meters, while the classification re-
sults are used to construct the ring representation for the terrain that is further away. The
right eye results are shown on the left of the Figure and the left eye results are shown on
the right of the Figure. This is because the left stereo pair is angled so that it looks to the
right, and the right pair looks to the left. The display thus puts the left field of view on the
left, and the right field of view on the right.

Before classification can take place, the system must first learn models of the traversabil-
ity of the terrain. Processing of each image pair thus has two phases. First, the regions of
the image within six meters of the vehicle are processed by the obstacle detection algo-
rithm and are used to construct or update the models. Next, windows in the regions be-
yond the end of the stereo processing are matched to the set of models and classified ac-
cordingly. The region that is classified starts at the range where confidence in stereo is
considered too low and ends a little above the horizon. The horizon is computed based on
the plane defined by the vehicle’s pose as described in Section 3.2. There are two planes,
one for each stereo pair of cameras. The horizon is defined as the line where rays from
the camera are tangent to the surface of the plane. Because positive obstacles are ex-
pected to rise above the horizon, processing is extended a little beyond this line.

In Figure 12, magenta regions correspond to areas considered not traversable, while yel-
low regions denote traversable regions. The white line indicates the planned path, the
brown line indicates the direction of the goal, and the blue line indicates the direction of
the vehicle. The results are blocky because 16x16 windows are used to match with the
models. This could lead to errors in the positions of the obstacles in the world model, so
before the obstacles are projected into the plane, a refined estimate of the bottom of the
obstacle region is computed as follows. Starting at the center of the 16x16 window, step
down the column, pixel by pixel, matching each pixel to the model. The match value is
the sum of the values in the bins to which the pixel’s color and texture map. That is,
given the R/G, R/B, and G/B colors of the pixel, and its LBP texture, the match value is
the sum of the sizes of the bins into which each of these values maps. Keep stepping
down until the model match value is less than that of the center of the window. The low-
est point is considered to be the end of the obstacle and is projected into the ground plane
under the assumption that the obstacle is vertical to the plane.

Notice that the left eye and right eye do not see the same terrain, so do not construct the
same models. The left eye has seen no obstacles in the first six meters corresponding to
dark vegetation, so has no model for such regions. It has, however, seen the grassy re-

gions that make up the ground. This lets it classify the ground in the image, but not the
obstacles. Currently the eyes do not share their models except when the system first starts
up. This will be remedied in the near future.

Figure 12. A view of the OCU shortly after the vehicle starts up. The top row shows one image from
each stereo pair. The middle row shows the traversability computed in the mid-field, from 6 meters
to the horizon. Magenta areas are not traversable, yellow areas are traversable. The bottom row
shows the stereo output. Green is ground, red is obstacle. Other colors are ignored by the algorithm.

Figure 13. The OCU when the vehicle has moved into the woods. The path is still seen as ground, but

the trees are seen as obstacles.

Figure 13 shows the situation when the vehicle has started to move into the woods. At
this stage, both eyes have developed models for the trees, and both continue to classify
the path as ground. Regions that are not colored magenta or yellow are not classified,
meaning that they do not match with any current models. As new models are built, these
regions may be classified.

Figure 14. The view at an intersection in the path.

In Figure 14 we see the situation where there is an intersection in the path, with a second
trail going off to the right. The view from the left eye shows that the trail is classified as
ground, while the trees are classified as obstacles. In this Figure, most of the trees are
outside the region being processed, so do not get classified. Finally, in Figure 15 we show
a display of the near-field stereo processing overlaid on the same image as the mid-field
classification. It can be seen that stereo processing detects the ground (green) and obsta-
cles (red) in the foreground of the images, while the classifier fills in the middle ground.
Even though the classification covers a fairly small band in the image, it represents a
range from six meters to about seventy-five meters in the world.

Figure 15. A view showing the stereo processing overlaid on the classification. Note that the classifi-

cation region starts where the stereo obstacle detection ends.

