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Abstract 
Autonomous mobile robots need to adapt their behavior to the terrain over which they 
drive, and to predict the traversability of the terrain so that they can effectively plan their 
paths. Such robots usually make use of a set of sensors to investigate the terrain around 
them and build up an internal representation that enable them to navigate. This paper ad-
dresses the question of how to use sensor data to learn properties of the environment and 
use this knowledge to predict which regions of the environment are traversable. The ap-
proach makes use of sensed information from range sensors (stereo or ladar), color cam-
eras, and the vehicle’s navigation sensors. Models of terrain regions are learned from 
subsets of pixels that are selected by projection into a local occupancy grid. The models 
include color and texture and traversability information obtained from an analysis of the 
range data associated with the pixels. The models are learned entirely without supervi-
sion, deriving their properties from the geometry and the appearance of the scene. 
 
The models are used to classify color images and assign traversability costs to regions. 
The classification does not use the range or position information, but only color images. 
Traversability determined during the model-building phase is stored in the models. This 
enables classification of regions beyond the range of stereo or ladar using the information 
in the color images. The paper describes how the models are constructed and maintained, 
how they are used to classify image regions, and how the system adapts to changing envi-
ronments. 

 
Keywords: Learning, traversability, classification, color models, texture, range, mobile 
robotics 

1. Introduction 
If autonomous mobile robots are to become more generally useful, they must be able to 
adapt to new environments and learn from experience. To do so, they need a way to store 
pertinent information about the environment, recall the information at appropriate times, 
and reliably match stored information to newly-sensed data.  They also must be able to 
modify the stored information to account for systematic changes in the environment. This 
paper describes an approach that addresses these problems for the situation where an 
autonomous vehicle must traverse unknown outdoor terrain and learn during travel how 
to distinguish areas that are traversable from those that are not.  
 
The approach is to make use of data from range sensors, color cameras, and position sen-
sors to describe regions in the environment around the vehicle and to associate a cost of 
traversing each region with its description. Models of the terrain are learned using an un-
supervised scheme that makes use of both geometric and appearance information.  
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The vehicles we have developed run using a control hierarchy called 4D/RCS (Albus and 
Meystel, 2001;Albus et al., 2002). 4D/RCS provides a hierarchical organization of con-
trol nodes, each of which divides the system into sensory perception (SP), world model-
ing (WM) and behavior generation (BG) subsystems.  Each 4D/RCS node is designed to 
carry out specific duties and responsibilities.  Each node is assigned a specified span of 
control, both in terms of supervision of subordinates, and in terms of range and resolution 
in space and time. Interaction between SP, WM, and BG give rise to perception, cogni-
tion, and reasoning. At lower levels in the hierarchy, representations of space and time 
are short-range and high-resolution. At nodes higher in the hierarchy, representations of 
space and time are long-range and low-resolution.  This enables high-precision fast-
action response from the low level control nodes, while higher level nodes are generating 
long-range plans and abstract concepts over broad regions of time and space.  Typically, 
planning horizons expand by an order of magnitude in time and space at each higher level 
in the hierarchy. Within the WM of each node, a knowledge database provides a model of 
the external world at a range and resolution that is appropriate for the behavioral deci-
sions that are the responsibility of that node. 
 
This paper is concerned mainly with the sensory processing and world modeling aspects 
of the hierarchy. It discusses the processing of multiple sensor inputs to generate models 
of terrain, and construction of traversability maps which are sent to the world model. 
There they provide input to path planners that generate trajectories to take the vehicle to 
its goal. 
 
We assume that the vehicle has at least the following sensors: a color camera, a range 
sensor that can measure range over an area (e.g., a stereo system), and an inertial naviga-
tion system that provides an estimate of the vehicle’s position in space. The two vehicles 
for which the approach has been developed both have these sensors. NIST operates a 
High Mobility Multipurpose Wheeled Vehicle (HMMWV) that has several color cam-
eras, including one mounted on top of an area-scanning ladar. As part of the Defense Ad-
vanced Research Project Agency’s (DARPA) LAGR program (Learning Applied to 
Ground Robots), we also have a pair of small vehicles, each of which has twin color ste-
reo systems. Both of these platforms provide range and color information to the vehicle. 
Each vehicle also has navigation sensors that provide position estimates. The vehicles 
have other sensors, which may be able to provide additional information to verify the 
classification results. 
 
The use of stereo vision has the advantage that the color and range data are already regis-
tered. It has the disadvantages, however, of having a limited range, depending on the ste-
reo baseline, and requiring sufficient texture in the scene to ensure that disparity can be 
measured. Ladar-based range sensors require registration with a color image and usually 
do not provide the same pixel resolution as a color camera, meaning that a window of 
color pixels may correspond to a single range measurement. On the other hand, ladar is 
fast, provides range to a greater distance, and is less affected by scene characteristics. 
 



Both types of sensor are suitable for our approach. The examples in this paper will be 
taken from the stereo cameras mounted on the LAGR platform, which is currently the 
most active research platform for this work. 
 
The availability of range information enables a robot to navigate largely using the geome-
try of a scene. Another viable approach is to use topology of the surrounding space 
(DeSouza and Kak, 2002). Sensor processing is usually aimed at determining where the 
vehicle is and what parts of the world around it are traversable. The robot can then plan a 
path over the traversable region to get to its goal. Where range information is missing or 
unreliable, navigation is not so straightforward because it is less clear what constitutes 
clear ground. A typical range sensor will not be able to provide reliable range very far in 
front of the vehicle, and it is part of the aim of this work to extend the traversability 
analysis beyond the range sensing limit. This is done by associating traversability with 
appearance, under the assumption that regions that look similar will have similar traver-
sability. Because there is no direct relationship between traversability and appearance, the 
system must learn the correspondence from experience. 
 
The appearance of regions in an image has been described in many ways, but most fre-
quently in terms of color and/or texture. (Ulrich and Nourbakhsh, 2000b) used color im-
agery to learn the appearance of a set of locations to enable a robot to recognize where it 
is. A set of images was recorded at each location and served as descriptors for that loca-
tion. Images were represented by a set of one-dimensional histograms in both HLS (hue, 
luminance, saturation) and normalized Red, Green, and Blue (RGB) color spaces. When 
the robot needed to recognize its location, it compared its current image with the set of 
images associated with locations. To compare histograms when matching images, the Jef-
frey divergence was used. The location was recognized as that associated with the best-
matching stored image. 
 
