
 

 

RoboCupRescue - Robot League Team 
Resquake (IRAN) 

http://www.resquake.com 

Ehsan Aboosaeedan1, Ali Jazayeri2, Arash Kalantari3, Ehsan Mihankhah4, Hesam Semsarilar5 

1 K.N.Toosi University Of Technology 
Seyed Khandan Bridge, Shariati St., 

 Tehran, Iran +98 21 8462174-7 
ehsanaboo@hotmail.com 

 

2 K.N.Toosi University Of Technology 
Seyed Khandan Bridge, Shariati St., 

 Tehran, Iran +98 21 8462174-7 
sajazayerim@yahoo.com 

 

3 K.N.Toosi University Of Technology 
Daneshkadeh Blvd., Forth Square Of TehranPars, 

 Tehran, Iran +98 21 7334132-3 
Arash1362@yahoo.com 

 

4 K.N.Toosi University Of Technology 
Seyed Khandan Bridge, Shariati St., 

 Tehran, Iran +98 21 8462174-7 
ehsanmihankhah@yahoo.com 

 

5 K.N.Toosi University Of Technology 
Daneshkadeh Blvd., Forth Square of TehranPars, 

 Tehran, Iran +98 21 7334132-3 
hesam2k@yahoo.com 

R o b o C u p 2 0 0 5
R e s c u e  R o b o t  L e a g u e  C o m p e t i t i o n  

O s a k a ,  J a p a n
J u l y  1 3  –  1 9 ,  2 0 0 5

w w w . r o b o c u p 2 0 0 5 . o r g



Abstract. This paper is aimed for introducing Resquake’s work on implementing 
an Autonomous Mobile Robot. The team-work on Rescue robot has ended up to dif-
ferent mechanical and electrical designs and also the user interface is progressively 
becoming more friendly and efficient for the operator while new features are added to 
the system. and considering the real test results which show the operator needs for 
driving and operating the robot with a better feeling of standing on the robots position 
and being able to get more information from the environment experiment results have 
made a better sense of operator's needs while driving the robot and thus the whole 
system has improved to create a better feeling of standing at the robot's position for 
the user while collecting as much information as possible from the environment. In 
this paper, we discuss our different mechanical designs for smooth areas like yellow 
arena and the designs for more complicated areas with unknown obstacles like what 
we expect to see in Orange and Red arenas. Electrical design of motor drivers and 
microcontroller system will also be described and the user interface parts are also 
explained in detail. The project is actually consisted of two different parts: preparing 
a good tele-operative system and designing an autonomous system, where the former 
is almost finished and we are currently working on system optimization. The latter is 
still in progress and hopefully it will be performable by Robocup 2005 competitions. 



1. Team Members and Their Contributions 

1. Ehsan Aboosaeedan   Motor Drivers and Power Supply and  
 Electrical Design 

2. Ali Jazayeri    Microcontroller And Embedded System  
 And Electrical Design 

3. Arash Kalantari    Mechanical Design And Simulation 
4. Ehsan Mihankhah    Software Development And Operator 
5. Hesam Semsarilar      Mechanical Design And Implementation 
6. Rasool  Dalirroyfard    Advisor 
7. Dr. HemidReza Taghirad     Advisor 



2. Operator Station Set-up and Break-Down (10 minutes) 

Everything is packed in a toolbox (the Operator's Laptop and printer and 
other accessories such as joystick and mouse and a bunch of papers and writing 
tools and …), and each robot has its own package. So we need five people, Op-
erator will not do anything, so we have all the 4 members of the team in setup 
and Break-Down Time. Each person will setup the parts in the box he is carrying. 
We estimate the setup time would take 3 minutes and the Break-Down time will 
take 5 minutes. 

  Hesam will carry the toolbox. He will plug the Laptop accessories (joystick, 
mouse, printer … 

  Ali will put the papers and writing tools in the place where the operator has 
found handy during the practice before the competition. 

  Ehsan (Aboosaeedan) and Arash will setup the robots. 
  Ehsan (Mihankhah) is the operator who will not do anything but watching 

the others and verifying the setup. 
 Break-Down procedure is similar to setup procedure. 



3. Communications 

All Wireless communication are implemented over 5 GHz via IEEE802.11a 
wireless LAN cards and access points. No other frequency range is occupied. We are 
using Gigabyte PCMCIA LAN cards. 

 
Data, Video and Audio Transmission, Software Part: 

 
Last year we experienced data, Video and Audio transmission through LAN using 

windows sockets using VB and VC++. Source codes and details are discussed in the 
previous year paper. This year we have done all programming parts in .NET envi-
ronment and we have specifically worked with C#.NET as the only programming 
language for both of the programs running on the robot and running on the operator 
PC or Laptop. The source code and details are coming below: 

 
Data transmission :  
  
First we need to add the namespace of the socket programming. The namespace 

System.Net.Sockets should be added to the namespace part. Then we define the Net-
work variables. On the operator side , we first try to connect to the server on the ro-
bot. If there was no server on the robot waiting for connection, the socket acts as the 
server and waits for the connection from the robot side. 
 