5. Discussion and Conclusions

We have presented a system that learns to predict the traversability of regions based on
the assumption that regions that look similar will have similar traversability. The models
that are constructed to represent regions are robust, in the sense that they apply across a
wide set of ranges. Objects may look substantially different from close up than they do
from far away, and the color and texture measures are computed using only data from the
closest parts of the image. Nonetheless, the models continue to match well when applied
to the middle range of the image. This is probably due to the coarse binning in the models
which mimics the smoothing effect of increasing range.

The color model used to represent the appearance of the different terrain models is a de-
scendent of the histogram intersection approach developed by (Swain and Ballard, 1991).
Instead of three-dimensional histograms, we use three one-dimensional histograms, and
instead of their histogram intersection algorithm for comparing histograms, we use a sum
of squared difference measure (which is very similar to the sum of absolute differences
used in histogram intersection). The size of the histograms we use is substantially smaller
also, but, as expected from Swain and Ballard’s analysis, this has little impact on the ac-
curacy of the matching. (Pietikainen et al., 1996) showed that three one-dimensional his-
tograms perform almost as well as one three-dimensional histogram, although they did
not use color ratio histograms in their experiments.

The number of models that get constructed is dependent on the complexity of the envi-
ronment and on the similarity measure used to compare models. Even with a fairly strict

similarity measure we have not found that the number of models becomes large. A typi-
cal scenario, such as driving through the woods, will generate less than twenty models. It
is also not very important to know exactly what each model represents. The main concern
is that the models correctly predict traversability, not that they encode a semantically
meaningful object. Nonetheless, regions such as the orange fence in the first example are
typically represented by a single model or perhaps two if there is a significant lighting
change across the fence.

The data streams from the left and right stereo cameras are each processed independently.
When the system starts up, it checks to see if it has any models. If so, it reads the models
into the processor for each eye and merges them. If not, both eyes start without models.
From this point on, there is no communication between the two processors. This can
sometimes cause the two eyes to contradict each other, but has not resulted in signifi-
cantly reduced performance. Models do not take up a lot of space, but it is important that
each model remain distinct from all other models. Thus, the bulk of the time taken in
sharing the models comes from comparing the models from one eye with those from the
other. We already have a mechanism in place for doing this, since we already merge
models that are similar enough. We plan to exchange models periodically between the
eyes to ensure that their traversability estimates remain consistent.

Using the range information to build the models ensures that points that are spatially
close in the three-dimensional world provide the data for the models. This makes them
more likely to belong to the same physical region. The processed range information,
which provides labels for obstacle and ground based on the geometry of the region, also
provides strong evidence of the traversability of the region. This serves as a good starting
point for traversability, which is modified by the behavior of the vehicle in driving over
some regions and registering bumper hits on others. In some cases, however, range in-
formation is not available. In this case, we can still build models under the initial assump-
tion that the region in front of the vehicle is traversable and that regions that do not match
are not traversable (Ulrich and Nourbakhsh, 2000a;Tan et al., 2006). Together with ob-
serving what actually happens as the vehicle moves, this should enable the algorithm to
work in a similar manner to how it does when range is available. We plan to explore this
approach.

The algorithm has been fully implemented on the DARPA LAGR platform, using two
stereo pairs as the source of color and range information. It has been used to provide in-
formation for navigation, particularly in regions where stereo is not reliable. The ring rep-
resentation was developed for this application because the range estimation of distant
points is not very accurate, whereas the heading is less dependent on range. It enables the
vehicle’s planner to take into account regions with known obstacles in its longer term
plans, while still using local information with higher accuracy to plan immediate moves.
We intend to continue developing this approach, and to implement it on our other plat-
forms that have ladar sensors instead of stereo to provide range information.