In (Ulrich and Nourbakhsh, 2000a) the authors also addressed the issue of appearance-
based obstacle detection using a single color camera and no range information. Their ap-
proach makes the assumptions that the ground is flat and that the region directly in front 
of the robot is ground. This region is characterized by color histograms and used as a 
model for ground. In the domain of road detection, a related approach is described in 
(Tan et al., 2006). In principle, the method could be extended to deal with more classes, 
and our algorithm can be seen as one such extension that does not need to make the as-
sumptions because of the availability of range information for regions close to the vehi-
cle. 
 
Learning has been applied to computer vision for a variety of applications, including  
traversability prediction. (Wellington and Stentz, 2003) predicted the load-bearing sur-
face under vegetation by extracting features from range data and associating them with 
the actual surface height measured when the vehicle drove over the corresponding terrain. 
The system learned a mapping from terrain features to surface height using a technique 
called locally weighted regression. Learning was done in a map domain. We also use a 
map in the current work, although it is a two dimensional (2D) rather than a three dimen-
sional (3D) map, and we also make use of the information gained when driving over ter-



rain to update traversability estimates, although not as the primary source of traversability 
information. The models we construct are not based on range information, however, since 
this would prevent the extrapolation of the traversability prediction to regions where 
range is not available. 
 
(Howard et al., 2001) presented a learning approach to determining terrain traversability 
based on fuzzy logic. A human expert was used to train a fuzzy terrain classifier based on 
terrain roughness and slope measures computed from stereo imagery. The fuzzy logic 
approach was also adopted by (Shirkhodaie et al., 2004), who applied a set of texture 
measures to windows of an image followed by a fuzzy classifier and region growing to 
locate traversable parts of the image. 
 
The problem faced by a robot of finding a path to a goal point is a feedback control prob-
lem. The sensed feedback information comes from the cameras, Global Positioning Sys-
tem (GPS), etc.  The actuators are the drive motors on the wheels. The on-board com-
puter implements the feedback controller that drives the vehicle position (part of the 
state) to the goal position. It is for this reason that there are similarities between learning 
methods for robots and the field of adaptive control (sometimes called learning control). 
The closest relationships are to the area of “on-line approximation based feedback con-
trol” (Spooner et al., 2002), and in particular the “indirect adaptive control strategy” 
where a parameterized nonlinear map (e.g., implemented by a fuzzy or neural system) is 
adjusted to represent the process (environment) and then control decisions are based on 
that map. Stability, convergence, and robustness analysis is conducted for such feedback 
systems and principles of operation offer insights into the design of navigation methods 
for learning robots (e.g., the use of the notion of “probing” the environment vs. making 
progress toward reaching the goal, one of the most central ideas in adaptive control). 
Moreover, extended notions of adaptive control use learned models for planning and 
route selection by marrying ideas in adaptive and “model predictive control” (Passino, 
2005).  Indeed, the map-based strategy here is an excellent example of how successful 
such approaches can be. 
 
The notions of learning we use in this paper arose in the field of psychology.  First, the 
most basic low levels of learning represented by the notions of “habituation” and “sensi-
tization” (Domjan, 1998) are embedded in our algorithms. If the robot learns via multiple 
sensor inputs that an area is traversable, then it has been habituated to that input (it has 
learned to ignore information and go ahead and travel in a direction). Correspondingly, if 
the robot has learned that some sensory inputs correspond to a lack of traversability, then 
if such situations are encountered again the robot is sensitized and hence may not make 
the same attempts to travel through nontraversable areas as it did in the past. Such learn-
ing in the form of habituation and sensitization sets the foundation for the elements of 
“classical and operant conditioning” (Domjan, 1998) that occur in our robot. Our cell up-
date strategies correspond to learning strategies where via repeated sensory inputs it can 
learn to associate sensed features with a lack of traversability or good traversability so 
that the basics of classical conditioning are present. Indeed, our robot can exhibit the 
property of “blocking” since in learning it can initially use some sensed information to 
determine traversability, and then later when there are other learning opportunities, it will 



at times ignore new sensory information (model updates) since it is confident that for in-
stance more sensory verification of the model is not needed.  With respect to the “behav-
iorist” approach to operant conditioning, if the robot senses some scene and it has learned 
that certain features are associated with rewards (getting closer to the goal by making 
forward progress), it will try to apply the same actions that were successful before, lead-
ing to the “Thorndike’s effect” similar to what occurs in a “Skinner box” (Domjan, 
1998).  And, such opportunities for conditioning can occur during a single attempt by the 
robot to find a goal point via storage, updating, and later use of information in our maps 
as the robot travels. Moreover, our learned maps can be used between trials so that on 
successive attempts the robot learns how to direct its behavior to succeed even faster; 
hence, a basic property of “speed-up” in the rate of reward acquisition seen experimen-
tally in rats in mazes (Domjan, 1998) can also be exhibited by our system.  Finally, we 
note that our use of maps is quite similar to the idea that animals and humans build 
(learn) and use “cognitive maps” of their environment for planning spatial movement 
((Halliday and Slater, 1983); (Schultz et al., 1997); (Gray, 1999)). 
 
The contributions of this paper include a fast learning algorithm that requires no training 
data to learn associations between appearance and traversability and a histogram-based 
representation of models that provides a well-defined way of comparing the models and 
matching them with sensed data. The models are described in terms of color and texture 
features that do not rely on range data. This enables them to be used to classify regions 
for which no range data are available. The models are learned from data selected to be 
close together in space, making it more likely that they are from the same physical re-
gion. A further contribution is the introduction of a “ring” representation for recording 
the heading directions that are considered traversable by the learning system. 
These modules extend the 4D/RCS architecture by including learning of entities both in 
the maps kept by the World Model and as symbolically represented objects.  
 
The rest of the paper is organized as follows. First we introduce the problem to be ad-
dressed. Next, we explain the algorithm and discuss how models are learned and how the 
classification is carried out. We then describe how the results are represented in both an 
occupancy grid and a data representation called a ring structure. We then present some 
examples to further explain how the system performs, and we end with a discussion. 
 

2. Learning Traversability 
 
Many robotic vehicles can navigate successfully in open terrain or on highly constrained 
roads. Frequently, this capability is due to a careful provision of relevant information 
about the domain in which the vehicle will operate. The problem we address in this paper 
is to determine how to introduce a learning capability to the robot that will enable it to 
decide for itself the traversability of the terrain around it, based on input from its sensors 
and its experience of traveling over similar terrain in the past. 
 