NetworkStream SocketStream; 
try 
{ 
CommandMessageBox.Text += "Connecting To The Server On Robot Side 

...\t\n"; 
 TcpClient Connector = new TcpClient(); 
 Connector.Connect("Resquake-

Laptop",Int32.Parse(CommandPortBox.Text)); 
 SocketStream = Connector.GetStream(); 
 CommandMessageBox.Text += "\t\nConnection Stablished On Port " + 

Int32.Parse(CommandPortBox.Text)+ "\t\n"; 
} 
catch (System.Net.Sockets.SocketException Except) 
{ 
 CommandMessageBox.Text += "\nThere is No Socket Listening On The 

Robot Side.\n"; 
 CommandMessageBox.Text += "\nWaiting For a Request on Port "+ 

CommandPortBox.Text + " ...\t\n"; 
 Socket Connection; 
 TcpListener Listener = new TcpLis-

tener(Int32.Parse(CommandPortBox.Text)); 
 Listener.Start(); 
 Connection = Listener.AcceptSocket(); 
 SocketStream  = new NetworkStream(Connection); 
 CommandMessageBox.Text += "\t\nConnection Stablished On Port " + 

Int32.Parse(CommandPortBox.Text)+ "\t\n"; 
 Except = null; 
} 



 ConnectionStablished = true; 
 JoyStickThread.Start(); 

while(true) 
{ 
. 
. 
//Receive messages from the robot and sends the necessary commands or 
acknowledges //responses 
. 
. 
. 
} 

 
 This part is written in a separate thread in order to isolate the network data 

transmission from other processes. As you see when the connection is established, 
another thread which is very similar to this one will be started to send the joystick 
data to the Laptop on the robot. Then an infinite loop always waits for the messages 
from the robot side and also sends the necessary command to the Laptop on the robot. 

Data can be sent and be received using Connection.Write and Connection.Read 
methods. 

The code for the joystick thread is almost the same, but here we know that a con-
nection already exists, so a socket on the robot waits for the connection request from 
the operator side and in operator side we only try to connect to that socket. The code 
is this: 

 
 
 
NetworkStream JoyStream; 
JoyStickMessageBox.Text += "\nConnecting To The Robot On Port " + 

Int32.Parse(JoyStickPortBox.Text)+ "\n"; 
TcpClient JoyConnector = new TcpClient(); 
JoyConnector.Connect("Resquake-

Laptop",Int32.Parse(CommandPortBox.Text)); 
JoyStream = JoyConnector.GetStream(); 
JoyStickMessageBox.Text += "\t\nConnection Stablished On Port " + 

Int32.Parse(JoyStickPortBox.Text)+ "\t\n"; 
while(true) 
{ 
. 
. 
. 
//Capture Joystick events and send them to the robot. 
. 
. 
. 
} 
 
The last section of the above code is also an infinite loop that captures joystick 

events each 100ms and sends them to the Laptop on the robot. The code for capturing 
joystick events will be discussed later. 

Data can be sent using JoyConnection.Write methods. 
The code on the robot side is almost the same. 
  
Video Transmission: 

Different methods of sending Video have been tested. We can capture the 



Video from the capture card (MSI VOX USB) and send them through windows me-
dia encoder and receive it on the other side with windows media player. This method 
has the advantage of having a high quality 30fps video stream, but with the disadvan-
tage of a long delay. The delay of sending the video in this method is more than 4 
seconds in the best condition. It is obvious that we need a real time video, so this 
method is not good in this case. Another method is to capture frames from the capture 
card and save them on the Ram disk on the Laptop on the operator side and then read 
them on the operator side. This method worked very well as the jpg files captured and 
sent to the Laptop on the operator station are very small in size and Ram disk has a 
very short access time. (To find more information about Ram disk, see 
www.microsoft.com). There has been almost no disadvantage with this method ex-
cept that we have to synchronize the send and receive procedures and also we need to 
save and delete intermediate files. But there is a better solution to the problem. We 
can save the captured image to a stream socket and read it on the other side. This can 
be done by writing a couple of lines of code, but VideoCapX activex control has done 
this for us and there is no need of writing separate code. (We have used VideoCapX 
activex control for capturing video from capture card. For more information about the 
control, see www.fathsoft.com). 

Finally, you can see the Video transmission code using VideoCapX compo-
nent and windows sockets. 

Code on the robot: 
  

VideoCapX1.Connected = true; 
 VideoCapX1.SetVideoFormat (352, 288); 
 VideoCapX1.Preview = true; 
 VideoCapX1.ServerMode = true;   

 
Code on the operator side: 
 
 private void VideoTimer_Tick(object sender, Sys-
tem.EventArgs e) 
 { 
  if (TimerBreaker) 
  { 
   TimerBreaker = false; 
   try 
   { 
    VideoPreview.Image = Video-
CapX1.ReceiveFrame("Resquake-Laptop"); 
   } 
   catch(Exception Except) 
   { 
    ; 
   } 
   TimerBreaker = true; 
  } 
 } 

 
As you see we receive the frames with VideoCapX1.ReceiveFrame method 

in a timer procedure. 
We use the method VideoCapX1.GrabFrame to take a picture from victim 

and put it on one of the reports sheets of each victim. 



 
Audio Transmission: 
 

Different methods of sending Audio have been tested. Since there is no 
problem in sending audio with a short delay, we have decided to send the Audio with 
windows media encoder (without any compression) and receive it with windows 
media player. With only sending audio in this methods, we have a 2 second delay but 
a clear, noiseless sound which is good enough for us as we only need the audio for 
victim identification and not for robot driving. 