Finally, we would like to highlight some ideas about extending our work to apply to the
multiple autonomous vehicle case. Map-based methods for vehicle guidance originated in

WWII with the use of “optimal search theory” that was later reported in (Stone, 1975).
Such methods do not, however, provide a way to generate specific paths of travel for
autonomous vehicles; instead they provide human-guided mission-planning level strate-
gies to allocate search effort to regions. These methods have been recently extended to
cooperative search by autonomous vehicles in ((Baum and Passino, 2001); (Passino et al.,
2002); (Ganapathy and Passino, 2004)). Maps in these methods initially represent the a
priori probability of the presence of a target in any position of a region, and then as the
vehicle traverses the area the maps are updated (learned) to reflect that areas that have
been visited by sensors are less likely to hold a target if it was not found. The vehicles
then steer to regions with high map values, but try to move along paths so as to “push the
map down” as much as possible for the energy-time investments for travel (e.g., oscillat-
ing between the highest peaks of the map can have significant travel costs so that must be
avoided). These methods have recently been shown to work effectively even in the pres-
ence of communication delays in the sharing of maps, and communication topology in-
terconnection restrictions (Gil et al., 2005). Now, the goal of the autonomous robot in this
paper is to search for a traversable path to a location; hence, there is a clear and direct
connection to the above methods. Indeed, we feel that one of the significant advantages
of the approach in this paper is its extensibility to the multiple vehicle case. Of course,
significant additional challenges that are beyond the scope of this paper will arise: (i)
Team composition and tasking: How many vehicles are needed for any particular sce-
nario? Would it be best to have a set of heterogeneous vehicles, ones with different sen-
sors, or should each vehicle be identical? (ii) Cooperative path planning: How can the
traversability maps be shared effectively? What strategies are most effective for coopera-
tively gathering information and working together to plan paths?

Appendix: Obstacle Detection

Obstacles are defined as objects that project more than some distance d above or below
the ground. The obstacle detection algorithm works column by column in the range im-
age. (Manduchi et al., 2005) describe a similar but improved version of this algorithm.
Our algorithm starts with a point, g, known to be on the ground. An initial ground value
is assigned at the location where the front wheels of the vehicle touch the ground, known
from INS and GPS sensors. Given point g, the algorithm processes upwards from the bot-
tom pixel in the column to the top pixel, as follows:

1. Let ip be the thi pixel in the column, where pixel 0 is at the bottom of column. Let

iii zyx ,, be the Cartesian coordinates of ip . Let g be the last known ground pixel in
the column, initially obtained from the vehicle’s position sensors. Compute the slope
between the ground point, g, and the next pixel kp . Pixel kp is labeled a positive
obstacle if

()
() () () ()α2

222

2

sin≥
−+−+−

−

gkgkgk

gk

zzyyxx
zz

where α is a predefined constant representing the maximum allowed slope. The value
of ()α2sin is constant, and is pre-computed for efficiency.

2. Pixel kp may fail the above test but still be a positive obstacle. This is because the
slope test is a function of distance. The obstacle can be far from the current ground
point due either to occlusion or to the resolution of the sensor which degrades as a
function of distance. To resolve this ambiguity, the height of the obstacle is required to
be greater than a constant, H. i.e., .Hzz gk >−

3. If kp is not an obstacle, it is assumed to be ground and replaces g as the current ground
pixel. The process iterates up the column with each pixel being compared to the
closest ground pixel.

4. If kp is an obstacle, g is unchanged, and is compared with pixels Κ,, 1+kk pp as above,
until another ground pixel is found. When this occurs, point g is set to the new ground
pixel value and the process repeats.

In Figure 16, pixel 0 corresponds to the bottom of the vehicle wheel. Pixels 1, 2, 3, 8 and
9 are ground pixels. Pixel 4, 5, 6 and 7 are positive obstacles because either they satisfy
step 1 or step 2 or both. The direction vectors shown on the bottom of Figure 1 indicate
the vectors in which the slopes are determined. In a way, the algorithm is analogous to
flooding; pixels 1, 2, 3, 8 and 9 are flooded because they have shallow slopes.
The results of the positive obstacle detection are shown in Figure 17. The figure on the
left is a Ladar scene of a wall obstructed by a truck on the far right. The objects in the
foreground are low poles. The figure on the right shows the objects detected as positive
obstacles in this scene.