The DARPA LAGR program (Jackel, 2005) aims to extend the navigation capabilities of 
robotic vehicles by enabling them to learn from experience, from examples, and from be-



ing taught. Through monthly tests, new challenges are introduced to the LAGR partici-
pants, whose software must evolve to operate in more and more complex environments. 
The LAGR project provided the robotic platform to the participants (Figure 1) and by the 
nature of the tests ensures that the vehicles and their low-level control systems would re-
main unaltered. This ensures that all the development focuses on perception and control 
strategies that learn to improve their performance. The primary sensors on the LAGR ve-
hicles include two pairs of stereo cameras, physical and infra-red bumpers in front of the 
vehicle, and a position-detection system consisting of a Global Positioning System (GPS) 

sensor and an inertial navigation system. 
 

 
The tests in the LAGR program take the form of navigating the vehicle from a defined 
start point to a fixed goal point. This requires avoiding obstacles such as trees, fences, or 
various objects introduced into the environment by the LAGR administrators conducting 
the tests. The vehicle uses its sensors to build a model of the world around it and plans a 
path from the start to the goal. In many cases, obstacles are placed along the path in such 
a way as to ensure that a straight-line path to the goal is not traversable. Also, the course 
may be set up in such a way that by the time the stereo sensors or bumpers detect an ob-
stacle, the vehicle has entered a region that requires a long detour to reach the goal. 
Teams are given three chances to reach the goal. The idea is that early runs will enable 
the robot to learn which regions to avoid and which to seek out, so that by the third run it 
has determined the most efficient path. The vehicle has no a priori knowledge of the kind 
of terrain it will traverse, so it must learn as it goes along, by observing both the geome-
try and the appearance of the terrain. 
 
Learning may include remembering the path the vehicle took in previous runs or the re-
gions seen by the sensors during those runs. In our approach, both of these types of learn-
ing are included but, as described in this paper, we also try to learn a relationship between 
the appearance of the terrain and its observed traversability. An advantage of this kind of 
learning is that regions that are too far away for reliable stereo (and hence reliable obsta-

Figure 1. The LAGR vehicle 



cle detection) can be identified as either desirable or undesirable for the vehicle to trav-
erse. This enables the vehicle to plan further ahead and avoid entering traps that prevent it 
from reaching the goal. Remembering the learned models also allows the vehicle to navi-
gate when stereo is not available 
 

3. The Algorithm 
 
The autonomous vehicle relies on its sensors to describe the terrain over which it is trav-
eling. Sensor processing must interpret the raw data and extract from it information use-
ful for planning. This includes topological information, such as slopes and ditches, and 
feature-based information, such as obstacles and ground cover. While some of the topo-
logical information can be extracted from the range data fairly easily, other features are 
harder to identify and their properties are not usually obvious from analysis of the sen-
sory data. For example, the traversability of tall grass cannot be determined from range 
and color information alone, so additional information must be provided through some 
other means. Often, this is part of the a priori information built in to the system, meaning 
that the vehicle only has to recognize regions as tall grass to be able to associate a traver-
sability value with them. In this paper, we develop a method that enables the vehicle to 
learn the traversability of different regions from experience. 
 
We develop an algorithm that first analyzes the range data to locate regions correspond-
ing to ground and to obstacles. Next, this information is used, along with the range and 
color data, to construct models of the appearance of regions. These models include an 
estimate of the cost of traversing the regions. Finally, the models are used to segment and 
classify regions in the color images. Associating regions with models enables traversabil-
ity costs to be assigned to areas where there is no range data and thus no directly measur-
able obstacles. As the vehicle traverses the terrain, more direct information is gathered to 
refine the traversability costs. This includes noting which regions are actually traversed 
and adjusting the traversability of the associated models. It also involves adjusting the 
traversability of regions where the vehicle’s mechanical bumper is triggered, and where 
the wheels slip or the engine has to strain to move the vehicle. 
 

3.1. Building the Models 
 
First, we construct a local occupancy map (Figure 2) consisting of a grid of cells, each of 
which represents a fixed square region in the world projected onto a nominal ground 
plane.  Currently we use an array of 201x201 cells, each of size 0.2 m square, giving a 
map of size 40 m on a side. The map is always oriented with one axis pointing north and 
the other east. The map scrolls under the vehicle as the vehicle moves, and cells that 
scroll off the end of the map are forgotten. Cells that move onto the map are cleared and 
made ready for new information. Note that if the vehicle moves far enough, the entire 
map will change. If it then returns to a place it has previously traversed, the information 
known about that location will be lost. In principle, it would be straightforward to re-
member all information learned as the vehicle moves about.  Alternatively, we could use 



maps of different resolutions and a strategy for storing abstracted information for later 
use into a global map as the occupancy grid moves out of a region.  Simultaneously, the 
cells that the occupancy grid moves into can be filled in using the pre-stored abstract in-
formation and this can be better than using no information at all. Such a strategy was 
found to be highly effective in learning control in a feedback system (Kwong and Pass-
ino, 1996).  However, for our application the storage of all information or even abstracted 
versions of it is not generally useful because of errors in the navigation system, which 
grow as the vehicle moves. This means that when it comes time to restore the contents of 
a cell it may be hard to decide which stored cell should be used. 
 
The next step is to process the range data and locate obstacles and ground regions. Obsta-
cles are defined as objects that project more than some distance d above or below the 
ground. Positive obstacles are detected in the range images, while negative obstacles are 
detected in the world model map (Chang et al., 1999). The algorithm scans column by 
column in the image, starting with a point known to be on the ground. An initial ground 
value is assigned at the location where the front wheels of the vehicle touch the ground, 
known from Inertial Navigational System (INS) and GPS sensors. A pixel is labeled a 
positive obstacle if it rises high enough and abruptly enough from the ground plane. The 
negative obstacle detection algorithm maintains its own high-resolution ground map cen-
tered on the vehicle.  This ground map contains all the projected ground pixels detected 
by the positive obstacle detection module.  The algorithm first identifies the pixels in the 
range image that potentially correspond to a negative obstacle because they are below the 
ground level and are large enough. For efficiency, the algorithm detects only the borders 
of negative obstacles. The algorithm is described in detail in the Appendix. 
 