In order to send Audio, we need to install windows media encoder 9 and also 
windows media encoder 9 SDK to be able to work with it in the C#.NET environ-
ment. We also need to have windows media player 10 and windows media player 10 
SDK, all could be downloaded from www.microsoft.com. 
To capture audio and send it using windows media encoder, we first need to add the 
proper namespace WMEncoderLib. Then we can create the broadcast object and start 
broadcasting but there is also an easier way to do the same thing with less program-
ming. We can open the windows media encoder and create the profile we need and 
save it with .wme format. Then we can easily load it with a line of code in C# and 
reduce the code lines. The code for loading this profile and starting Audio broadcast 
is coming below: 
 

IWMEncoder Encoder = new WMEncoder(); 
Encoder.Load("c:\\audio.wme"); 
IWMEncBroadcast BrdCst = Encoder.Broadcast; 
Encoder.PrepareToEncode(true); 
Encoder.Start(); 
  

As you see, the code for sending audio has become amazingly short! 
Next, we need to get the Audio on the other side. We should first add the WMPLib 
and AxWMPLib namespaces to the code. Then we need to add a windows media 
player control on the form and then with a single line of code, we can have the nice 
audio: 
 

WindowsMediaPlayer1.currentMedia = WindowsMe-
diaPlayer1.mediaCollection.add(SenderAddress); 

 
As you see, the code for receiving the audio is also amazingly short! 
A screen shot of the program on operator side and robot side can is shown 

below: 



 
Operator Side 

 

 
Robot Side 



Nothing more seems to be left about the wireless communication system, but 
if there is a need of any further information feel free to contact us 
(ehsanmihankh@yahoo.com). 



4. Control Method and Human-Robot Interface 

We have tried to reduce the operator's responsibilities by taking advantage of our 
positioning system (this part is under construction).  We have one operator who will 
control the robots with a joystick and keyboard. Robot sends data gathered from the 
sensors to the operator in short intervals and signs of life like motion (VideoCapX 
control has a powerful motion detection system) helps the operator to find the victim. 
Heat and gas sensors are good sensors which we can rely on them when the amount 
of CO2 increases or a considerable change in heat is detected.   Sonar makes the robot 
control much easier as it can stop the robot from getting closer to the surrounding 
objects. Sonar let us have the distance from the objects around in the software.  

Resquake User Interface which is a simple user friendly environment for the op-
erator to control the robot (motors and actuators) and send commands to it and of 
course gather the data coming from sensors and preview video stream 

 Some parts of user interface were discussed in communication section where 
we discussed wireless data, Video and Audio transmission. Here we talk about the 
rest of the code. 

 First thing is driving the joystick. We can do it by adding Directx name-
spaces to the program and using the proper functions. So the first step is adding 
Microsoft.DirectX and Microsoft.DirectX.DirectInput namespaces. Then we need to 
define the following variables: 
 
 Device applicationDevice = null; 
 public static JoystickState state = new Joystick-

State(); 
 

Then we have to find the available joysticks connected to the system with the fol-
lowing code: 

 
 foreach (DeviceInstance instance in Man-

ager.GetDevices(DeviceClass.GameControl, EnumDevices-
Flags.AttachedOnly)) 
 { 
  applicationDevice = new De-

vice(instance.InstanceGuid); 
  break; 
 } 
  if (applicationDevice == null) 
 { 
  MessageBox.Show("Unable to create a joystick 

device.", "No joystick found"); 
 } 
applicationDe-

vice.SetDataFormat(DeviceDataFormat.Joystick); 
 applicationDevice.SetCooperativeLevel(this, Coop-

erativeLevelFlags.Exclusive | Coopera-
tiveLevelFlags.Foreground); 



 foreach (DeviceObjectInstance d in applicationDe-
vice.Objects) 
 { 
  if (((d.ObjectId & 

(int)DeviceObjectTypeFlags.Axis)!= 0)) 
  { 
  applicationDe-

vice.Properties.SetRange(ParameterHow.ById, d.ObjectId, 
new InputRange(-5, +5)); 
  } 
 } 
 

 The code is clear and there is no need to analyze it in detail. Then we need to  
add a thread to the program checking joystick events and send it to the other side 
through LAN. Here we go back to the thread that w have already introduced  in com-
munication part: 

 
 JoyStickThread = new Thread (new Thread-

Start(JoyStickThreadDeligate)); 
 CommandThread.Start(); 
 
What exactly happens in the JoyStickThreadDeligate is explained 

below. First let’s take a look at the code: 
 
private void JoyStickThreadDeligate() 
{ 
 String CurrentX="0"; 
 String CurrentY="0"; 
 String OldX ="6"; 
 String OldY="6"; 
 String VeryOldX = "7"; 
 String VeryOldY = "7"; 
 NetworkStream JoyStream; 
 JoyStickMessageBox.Text += "\nConnecting To The Ro-

bot On Port " + Int32.Parse(JoyStickPortBox.Text)+ "\n"; 
 TcpClient JoyConnector = new TcpClient(); 
 JoyConnector.Connect("Resquake-