1 2 3
4

5
6

7

8 9

2 3

4 5 6 7

8 9

0

10

Figure 16 Positive obstacle detection

Figure 17. Raw ladar image and detected positive obstacles.

The negative obstacle detection algorithm maintains a high-resolution ground map
(occupancy grid) centered on the vehicle. This map contains all the projected ground
pixels detected by the positive obstacle detection module. The algorithm first identifies
the pixels in the range image that potentially correspond to a negative obstacle (see
algorithm details below). Based on the accumulated ground information in the ground
map, the algorithm determines more precisely the dimension of the negative obstacle.
Thresholds for depth and width are used to reject negative obstacles that are too small in
dimension. For efficiency, the algorithm detects only the borders of negative obstacles.
Steps 1 through 4 describe the algorithm in detail.
1. Let kp be a ground point, and let w and d be the approximate width and depth of the

negative obstacle. i.e., gk xxw −= and .kg zzd −= Let
kpproj be the map location

corresponding to the projection of kp onto the ground map. Let mind be the minimum
depth for an obstacle, and minw the minimum width smaller than the vehicle wheel
diameter.

2. If both mindd < and minww < are true, then
kpproj is marked as a ground location and

no further work is done.
3. If

kpproj is within a neighborhood corresponding to the area along the line of sight
from the closest ground point on the map, then kp is not labeled as a negative obstacle,
but

kpproj is marked as a ground cell.

4. When both minww ≥ and mindd ≥ are true and no ground map cell exists within the
neighborhood, kp is labeled a negative obstacle, but

kpproj is not marked as a ground
cell.

border negative obstacles

Current Ladar
Ground map

g

p
k

X

Z

Figure 18 Negative obstacle border detection

Figure 18 graphically describes this process. The points marked as circles represent
points in the ground map. The triangular points represent current Ladar hits. The points
enclosed in squares fulfill the requirements described in Step 4 above and are labeled as
negative obstacle borders.

Acknowledgements
The work described in this paper was conducted under grants from the DARPA LAGR
program and the Army Research Laboratory. We are grateful for their support. We are
also indebted to Kevin Passino, whose careful reading of the manuscript and knowledge
of the machine learning literature have greatly improved the paper.

References

 1. Albus, J.S., Huang, H.-M., Messina, E., Murphy, K., Juberts, M., Lacaze, A.,
Balakirsky, S., Shneier, M.O., Hong, T., Scott, H., Horst, J., Proctor, F., Shackle-
ford, W., Szabo, S., and Finkelstein, R. 4D/RCS Version 2.0: A Reference Model
Architecture for Unmanned Vehicle Systems. NISTIR 6912. 2002. National Insti-
tute of Standards and Technology, Gaithersburg, MD. 2002.

 2. Albus, J.S. and Meystel, A., 2001. Engineering of Mind: An Introduction to the
Science of Intelligent Systems. Wiley and Sons, Somerset, NJ.

 3. Baum, M. and Passino, K.M., 2001. A Search-Theoretic Approach to Cooperative
Control for Uninhabited Air Vehicles. AIAA GNC Conference. Monterey, CA.

 4. Chang, T., Hong, T., Legowik, S., and Abrams, M., 1999. Concealment and Obsta-
cle Detection for Autonomous Driving. Proceedings of the Robotics & Applications
Conference, Santa Barbara, CA.

 5. DeSouza, G.N. and Kak, A.C., 2002. Vision for Mobile Robot Navigation: A Sur-
vey. IEEE Transaction on Pattern Analysis and Machine Intelligence, 24(2): 237-
267.

 6. Domjan, M., 1998. The Principles of Learning and Behavior. Brooks/Cole Pub.,
New York.

 7. Ganapathy, S. and Passino, K.M., 2004. Distributed Agreement Strategies for Co-
operative Control: Modeling and Scalability Analysis. In: R. Murphy and P. Par-
dalos (Editors), Cooperative Control and Optimization. Kluwer Academic Publish-
ers, Dordrecht, Netherlands.