The model-building algorithm takes as input the color image, the associated and regis-
tered range data (x, y, z points), and the labels (GROUND and OBSTACLE) computed 
by the obstacle-detection step. It builds models by segmenting the color image into re-
gions with uniform properties. Note that only points that have associated range values are 
used. The process works as follows: 
 
When a data set becomes available for processing, the map is scrolled so that the vehicle 
occupies the center cell of the map. Each point of the data set consists of a vector contain-
ing three color values, red (R), green (G), and blue (B). The vector also contains the 3D 
position of the point (x, y, z), and a label from the obstacle detection step. Currently we 
consider only OBSTACLE and GROUND labels, although the obstacle detection algo-
rithm identifies other regions, such as overhanging objects.  Each point is processed as 
follows. 
 



 
Figure 2. An occupancy grid with the vehicle in the center. 

 
1. If the point is not labeled as GROUND or OBSTACLE, it is skipped (Other labels 

can be treated without significant changes to the algorithm). Points that do not 
have associated range values are also skipped. 

 
2. Points that pass step 1 are projected into the map. This is possible because the x, 

y, and z values of the point are known as is the pose of the vehicle. If a point pro-
jects outside the map it is skipped. Each cell receives all points that fall within the 
square region in the world determined by the location of the cell, regardless of the 
height of the point above the ground. The cell to which the point pro-
jects accumulates information that summarizes the characteristics of all points 
seen by this cell. This includes color, texture, and contrast properties of the pro-
jected points, as well as the number of OBSTACLE and GROUND points that 
have projected into the cell.  
 
Color is represented by ratios R/G, R/B, and G/B rather than directly using R, G, 
and B. This provides a small amount of protection from the color of ambient illu-
mination. Each color ratio is represented by an 8-bin histogram, representing val-
ues from 0 to 255. The values are actually stored in a normalized form, meaning 
that the values can be viewed as probabilities of the occurrence of each ratio. Tex-
ture and contrast are computed using Local Binary Patterns (LBP) (Ojala et al., 
1996). These patterns represent the relationships between pixels in a 3x3 
neighborhood in the image, and their values range from 0 to 255. Similarly to the 
color ratios, the texture measure is represented by a histogram with 8 bins, also 
normalized. Contrast is represented by a single number ranging from 0 to 1. 
 



Local Binary Patterns are computed on 3×3 windows, as follows (Figure 3). First, 
the center pixel value is used to threshold the other pixels in the window (Figure 
3b). Then a weighted sum is computed of the eight surrounding thresholded 
points (Figure 3d). The weights are assigned as powers of 2 (Figure 3c), so that 
each location has a unique weight (index). Given that there are eight surround pix-
els, and each has value 0 or 1 after thresholding, the final value assigned by the 
operator to the central pixel can be represented by an eight-bit byte, making the 
implementation very efficient. The LBP values are combined with a contrast 
measure at each point, computed over the same window.  
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Figure 3. (a) A 3x3 neighborhood. (b) Result of thresholding by middle value. (c) 
Weights applied to each thresholded pixel. (d) Resulting value in the center cell is 
sum of the weighted thresholded values. 
 

3. When a cell accumulates enough points it is ready to be considered as a model. 
While it would be best to have a statistically meaningful way of deciding when 
enough points have been seen, we currently use a threshold determined by ex-
periment. In order to build a model, we require that a minimum percentage (cur-
rently 95%) of the points projected into a cell have the same label (OBSTACLE 
or GROUND). Given how small a region in space the cells represent, this is 
mostly the case. If a cell is the first to accumulate enough points, its values are 
simply copied to instantiate the first model. Models have exactly the same struc-
ture as cells, so this is trivial.  

 
If there are already defined models, the cell must first be matched to the existing 
models to see if it can be merged or if a new model must be created. Matching is 
done by computing a score, Dist, as a weighted sum of the elements of the model, 
m, and the cell c. That is,  
 

),(),( mcfwmcDist ii∑=  
where if is either a measure of the similarity of two histograms or, in the case of 
contrast, is the absolute value of the difference of the two contrast values, 

cmcontrast contrastcontrastf −= . The histograms are always stored normalized by 
the number of points. Various measures hf of the similarity of two histograms 
(discrete probability density functions) can be used, such as a Chi Squared test or 



Kullback-Liebler divergence. After trying these (plus others) we found that a sum 
of squared difference measure worked almost as well and is cheaper to compute. 
Thus, for each model histogram mh and the corresponding cell histogram ch , 
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Cells that are similar enough are merged into existing models; otherwise, new 
models are constructed.  If the number of models exceeds a limit, merging of the 

most similar models is forced, although it might be better to replace the oldest or 
least-used model with the new one. Merging is a straightforward summation of 
histograms, each normalized by its number of points. The merged contrast meas-
ure is computed as the weighted average of the two contrasts being merged. 
Figure 4 shows the histograms representing three different models. 

 
4. At this stage, there is a set of models whose appearance in the color images is dis-

tinct. Our interest is not so much in the appearance of the models, but in the 
traversability of the regions associated with them. Traversability is computed us-
ing three types of information. First, when a point is projected into a cell, it 
brings with it a label, either GROUND or OBSTACLE. Each cell accumulates 

R/G R/ B G/B LBP

R/G R/ B G/B LBP

R/G R/ B G/B LBP

Figure 4. The histograms representing three different models. Models include other ele-
ments, such as contrast and traversability.



a count of the number of GROUND and OBSTACLE points that have 
been projected into it. Second, the vehicle itself occupies a region of space that 
maps into some neighborhood of cells. These cells and their associated models are 
given an increased traversability weight because the vehicle is traversing them. If 
the bumper on the vehicle is triggered, the cell that corresponds to the bumper lo-
cation (and its model, if any) is given a decreased traversability weight. Cells and 
models that don't have known traversability from bumper hits or from being trav-
ersed are given traversability values computed as numOBSTACLE / (numOBSTA-
CLE + numGROUND). We plan to further modify the traversability weights by 
observing when the wheels on the vehicle slip or the engine has to work harder to 
traverse a cell. 

 
5. When all the points in the input data have been processed, the occupancy map is 

sent to the World Model (WM) as follows. First, only cells that have values that 
have changed are sent. If a cell does not have an associated model, its local 
traversability measure is sent. If it does have a model, the traversability computed 
from the model is sent. This means that information learned in one region is 
propagated to other, similar regions. An option is to send information from all 
cells that match models when the model has changed since last sent to the world 
model. Note that the WM has no knowledge of the local models, and receives 
only traversability information rather than region identity. Each time new data 
come in, the process is repeated. 