Laptop",Int32.Parse(JoyStickPortBox.Text)); 
 JoyStream = JoyConnector.GetStream(); 
 JoyStickMessageBox.Text += "\t\nConnection Stab-

lished On Port " + Int32.Parse(JoyStickPortBox.Text)+ 
"\t\n"; 
 while(true) 
 { 
  int ButtonsVal = 0; 
  int button = 0; 
  byte[] buttons = state.GetButtons(); 
   if (applicationDevice == null) 
   return; 
   try 
  { 



   applicationDevice.Poll(); 
  } 
  catch(InputException inputex) 
  { 
   if ((inputex is NotAcquiredException) 

|| (inputex is InputLostException)) 
   { 
    try 
    { 
     applicationDevice.Acquire(); 
    } 
    catch(InputException) 
    { 
     return; 
    } 
   } 
               
  }  
 
  try  
  { 
   state = applicationDe-

vice.CurrentJoystickState; 
  } 
  catch(InputException) 
  { 
   return; 
  } 
  XBox.Text = state.X.ToString(); 
  YBox.Text = state.Y.ToString(); 
 
  foreach (byte b in buttons) 
  { 
   if (0!= (b & 0x80)) 
    ButtonsVal += button+1; 
   button++; 
  } 
  ButtonsBox.Text = ButtonsVal.ToString("000"); 
  CurrentX = XBox.Text; 
  CurrentY = YBox.Text; 
  if (CurrentX != OldX || CurrentY != OldY || 

OldY != VeryOldY || OldX != VeryOldX) 
  { 
   byte[] JoyData = new byte[2]; 
   JoyData[0] = 

byte.Parse(Convert.ToString((Int32.Parse(CurrentX)+10))); 
   JoyData[1] = 

byte.Parse(Convert.ToString((Int32.Parse(CurrentY)+10))); 
   JoyStream.Write(JoyData,0,2); 
  } 



  VeryOldX = OldX; 
  VeryOldY = OldY; 
  OldX = CurrentX; 
  OldY = CurrentY; 
  Thread.Sleep(100); 
 } 
} 
 

 First, the connection is established on a port which can be selected by the 
software. Then the thread captures the joystick event in 100ms intervals and shows it 
in three textboxes and also sends it to the laptop on the robot through the LAN con-
nection. 

 Other parts of user Interface is send and receive data to and from the serial 
port and sending to the operator. Serial communication in C# is discussed in details in 
“CodeGuru” website. We now talk about the part of our program which is still work-
ing with VB code and is not yet converted to C#. Here the operator can generate the 
cleanest possible report without using any pen or pencil. The Reoprt will be generated 
with a single click on a command button to have all information printed immediately 
after finding any victim. Take a look at the main window of the program: 

 

 
 
 You see the famous Rescue Victim Sheet! It is in front of the operator, he 

can easily feel the blank places by typing in text boxes or checking the check boxes 



or choosing between radio buttons. But it is even easier, because most of these data is 
automatically filled because these data are coming from sensors and the text boxes 
are not actually blank; they are list boxes that let the operator choose the most com-
mon conditions from the list and if there has been anything special about a victim, the 
operator can add or modify the string chosen from the list! Isn’t it the easiest and 
fastest and cleanest possible report generation? 
 Here is the code of this part. Please note again that this code is written in VB 
and will be converted to C# very soon. 
 
Dim VictimPhotoNumber As Integer 
Dim CurrentVictimPhoto As Integer 
Private Sub SubmitVictim() 
    WritePrivateProfileString CStr(VictimNumber.Text), "Victim Tag", Victim-
Tag.Text, "c:\resquake inf\Test.ini" 
    For Counter = 0 To 2 
        If Arena(Counter).Value Then Exit For 
    Next Counter 
    WritePrivateProfileString CStr(VictimNumber.Text), "Arena", CStr(Counter + 1), 
"c:\resquake inf\Test.ini" 
    WritePrivateProfileString CStr(VictimNumber.Text), "Form", FormCombo.Text, 
"c:\resquake inf\Test.ini" 
    WritePrivateProfileString CStr(VictimNumber.Text), "Motion", Motion-
Combo.Text, "c:\resquake inf\Test.ini" 
    WritePrivateProfileString CStr(VictimNumber.Text), "Heat", HeatCombo.Text, 
"c:\resquake inf\Test.ini" 
    WritePrivateProfileString CStr(VictimNumber.Text), "Sound", SoundCombo.Text, 
"c:\resquake inf\Test.ini" 
    WritePrivateProfileString CStr(VictimNumber.Text), "CO2", CO2Combo.Text, 
"c:\resquake inf\Test.ini" 
    For Counter = 0 To 3 
        If State(Counter).Value Then Exit For 
    Next Counter 
    WritePrivateProfileString CStr(VictimNumber.Text), "State", CStr(Counter + 1), 
"c:\resquake inf\Test.ini" 
    WritePrivateProfileString CStr(VictimNumber.Text), "LADAR", 
CStr(LADARCheck.Value), "c:\resquake inf\Test.ini" 
    WritePrivateProfileString CStr(VictimNumber.Text), "SONAR", 
CStr(SONARCheck.Value), "c:\resquake inf\Test.ini" 
    WritePrivateProfileString CStr(VictimNumber.Text), "DRECKON", 
CStr(DRECKONCheck.Value), "c:\resquake inf\Test.ini" 
    WritePrivateProfileString CStr(VictimNumber.Text), "TELEOP", 
CStr(TELEOPCheck.Value), "c:\resquake inf\Test.ini" 
    WritePrivateProfileString CStr(VictimNumber.Text), "OTHER", 
CStr(OTHERCheck.Value), "c:\resquake inf\Test.ini" 
    For Counter = 0 To 19 
        If SituatuionCheck(Counter).Tag = "1" Then Exit For 