 8. Gil, A., Passino, K.M., and Cruz, J.B., 2005. Stable Cooperative Surveillance. Pro-
ceedings of the IEEE Conference on Decision and Control. Seville, Spain.

 9. Gray, P., 1999. Psychology. Worth Publishers, New York.

 10. Halliday, T.R. and Slater, P.J.B., 1983. Animal Behavior, Volume 1: Causes and
Effects. W. H. Freeman and Company, New York.

 11. Howard, A., Tunstel, E., Edwards, D., and Carlson, A., 2001. Enhancing fuzzy ro-
bot navigation systems by mimicking human visual perception of natural terrain
traversability. Joint 9th IFSA World Congress and 20th NAFIPS International Con-
ference., pp. 7-12.

 12. Jackel, L. Learning Applied to Ground Robots (LAGR).
http://www.darpa.mil/ipto/programs/lagr/, 2005.

 13. Kwong, W.A. and Passino, K.M., 1996. Dynamically focused fuzzy learning con-
trol. IEEE Transactions on Systems, Man and Cybernetics, Part B, 26(1): 53-74.

 14. Manduchi, R., Castaño, A., Talukder, A., and Matthies, L., 2005. Obstacle Detec-
tion and Terrain Classification for Autonomous Off-Road Navigation. Autonomous
Robots, 18: 81-102.

 15. Ojala, T., Pietikäinen, M., and Harwood, D., 1996. A comparative study of texture
measures with classification based on feature distributions. Pattern Recognition, 29:
51-59.

 16. Passino, K.M., 2005. Biomimicry for Optimization, Control, and Automation.
Springer-Verlag, London.

 17. Passino, K.M., Polycarpou, M., Jacques, D., Pachter, M., Liu, Y., Yang, Y., Flint,
M., and Baum, M., 2002. Cooperative Control for Autonomous Air Vehicles. In: R.
Murphy and P. Pardalos (Editors), Cooperative Control and Optimization. Kluwer
Academic Publishers, Dordrecht, Netherlands.

 18. Pietikainen, M., Nieminen, S., Marszalec, E., and Ojala, T., 1996. Accurate Color
Discrimination with Classification Based on Feature Distributions., pp. 833.

 19. Schultz, W., Dayan, P., and Montague, P.R., 1997. A Neural Substrate of Prediction
and Reward. Science, 275: 1593-1599.

 20. Shirkhodaie, A., Amrani, R., Chawla, N., and Vicks, T., 2004. Traversable Terrain
Modeling and Performance Measurement of Mobile Robots. Performance Metrics
for Intelligent Systems, PerMIS '04. Gaithersburg, MD.

 21. Spooner, J.T., Maggiore, M., Ordonez, R., and Passino, K.M., 2002. Stable Adap-
tive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approxima-
tor Techniques. John Wiley and Sons, New York.

 22. Stone, L.D., 1975. Theory of Optimal Search. Academic Press, New York.

 23. Swain, M.J. and Ballard, D.H., 1991. Color Indexing. International Journal of
Computer Vision, 7(1): 11-32.

 24. Tan, C., Hong, T., Shneier, M., and Chang, T., 2006. Color Model-Based Real-
Time Learning for Road Following. Proceedings of the International Conference on
Robotics and Automation (Submitted). IEEE, Orlando, Florida.

 25. Ulrich, I. and Nourbakhsh, I., 2000a. Appearance-Based Obstacle Detection with
Monocular Color Vision. Proceedings of the AAAI National Conference on Artifi-
cial Intelligence. AAAI, Austin, TX.

 26. Ulrich, I. and Nourbakhsh, I., 2000b. Appearance-Based Place Recognition for
Topological Localization. IEEE International Conference on Robotics and Automa-
tion. San Francisco, CA, pp. 1023-1029.

 27. Wellington, C. and Stentz, A., 2003. Learning Predictions of the Load-Bearing Sur-
face for Autonomous Rough-Terrain Navigation in Vegetation. International Con-
ference on Field and Service Robotics., pp. 49-54.