 
6. Periodically, a sweep is made of all the models. Each model is compared to all the 

others. If two models are similar enough, they are merged and the number of 
models is reduced accordingly. 

 
A question arises of what to do when points continue to map into a cell after it has 
matched with a model. One option is to increment the information in the matching 
model with the new data. This was rejected because of the potential for drift in the 
model. As multiple cells that match the model each update the model’s distributions, 
the individual cells may become poorer matches for the model. This could be the 
case, for example, because the appearance of a region on the ground can be different 
when viewed from far away than from close up. An alternative option was adopted 
instead. This is to link the cell with the model and then zero out the local distributions 
stored in the cell. Any points that now project into the cell are used to update the 
cell’s local distributions. When the threshold number of points is reached, the cell is 
matched with all the models again and is either merged with the best match (which 
may be different from its original model) or causes the creation of a new model. This 
ensures that the model associated with a cell is always as good a representation as 
possible. 
 
 
 



3.2. Classifying scenes 
 
So far, we have dealt with model building and computing traversability for cells in the 
occupancy grid. The information extracted in this way is useful for creating the internal 
world model and enabling path planning, but it is limited in that it is only applicable to 
points in the sensed data for which both color and range information are available. Typi-
cally, this is a subset of the points in the color images. The next step is to use the models 
to classify entire scenes. Here only color information is available, with the traversability 
being inferred from that stored in the models. The assumption is that regions that look 
similar will have similar traversability. 
 
The approach is to pass a window over the image and to compute the color and texture 
measures at each window location. The matching between the windows and the models 
operates exactly as it does when a cell is matched to a model in the learning stage. Win-
dows do not have to be large, however. They can be as small as a single pixel and the 
matching will still determining the closest model, although with low confidence. In the 
implementation the window size is a parameter, typically set to 16x16. If the best match 
has an acceptable score, the window is labeled with the matching model. If not, the win-
dow is not classified. Windows that match with models inherit the traversability measure 
associated with the model. In this way large portions of the image are classified. 
 
A problem arises in sending the results to the World Model, which requires a 3D location 
to be associated with each point. For the part of the image used for model creation, only 
points that have associated range values are processed, so the problem doesn’t arise. For 
the rest of the image our approach is to make two assumptions. One is that the ground is 
flat, i.e., that the pose of the vehicle defines a plane through the wheels (Figure 5). This 
allows windows that match with models that are created from ground points to be 
mapped to 3D locations. The second assumption is that all obstacle windows (matching 
with models created from obstacle points) are normal to the ground plane. This allows 
obstacle windows to be projected into the ground plane and thus to acquire 3D locations. 
While the assumptions may lead to errors, they only affect regions that do not have asso-
ciated range. These regions are usually far away from the vehicle when they are first 
seen, so that inaccuracies in location are not critical. If the vehicle approaches those re-
gions, they will be seen again, and eventually should fall into the field of view of the 
range sensor which will provide accurate positioning. The value of observing these re-
gions from far away is that a low-resolution, long range path planner can decide to avoid 
obstacles or traverse ground regions well before a finely detailed local plan needs to de-
cide exactly how the vehicle will move. 



 
Figure 5. The plane to which objects beyond stereo range are projected 

 
 
Experiments determined that directly projecting the location estimates obtained in this 
way into a map is very noisy, and results in a map that causes the planner to make non-
optimal plans. The range estimates become less and less accurate as the location gets 
closer and closer to the horizon. Also, very small motions of the camera, due perhaps to 
roughness of the terrain, have a large effect on the range estimate. On the other hand, the 
heading remains accurate. Because of this we decided to introduce a new structure to 
store the data. This is a ring located at a given distance from the vehicle into which the 
information about the scene beyond the stereo range is stored. This representation is de-
scribed next. 
 

3.3. Ring Model 
 
 The world model is the system's internal representation of the external world. Where 
there is reliable range information, we create a map-based knowledge representation con-
taining estimates of the identity of spatial regions (obstacle, ground), a confidence in the 
estimate, the cost of traversing the region corresponding to each map cell, and a statistical 
analysis of elevation and traversability. The primary uses of the world model are for 
planning safe and efficient paths and to enable temporal fusion of sensory processing 
data. Multiple maps are maintained at different resolutions. The maps are updated with 
inputs from the sensors including stereo vision, the navigation sensor, and the physical 
and IR bumpers. 
 
The ring representation is added to the world model to represent the world beyond the 
distance that range sensors can sense. The ring is centered on the vehicle and stores the 
current best estimate of what is in the region beyond the range of accurate stereo (about 
6.5 meters from the LAGR vehicle). Each element of the ring represents an area defined 
by an angle (currently 1 degree). The ring model is updated regularly as new information 
is sent to the world model. The ring scrolls as the vehicle moves, remaining always at the 
same distance from the vehicle. The data in the ring are updated by fusing new data from 
the classification module with information already in the ring.  
 



The functions included the following: 
 

1. Ring scrolling. The ring is used to update new sensor data while keeping the vehi-
cle centered on the map. Each element in the ring is updated based on the new ve-
hicle position. Information is removed if the data moves inside of stereo range 
limit or outside a range limit (currently 30 m to 60 m) 

 
2. Ring updating and fusing. New sensor information such as terrain traversability 

and distance to the object in the scene is used to compute statistical information 
about sensor data for each element in the ring. The statistical information includes 
average range, variance of range, minimum range, and maximum range. When an 
element of the ring receives an update for a class such as an obstacle, an elevation 
measurement, a terrain classification, etc., the confidence in that class is incre-
mented by a predefined constant. 

 
Figure 6(a) shows a ring structure in the world model at the beginning of the vehicle’s 
run. At this stage, no regions have been classified and the entire ring is shown as “un-
known.” After the first ground model is learned and image classification has begun, the 
ring appears as in Figure 6(b). Finally, after both obstacle and ground models have been 
learned, the ring appears as in Figure 6(c). 
 

 
(a) 

 
(b) 

 
(c) 

Figure 6. (a) The ring before any models have been constructed. The blue color denotes 
"unknown." (b) The ring showing a region classified as ground (green). (c) The ring 
with both ground and obstacle regions (brown). The white line indicates the planned 
motion trajectory. 
 