    Next Counter 
    WritePrivateProfileString CStr(VictimNumber.Text), "Situation", CStr(Counter + 
1), "c:\resquake inf\Test.ini" 
    If SelectPhoto.Tag = "1" Then 
        WritePrivateProfileString CStr(VictimNumber.Text), "Victim Photo", 
File1.List(CurrentVictimPhoto), "c:\resquake inf\Test.ini" 
    Else 
        WritePrivateProfileString CStr(VictimNumber.Text), "Victim Photo", "No 
Photo Available", "c:\resquake inf\Test.ini" 
    End If 
End Sub 
Private Sub LoadVictim(VicNum As Integer) 
    On Error Resume Next 
    Dim RetStr As String 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString "Number Of Victims", "Victim Count", "No Victim", 
RetStr, Len(RetStr), "c:\resquake inf\Test.ini" 
    If Not (Val(VicNum) > 0 And Val(VicNum) <= Val(RetStr)) Then VicNum = 
Val(RetStr) 
    If VicNum <= 0 Then Exit Sub 
    VictimNumber.Text = VicNum 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Victim Tag", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 
    VictimTag.Text = RetStr 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Arena", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 
    If Val(RetStr) <> 0 Then Arena(Val(RetStr) - 1) = True 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Form", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 
    FormCombo.Text = RetStr 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Motion", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 
    MotionCombo.Text = RetStr 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Heat", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 



    HeatCombo.Text = RetStr 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Sound", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 
    SoundCombo.Text = RetStr 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "CO2", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 
    CO2Combo.Text = RetStr 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "State", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 
    If Val(RetStr) <> 0 Then State(Val(RetStr) - 1).Value = True 
    If Val(RetStr) = 4 Then State(3).Value = True 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "LADAR", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 
    LADARCheck.Value = Val(RetStr) 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "SONAR", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 
    SONARCheck.Value = Val(RetStr) 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "DRECKON", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 
    DRECKONCheck.Value = Val(RetStr) 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "TELEOP", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 
    TELEOPCheck.Value = Val(RetStr) 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "OTHER", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 
    OTHERCheck.Value = Val(RetStr) 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Situation", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 



    If Val(RetStr) <> 0 Then 
        If Val(RetStr) <> 21 Then 
            SituatuionCheck_Click (Val(RetStr) - 1) 
        Else 
            Situation(4).Value = True 
        End If 
    End If 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Victim Photo", "Not Identified", RetStr, 
Len(RetStr), "c:\resquake inf\Test.ini" 
    TempLabel.Caption = RetStr 
    RetStr = TempLabel 
    If CStr(RetStr) = "Not Identified" Or RetStr = "No Photo Available" Then 
        Photo.Picture = LoadPicture("") 
        SelectPhoto.Picture = LoadPicture("") 
        SelectPhoto.Tag = "" 
    Else 
        Photo.Picture = LoadPicture("c:\Resquake inf\" + RetStr) 
        SelectPhoto.Picture = LoadPicture("d:\Documents and Set-
tings\videocap1\Desktop\ReportGenerator\CHECKMRK.ico") 
        SelectPhoto.Tag = "1" 
    End If 
    MotionCombo_LostFocus 
    CO2Combo_LostFocus 
    SoundCombo_LostFocus 
    HeatCombo_LostFocus 
    FormCombo_LostFocus 
End Sub 
 
Private Sub BurnCD_Click() 
Dim Counter As Long 
 
  For Counter = 0 To MCDB.DeviceCount - 1 
    MCDB.SelectDevice (Counter) 
    If MCDB.DeviceIsBurner Then Exit For 
  Next 
  MCDB.JolietFileSystem = True 
  MCDB.PerformOPC = True 
  MCDB.BurnProof = True 
  MCDB.VolumeId = "Resquake Report" 
  MCDB.WriteSpeed = MCDB.MaxWriteSpeed 
  MCDB.ClearAll 
  MCDB.ImportSession 0, "\" 
  MCDB.InsertDir "\", "C:\Resquake inf", "*.*", True, True 
  DoEvents 



  MCDB.Prepare 
  MCDB.Burn 
 
End Sub 
 
Private Sub NextVictim_Click() 
    If CurrentVictimPhoto <= VictimPhotoNumber Then 
        If CurrentVictimPhoto < VictimPhotoNumber Then CurrentVictimPhoto = Cur-
rentVictimPhoto + 1 
        Photo.Picture = LoadPicture(File1.Path + "\" + File1.List(CurrentVictimPhoto)) 
    End If 
End Sub 
 
Private Sub PreviuosVictim_Click() 
    If CurrentVictimPhoto > 0 Then 
        CurrentVictimPhoto = CurrentVictimPhoto - 1 
        Photo.Picture = LoadPicture(File1.Path + "\" + File1.List(CurrentVictimPhoto)) 
    End If 
End Sub 
 