4. Experimental Results 
 
The algorithm has been implemented on the DARPA LAGR platform and used to pro-
vide part of the information for navigation. The sensors on the LAGR vehicle include two 
pairs of stereo cameras and a position sensing system incorporating a GPS receiver and 
an inertial measurement unit. We present two examples below of how the algorithm 



works. The first is a simple situation with man-made obstacles, while the second is a 
more complex environment.  

4.1. Open Field with Fence 
 
The first example illustrates a simple scene where learning has obvious benefits. The ve-
hicle was placed on a flat, grassy field and given a goal about 80 meters from its starting 
point. Two plastic mesh fences were installed between the vehicle and its goal, as well as 
some wooden obstacles. In order to successfully reach the goal, the vehicle could not take 
a straight line path, but would have to identify the obstacles and plan a route around 
them. 
 
Initially, the system had no models or prior information. The first run was used to learn 
the appearances and locations of the obstacles, while later runs made use of the learned 
information to plan shorter paths that bypassed the obstacles and substantially improved 
the time to reach the goal. Figure 7 shows an early view from one of the cameras, in 
which only one model has been learned. The stereo data is shown overlaid on the image 
and the regions that match the model are shown in blue. The black overlay indicates 
points extracted from stereo that have not yet matched with a model. The obstacle detec-
tion has correctly labeled the points as GROUND. The orange fence is visible in the dis-
tance, but is too far away for stereo matching and hence for a model to be built. Note that 
the grass is not uniformly colored, so that not all grassy areas match with the model. The 
reason that the stereo data are so sparse is because the grass is not cut very evenly. Some 
parts are significantly longer than others, and these regions are not recognized as ground 
although they are not high enough to be considered obstacles. Adjusting thresholds in the 
obstacle detection algorithm will change the number of points labeled as ground. 
 

Figure 7. A view from one of the cameras on the vehicle with the 
range data overlaid. At this point only the first model has been cre-

ated, shown in blue. The black overlay shows the 3D points extracted 
from stereo that are not yet associated with a model. 



In Figure 8 a second model has been created, shown in green. This model represents 
grass in shadow or dark vegetation. Both this model and the first model are labeled as 
GROUND and are considered highly traversable. The fact that there are now two models 
representing ground points is intentional. The aim of the system is not to develop a single 
model for ground and another for obstacles, but to capture the appearance of different 
regions in the scene, be able to recognize them in subsequent scenes, and to be able to 
associate a label and traversability cost with the recognized regions. In Figure 9 the re-
sults are shown of classifying the entire scene using the two models constructed so far. 
As can be seen, the classifier has filled in the sparse labels based on range information 
and has labeled most of the image correctly. The fence and the sky are not labeled be-
cause there is no model that matches closely enough with their appearance. The trees in 
the background are classified as dark vegetation, which has the side-effect of labeling 
them as traversable because the only dark vegetation seen close up has been on the 
ground. This mislabeling will be corrected if the vehicle approaches the trees closely 
enough to get range information and hence to allow it to construct a model. 

Figure 8. A view showing the creation of a second model, shown in 
green. It is rather difficult to see, but appears in the shadow cast by 
the vehicle, and corresponds to darker grass (grass in shadow). 

Figure 9. The result of classifying the image of Figure 8 in terms of 
the two models currently constructed. Note that the sky and the 
orange fence are not classified because they do not match either of 
the models. 



As more images are processed, the system continues to learn. It can learn new models 
and it can determine that models it has already constructed should be merged. The next 
stage of the example shows the results of both of these processes. In Figure 10 the vehicle 
has approached the orange fence and has started to get stereo readings from it (shown in 
black because the image was acquired before the model was constructed). This allows the 
system to learn a new model of the fence. At the same time, the vehicle has continued to 
see examples of ground regions. This has led it to merge the models for light and dark 
ground into a single ground model, shown in blue in Figure 11. Here the whole fence has 
been classified even though only a small portion was used to create the model. The 
ground has also been classified into a single model. Note that the shadow of the vehicle 
and the trees in the background no longer match the ground model and so are not classi-
fied in this image. 
 
From this point on, the fence will be recognized as an obstacle both when it is close 
enough to be seen by stereo and when it is further away. This enables the vehicle to plan 
a path around the fences without having to explore them from close up. 
 
 

 
Figure 10. A view where the vehicle is close enough to the fence to get stereo responses. 

 
 

 
Figure 11. The result of classification with the merged ground model and the fence model. 

 

4.2.  Predicting Traversability at a Distance 
 
In the second example, the vehicle starts on a trail that leads into some woods. As before, 
the system has no models when it starts, and must learn to recognize traversable regions 



from its color and range data. This example illustrates how the algorithm is applied to 
regions beyond the stereo limit. We show the results in the format in which they are pre-
sented by our Operator Control Unit (OCU), which displays the results of both sets of 
stereo sensors. Note that although we only show the results for the midfield beyond ste-
reo range, the near-field will also be classified by the algorithm. 
 
Figure 12 shows a view of the OCU shortly after the vehicle has started its mission. The 
robot is moving parallel to a fence, heading for the woods. In the Figure, we show only 
the results of processing for the region beyond the range of stereo. The stereo results are 
used to construct the occupancy grid for the first six meters, while the classification re-
sults are used to construct the ring representation for the terrain that is further away. The 
right eye results are shown on the left of the Figure and the left eye results are shown on 
the right of the Figure. This is because the left stereo pair is angled so that it looks to the 
right, and the right pair looks to the left. The display thus puts the left field of view on the 
left, and the right field of view on the right. 
 
Before classification can take place, the system must first learn models of the traversabil-
ity of the terrain. Processing of each image pair thus has two phases. First, the regions of 
the image within six meters of the vehicle are processed by the obstacle detection algo-
rithm and are used to construct or update the models. Next, windows in the regions be-
yond the end of the stereo processing are matched to the set of models and classified ac-
cordingly. The region that is classified starts at the range where confidence in stereo is 
considered too low and ends a little above the horizon. The horizon is computed based on 
the plane defined by the vehicle’s pose as described in Section 3.2. There are two planes, 
one for each stereo pair of cameras. The horizon is defined as the line where rays from 
the camera are tangent to the surface of the plane. Because positive obstacles are ex-
pected to rise above the horizon, processing is extended a little beyond this line. 
 