Private Sub SelectPhoto_Click() 
    If SelectPhoto.Tag = "1" Then 
       SelectPhoto.Tag = "" 
       SelectPhoto.Picture = LoadPicture("") 
    Else 
       SelectPhoto.Tag = "1" 
       SelectPhoto.Picture = LoadPicture("d:\Documents and Set-
tings\videocap1\Desktop\ReportGenerator\CHECKMRK.ico") 
    End If 
End Sub 
 
Private Sub CO2Combo_LostFocus() 
    If CO2Combo.Text <> "" And CO2Combo.Text <> "Not Identified" Then 
        CO2Check.Value = Checked 
    Else 
        CO2Check.Value = Unchecked 
    End If 
End Sub 
 
Private Sub Command1_Click() 
    NewVictimProfileMenu_Click 
End Sub 
 
Private Sub Command3_Click() 
    PrintVictimProfileMenu_Click 
End Sub 



 
Private Sub Command4_Click() 
    SubmitAndPrintVictimProfileMenu_Click 
End Sub 
 
Private Sub Command5_Click() 
    MapGenerator.Show 
End Sub 
 
Private Sub ExitMenu_Click() 
    End 
End Sub 
 
Private Sub Form_Load() 
    VictimCounter = 1 
    VictimNumber = VictimCounter 
 '   File1.Path = "c:\Resquake inf" 
End Sub 
 
Private Sub Form_Unload(Cancel As Integer) 
    End 
End Sub 
 
Private Sub FormCombo_LostFocus() 
    If FormCombo.Text <> "" And FormCombo.Text <> "Not Identified" Then 
        FormCheck.Value = Checked 
    Else 
        FormCheck.Value = Unchecked 
    End If 
End Sub 
 
Private Sub HeatCombo_LostFocus() 
    If HeatCombo.Text <> "" And HeatCombo.Text <> "Not Identified" Then 
        HeatCheck.Value = Checked 
    Else 
        HeatCheck.Value = Unchecked 
    End If 
End Sub 
 
Private Sub Image1_Click() 
 
End Sub 
 
Private Sub LoadVictimProfileMenu_Click() 
    Dim VicNum As String 
    VicNum = InputBox("Victim Number", "Victim Profile To Be Loaded") 



    LoadVictim (Val(VicNum)) 
End Sub 
 
Private Sub MotionCombo_LostFocus() 
    If MotionCombo.Text <> "" And MotionCombo.Text <> "Not Identified" Then 
        MotionCheck.Value = Checked 
    Else 
        MotionCheck.Value = Unchecked 
    End If 
End Sub 
 
Private Sub NewVictimProfileMenu_Click() 
    Dim VictimCounter As Integer 
    Dim RetStr As String 
    RetStr = "" 
    RetStr = Space(2) 
    GetPrivateProfileString "Number Of Victims", "Victim Count", "0", RetStr, 2, 
"c:\resquake inf\Test.ini" 
    VictimCounter = Val(RetStr) + 1 
    VictimNumber.Text = VictimCounter 
    VictimTag = "" 
    MotionCombo.Text = "" 
    CO2Combo.Text = "" 
    SoundCombo.Text = "" 
    HeatCombo.Text = "" 
    FormCombo.Text = "" 
    MotionCombo_LostFocus 
    CO2Combo_LostFocus 
    SoundCombo_LostFocus 
    HeatCombo_LostFocus 
    FormCombo_LostFocus 
    LADARCheck.Value = Unchecked 
    SONARCheck.Value = Unchecked 
    DRECKONCheck.Value = Unchecked 
    TELEOPCheck.Value = Unchecked 
    OTHERCheck.Value = Unchecked 
    For Counter = 0 To 3 
         State(Counter).Value = False 
    Next Counter 
    For Counter = 0 To 4 
        Situation(Counter).Value = False 
    Next Counter 
    For Counter = 0 To 19 
            SituatuionCheck(Counter).Picture = LoadPicture("") 
            SituatuionCheck(Counter).Tag = "" 
    Next Counter 



    Situation(4).Value = True 
    OTHERCheck.Value = Checked 
    SelectPhoto.Picture = LoadPicture("") 
    Photo.Picture = LoadPicture("") 
    SelectPhoto.Tag = "" 
End Sub 
 
Private Sub PrintVictimProfileMenu_Click() 
    PrinterForm.VictimNumber.Caption = VictimNumber.Text 
    PrinterForm.VictimTag.Caption = VictimTag.Text 
    PrinterForm.FormLabel.Caption = FormCombo.Text 
    PrinterForm.MotionLabel.Caption = MotionCombo.Text 
    PrinterForm.HeatLabel.Caption = HeatCombo.Text 
    PrinterForm.SoundLabel.Caption = SoundCombo.Text 
    PrinterForm.CO2Label.Caption = CO2Combo.Text 
    PrinterForm.FormCheck.Value = FormCheck.Value 
    PrinterForm.MotionCheck.Value = MotionCheck.Value 
    PrinterForm.HeatCheck.Value = HeatCheck.Value 
    PrinterForm.SoundCheck.Value = SoundCheck.Value 
    PrinterForm.CO2Check.Value = CO2Check.Value 
    PrinterForm.LADARCheck.Value = LADARCheck.Value 
    PrinterForm.SONARCheck.Value = SONARCheck.Value 
    PrinterForm.DRECKONCheck.Value = DRECKONCheck.Value 
    PrinterForm.TELEOPCheck.Value = TELEOPCheck.Value 
    PrinterForm.OTHERCheck.Value = OTHERCheck.Value 
    For Counter = 0 To 2 
        If Arena(Counter).Value Then PrinterForm.Arena(Counter).Value = True: 
PrinterForm.Shape1.BorderColor = Arena(Counter).ForeColor 
    Next Counter 
    For Counter = 0 To 3 
        If State(Counter).Value Then PrinterForm.State(Counter).Value = True 
    Next Counter 
    For Counter = 0 To 4 
        If Situation(Counter).Value Then PrinterForm.Situation(Counter).Value = True 
    Next Counter 
    For Counter = 0 To 19 
        If SituatuionCheck(Counter).Tag = "" Then 
            PrinterForm.SituatuionCheck(Counter).Picture = LoadPicture("") 
        Else 
            PrinterForm.SituatuionCheck(Counter).Picture = LoadPicture("d:\Documents 
and Settings\videocap1\Desktop\ReportGenerator\CHECKMRK.ico") 
        End If 
    Next Counter 
    Printer.Orientation = vbPRORLandscape 
    PrinterForm.Refresh 
    PrinterForm.PrintForm 