In Figure 12, magenta regions correspond to areas considered not traversable, while yel-
low regions denote traversable regions. The white line indicates the planned path, the 
brown line indicates the direction of the goal, and the blue line indicates the direction of 
the vehicle. The results are blocky because 16x16 windows are used to match with the 
models. This could lead to errors in the positions of the obstacles in the world model, so 
before the obstacles are projected into the plane, a refined estimate of the bottom of the 
obstacle region is computed as follows. Starting at the center of the 16x16 window, step 
down the column, pixel by pixel, matching each pixel to the model. The match value is 
the sum of the values in the bins to which the pixel’s color and texture map. That is, 
given the R/G, R/B, and G/B colors of the pixel, and its LBP texture, the match value is 
the sum of the sizes of the bins into which each of these values maps. Keep stepping 
down until the model match value is less than that of the center of the window. The low-
est point is considered to be the end of the obstacle and is projected into the ground plane 
under the assumption that the obstacle is vertical to the plane. 
 
Notice that the left eye and right eye do not see the same terrain, so do not construct the 
same models. The left eye has seen no obstacles in the first six meters corresponding to 
dark vegetation, so has no model for such regions. It has, however, seen the grassy re-



gions that make up the ground. This lets it classify the ground in the image, but not the 
obstacles. Currently the eyes do not share their models except when the system first starts 
up. This will be remedied in the near future. 
 

 
Figure 12. A view of the OCU shortly after the vehicle starts up. The top row shows one image from 
each stereo pair. The middle row shows the traversability computed in the mid-field, from 6 meters 
to the horizon. Magenta areas are not traversable, yellow areas are traversable. The bottom row 
shows the stereo output. Green is ground, red is obstacle. Other colors are ignored by the algorithm.  



 
Figure 13. The OCU when the vehicle has moved into the woods. The path is still seen as ground, but 

the trees are seen as obstacles. 

 
Figure 13 shows the situation when the vehicle has started to move into the woods. At 
this stage, both eyes have developed models for the trees, and both continue to classify 
the path as ground. Regions that are not colored magenta or yellow are not classified, 
meaning that they do not match with any current models. As new models are built, these 
regions may be classified. 
 



 
Figure 14. The view at an intersection in the path. 

 
In Figure 14 we see the situation where there is an intersection in the path, with a second 
trail going off to the right. The view from the left eye shows that the trail is classified as 
ground, while the trees are classified as obstacles. In this Figure, most of the trees are 
outside the region being processed, so do not get classified. Finally, in Figure 15 we show 
a display of the near-field stereo processing overlaid on the same image as the mid-field 
classification. It can be seen that stereo processing detects the ground (green) and obsta-
cles (red) in the foreground of the images, while the classifier fills in the middle ground. 
Even though the classification covers a fairly small band in the image, it represents a 
range from six meters to about seventy-five meters in the world. 
 



 
Figure 15. A view showing the stereo processing overlaid on the classification. Note that the classifi-

cation region starts where the stereo obstacle detection ends. 

5. Discussion and Conclusions 
 
We have presented a system that learns to predict the traversability of regions based on 
the assumption that regions that look similar will have similar traversability. The models 
that are constructed to represent regions are robust, in the sense that they apply across a 
wide set of ranges. Objects may look substantially different from close up than they do 
from far away, and the color and texture measures are computed using only data from the 
closest parts of the image. Nonetheless, the models continue to match well when applied 
to the middle range of the image. This is probably due to the coarse binning in the models 
which mimics the smoothing effect of increasing range.  
 
The color model used to represent the appearance of the different terrain models is a de-
scendent of the histogram intersection approach developed by (Swain and Ballard, 1991). 
Instead of three-dimensional histograms, we use three one-dimensional histograms, and 
instead of their histogram intersection algorithm for comparing histograms, we use a sum 
of squared difference measure (which is very similar to the sum of absolute differences 
used in histogram intersection). The size of the histograms we use is substantially smaller 
also, but, as expected from Swain and Ballard’s analysis, this has little impact on the ac-
curacy of the matching. (Pietikainen et al., 1996) showed that three one-dimensional his-
tograms perform almost as well as one three-dimensional histogram, although they did 
not use color ratio histograms in their experiments.  
 
The number of models that get constructed is dependent on the complexity of the envi-
ronment and on the similarity measure used to compare models. Even with a fairly strict 



similarity measure we have not found that the number of models becomes large. A typi-
cal scenario, such as driving through the woods, will generate less than twenty models. It 
is also not very important to know exactly what each model represents. The main concern 
is that the models correctly predict traversability, not that they encode a semantically 
meaningful object. Nonetheless, regions such as the orange fence in the first example are 
typically represented by a single model or perhaps two if there is a significant lighting 
change across the fence. 
 
The data streams from the left and right stereo cameras are each processed independently. 
When the system starts up, it checks to see if it has any models. If so, it reads the models 
into the processor for each eye and merges them. If not, both eyes start without models. 
From this point on, there is no communication between the two processors. This can 
sometimes cause the two eyes to contradict each other, but has not resulted in signifi-
cantly reduced performance. Models do not take up a lot of space, but it is important that 
each model remain distinct from all other models. Thus, the bulk of the time taken in 
sharing the models comes from comparing the models from one eye with those from the 
other. We already have a mechanism in place for doing this, since we already merge 
models that are similar enough. We plan to exchange models periodically between the 
eyes to ensure that their traversability estimates remain consistent. 
 
Using the range information to build the models ensures that points that are spatially 
close in the three-dimensional world provide the data for the models. This makes them 
more likely to belong to the same physical region. The processed range information, 
which provides labels for obstacle and ground based on the geometry of the region, also 
provides strong evidence of the traversability of the region. This serves as a good starting 
point for traversability, which is modified by the behavior of the vehicle in driving over 
some regions and registering bumper hits on others. In some cases, however, range in-
formation is not available. In this case, we can still build models under the initial assump-
tion that the region in front of the vehicle is traversable and that regions that do not match 
are not traversable (Ulrich and Nourbakhsh, 2000a;Tan et al., 2006). Together with ob-
serving what actually happens as the vehicle moves, this should enable the algorithm to 
work in a similar manner to how it does when range is available. We plan to explore this 
approach. 
 
The algorithm has been fully implemented on the DARPA LAGR platform, using two 
stereo pairs as the source of color and range information. It has been used to provide in-
formation for navigation, particularly in regions where stereo is not reliable. The ring rep-
resentation was developed for this application because the range estimation of distant 
points is not very accurate, whereas the heading is less dependent on range. It enables the 
vehicle’s planner to take into account regions with known obstacles in its longer term 
plans, while still using local information with higher accuracy to plan immediate moves. 
We intend to continue developing this approach, and to implement it on our other plat-
forms that have ladar sensors instead of stereo to provide range information. 
 
Finally, we would like to highlight some ideas about extending our work to apply to the 
multiple autonomous vehicle case. Map-based methods for vehicle guidance originated in 



WWII with the use of “optimal search theory” that was later reported in (Stone, 1975).  
Such methods do not, however, provide a way to generate specific paths of travel for 
autonomous vehicles; instead they provide human-guided mission-planning level strate-
gies to allocate search effort to regions. These methods have been recently extended to 
cooperative search by autonomous vehicles in ((Baum and Passino, 2001); (Passino et al., 
2002); (Ganapathy and Passino, 2004)).  Maps in these methods initially represent the a 
priori probability of the presence of a target in any position of a region, and then as the 
vehicle traverses the area the maps are updated (learned) to reflect that areas that have 
been visited by sensors are less likely to hold a target if it was not found. The vehicles 
then steer to regions with high map values, but try to move along paths so as to “push the 
map down” as much as possible for the energy-time investments for travel (e.g., oscillat-
ing between the highest peaks of the map can have significant travel costs so that must be 
avoided).  These methods have recently been shown to work effectively even in the pres-
ence of communication delays in the sharing of maps, and communication topology in-
terconnection restrictions (Gil et al., 2005). Now, the goal of the autonomous robot in this 
paper is to search for a traversable path to a location; hence, there is a clear and direct 
connection to the above methods. Indeed, we feel that one of the significant advantages 
of the approach in this paper is its extensibility to the multiple vehicle case. Of course, 
significant additional challenges that are beyond the scope of this paper will arise: (i) 
Team composition and tasking: How many vehicles are needed for any particular sce-
nario? Would it be best to have a set of heterogeneous vehicles, ones with different sen-
sors, or should each vehicle be identical? (ii) Cooperative path planning: How can the 
traversability maps be shared effectively? What strategies are most effective for coopera-
tively gathering information and working together to plan paths?   
 

Appendix: Obstacle Detection 
 
Obstacles are defined as objects that project more than some distance d above or below 
the ground. The obstacle detection algorithm works column by column in the range im-
age. (Manduchi et al., 2005) describe a similar but improved version of this algorithm. 
Our algorithm starts with a point, g, known to be on the ground. An initial ground value 
is assigned at the location where the front wheels of the vehicle touch the ground, known 
from INS and GPS sensors. Given point g, the algorithm processes upwards from the bot-
tom pixel in the column to the top pixel, as follows: 

1. Let ip be the thi pixel in the column, where pixel 0 is at the bottom of column. Let 

iii zyx ,,  be the Cartesian coordinates of ip . Let g be the last known ground pixel in 
the column, initially obtained from the vehicle’s position sensors. Compute the slope 
between the ground point, g, and the next pixel kp . Pixel kp is labeled a positive 
obstacle if 
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where α is a predefined constant representing the maximum allowed slope. The value 
of ( )α2sin  is constant, and is pre-computed for efficiency. 

2. Pixel kp may fail the above test but still be a positive obstacle. This is because the 
slope test is a function of distance. The obstacle can be far from the current ground 
point due either to occlusion or to the resolution of the sensor which degrades as a 
function of distance. To resolve this ambiguity, the height of the obstacle is required to 
be greater than a constant, H. i.e., .Hzz gk >−  

3. If kp is not an obstacle, it is assumed to be ground and replaces g as the current ground 
pixel. The process iterates up the column with each pixel being compared to the 
closest ground pixel. 

4. If kp is an obstacle, g is unchanged, and is compared with pixels Κ,, 1+kk pp  as above, 
until another ground pixel is found.  When this occurs, point g is set to the new ground 
pixel value and the process repeats. 

 
In Figure 16, pixel 0 corresponds to the bottom of the vehicle wheel.  Pixels 1, 2, 3, 8 and 
9 are ground pixels.  Pixel 4, 5, 6 and 7 are positive obstacles because either they satisfy 
step 1 or step 2 or both.  The direction vectors shown on the bottom of Figure 1 indicate 
the vectors in which the slopes are determined.  In a way, the algorithm is analogous to 
flooding; pixels 1, 2, 3, 8 and 9 are flooded because they have shallow slopes. 
The results of the positive obstacle detection are shown in Figure 17. The figure on the 
left is a Ladar scene of a wall obstructed by a truck on the far right. The objects in the 
foreground are low poles.  The figure on the right shows the objects detected as positive 
obstacles in this scene. 
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Figure 16 Positive obstacle detection 



  
 

Figure 17.  Raw ladar image and detected positive obstacles. 

The negative obstacle detection algorithm maintains a high-resolution ground map 
(occupancy grid) centered on the vehicle.  This map contains all the projected ground 
pixels detected by the positive obstacle detection module.  The algorithm first identifies 
the pixels in the range image that potentially correspond to a negative obstacle (see 
algorithm details below). Based on the accumulated ground information in the ground 
map, the algorithm determines more precisely the dimension of the negative obstacle.  
Thresholds for depth and width are used to reject negative obstacles that are too small in 
dimension.  For efficiency, the algorithm detects only the borders of negative obstacles.  
Steps 1 through 4 describe the algorithm in detail. 
1. Let kp be a ground point, and let w and d be the approximate width and depth of the 

negative obstacle.  i.e., gk xxw −= and .kg zzd −=  Let
kpproj be the map location 

corresponding to the projection of kp onto the ground map. Let mind be the minimum 
depth for an obstacle, and minw the minimum width smaller than the vehicle wheel 
diameter. 

2. If both mindd < and minww < are true, then
kpproj is marked as a ground location and 

no further work is done. 
3. If 

kpproj is within a neighborhood corresponding to the area along the line of sight 
from the closest ground point on the map, then kp is not labeled as a negative obstacle, 
but

kpproj is marked as a ground cell. 

4. When both minww ≥ and mindd ≥ are true and no ground map cell exists within the 
neighborhood, kp is labeled a negative obstacle, but

kpproj is not marked as a ground 
cell. 
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Figure 18 Negative obstacle border detection 



Figure 18 graphically describes this process. The points marked as circles represent 
points in the ground map. The triangular points represent current Ladar hits. The points 
enclosed in squares fulfill the requirements described in Step 4 above and are labeled as 
negative obstacle borders. 
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