    Printer.EndDoc 
End Sub 
 
Private Sub Situation_Click(Index As Integer) 
    If Index = 4 Then 
        For Counter = 0 To 19 
            SituatuionCheck(Counter).Picture = LoadPicture("") 
         SituatuionCheck(Counter).Tag = "" 
        Next Counter 
    End If 
End Sub 
 
Private Sub SituatuionCheck_Click(Index As Integer) 
    For Counter = 0 To 19 
        SituatuionCheck(Counter).Picture = LoadPicture("") 
        SituatuionCheck(Counter).Tag = "" 
    Next Counter 
        SituatuionCheck(Index).Picture = LoadPicture("d:\Documents and Set-
tings\videocap1\Desktop\ReportGenerator\CHECKMRK.ico") 
        SituatuionCheck(Index).Tag = "1" 
    If Index >= 0 And Index < 5 Then Situation(0).Value = True 
    If Index >= 5 And Index < 10 Then Situation(1).Value = True 
    If Index >= 10 And Index < 15 Then Situation(2).Value = True 
    If Index >= 15 And Index < 20 Then Situation(3).Value = True 
End Sub 
 
Private Sub SoundCombo_LostFocus() 
    If SoundCombo.Text <> "" And SoundCombo.Text <> "Not Identified" Then 
        SoundCheck.Value = Checked 
    Else 
        SoundCheck.Value = Unchecked 
    End If 
End Sub 
 
Private Sub SubmitAndPrintVictimProfileMenu_Click() 
    Dim RetStr As String 
    PrintVictimProfileMenu_Click 
    SubmitVictim 
    RetStr = "" 
    RetStr = Space(2) 
    GetPrivateProfileString "Number Of Victims", "Victim Count", "0", RetStr, 2, 
"c:\resquake inf\Test.ini" 
    TempLabel.Caption = RetStr 
    RetStr = TempLabel.Caption 



    If RetStr = CStr(Val(VictimNumber.Text) - 1) Then WritePrivateProfileString 
"Number Of Victims", "Victim Count", CStr(Val(RetStr) + 1), "c:\resquake 
inf\Test.ini" 
    NewVictimProfileMenu_Click 
End Sub 
 
Private Sub Timer1_Timer() 
    Static LastFile As String 
    VictimPhotoNumber = File1.ListCount - 1 
    On Error Resume Next 
    File1.Refresh 
    If File1.List(VictimPhotoNumber) <> LastFile Then 
        CurrentVictimPhoto = VictimPhotoNumber 
        LastFile = File1.List(VictimPhotoNumber) 
        Photo.Picture = LoadPicture("c:\resquake inf\" + LastFile) 
    End If 
End Sub 
 
Private Sub VictimNumber_KeyUp(KeyCode As Integer, Shift As Integer) 
    LoadVictim (Val(VictimNumber.Text)) 
End Sub 
 
 

As you can see the code is consisted of several parts. The information about 
each victim is saved in an .ini file and will be used later in another environment called 
Resquake Report Reader (will be discussed later). And the rest contains the code for 
loading the information of the other victims which the operator has found and may 
need some changes before print. Another part is the information about printing the 
report sheet. The other part is about saving the data on a CD. As you see, we have 
two different reports. One is printed. One is copied on the CD and can be read using 
Resquake Report Reader. Resquake Report Reader is software that let us load the 
information saved on CD after the mission is completed. Here you can see the screen 
shot of the program: 

 



 
 
 

The code for this part comes below. Note that this part is also written with VB and 
will be changed to C#: 

 
Option Explicit 
Dim Arenas(3) As String 
Dim States(4) As String 
Dim Situations(5) As String 
Dim SituationDetails(5) As String 
Dim INFPath As String 
 
Private Sub LoadVictim(VicNum As Integer) 
    On Error Resume Next 
    Dim RetStr As String 
    Dim Sensors As String 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString "Number Of Victims", "Vic-

tim Count", "No Victim", RetStr, Len(RetStr), INFPath + 
"Test.ini" 
    If Not (Val(VicNum) > 0 And Val(VicNum) <= 

Val(RetStr)) Then VicNum = Val(RetStr) 
    If VicNum <= 0 Then Exit Sub 
    If RetStr = "No Victim" Then Exit Sub 
    VNumber.Caption = VicNum 
    RetStr = "" 



    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Victim Tag", 

"Not Identified", RetStr, Len(RetStr), INFPath + 
"Test.ini" 
    VTag.Caption = RetStr 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Arena", "Not 

Identified", RetStr, Len(RetStr), INFPath + "Test.ini" 
    If Val(RetStr) <> 0 Then 
        VArena.Caption = Arenas(Val(RetStr)) 
        Shape1.BorderColor = Colors(Val(RetStr) - 

1).ForeColor 
        Shape2.BorderColor = Colors(Val(RetStr) - 

1).ForeColor 
        Shape3.BorderColor = Colors(Val(RetStr) - 

1).ForeColor 
        Shape4.BorderColor = Colors(Val(RetStr) - 

1).ForeColor 
        Shape5.BorderColor = Colors(Val(RetStr) - 

1).ForeColor 
    End If 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Form", "Not 

Identified", RetStr, Len(RetStr), INFPath + "Test.ini" 
    VForm.Caption = RetStr 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Motion", 

"Not Identified", RetStr, Len(RetStr), INFPath + 
"Test.ini" 
    VMotion.Caption = RetStr 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Heat", "Not 

Identified", RetStr, Len(RetStr), INFPath + "Test.ini" 
    VHeat.Caption = RetStr 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Sound", "Not 

Identified", RetStr, Len(RetStr), INFPath + "Test.ini" 
    VSound.Caption = RetStr 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "CO2", "Not 

Identified", RetStr, Len(RetStr), INFPath + "Test.ini" 
    VCO2.Caption = RetStr 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "State", "Not 

Identified", RetStr, Len(RetStr), INFPath + "Test.ini" 
    If Val(RetStr) <> 0 Then VState.Caption = 

States(Val(RetStr)) 



    If Val(RetStr) = 4 Then VState.Caption = States(4) 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "LADAR", "Not 

Identified", RetStr, Len(RetStr), INFPath + "Test.ini" 
    If Val(RetStr) = 1 Then Sensors = "LADAR" 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "SONAR", "Not 

Identified", RetStr, Len(RetStr), INFPath + "Test.ini" 
    If Val(RetStr) = 1 Then Sensors = Sensors + 

IIf(Sensors = "", "", " + ") + "SONAR" 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "DRECKON", 

"Not Identified", RetStr, Len(RetStr), INFPath + 
"Test.ini" 
    If Val(RetStr) = 1 Then Sensors = Sensors + 

IIf(Sensors = "", "", " + ") + "DRECKON" 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "TELEOP", 

"Not Identified", RetStr, Len(RetStr), INFPath + 
"Test.ini" 
    If Val(RetStr) = 1 Then Sensors = Sensors + 

IIf(Sensors = "", "", " + ") + "TELEOP" 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "OTHER", "Not 

Identified", RetStr, Len(RetStr), INFPath + "Test.ini" 
    If Val(RetStr) = 1 Then Sensors = Sensors + 

IIf(Sensors = "", "", " + ") + "OTHER" 
    RetStr = "" 
    RetStr = Space(30) 
    VLocalizationTools.Caption = Sensors 
    GetPrivateProfileString CStr(VicNum), "Situation", 

"Not Identified", RetStr, Len(RetStr), INFPath + 
"Test.ini" 
    If Val(RetStr) <> 0 Then 
        If Val(RetStr) <> 21 Then 
            VSituation.Caption = Situations(Val(RetStr) 

/ 5) + " --- " + SituationDetails(Val(RetStr) Mod 6) 
        Else 
            VSituation.Caption = Situations(5) 
        End If 
    End If 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Victim 

Photo", "Not Identified", RetStr, Len(RetStr), INFPath + 
"Test.ini" 
    Colors(0).Caption = RetStr 
    RetStr = Colors(0) 



    If CStr(RetStr) = "Not Identified" Or RetStr = "No 
Photo Available" Then 
        VPhoto.Picture = LoadPicture("") 
    Else 
        VPhoto.Picture = LoadPicture(INFPath + RetStr) 
    End If 
    RetStr = "" 
    RetStr = Space(30) 
    GetPrivateProfileString CStr(VicNum), "Victim Loca-

tion", "Not Identified", RetStr, Len(RetStr), INFPath + 
"Test.ini" 
    Colors(0).Caption = RetStr 
    RetStr = Colors(0) 
    If CStr(RetStr) = "Not Identified" Or RetStr = "No 

Photo Available" Then 
        VLocation.Picture = LoadPicture("") 
    Else 
        VLocation.Picture = LoadPicture(INFPath + 

RetStr) 
    End If 
End Sub 
 
Private Sub Form_Load() 
    On Error Resume Next 
    Dim Counter As Long 
    Dim DriveLabel As String 
    DriveLabel = "C" 
    For Counter = 0 To 28 
        DriveLabel = Chr(Asc(DriveLabel) + 1) 
        If GetDriveType(Chr(Asc(DriveLabel)) + ":\") = 

5 Then Exit For 
    Next Counter 
    If Counter = 29 Then MsgBox "No CDRom Drive Found 

": Exit Sub 
    INFPath = Chr(Asc(DriveLabel)) + ":\Resquake inf\" 
    Arenas(1) = "Yellow" 
    Arenas(2) = "Orange" 
    Arenas(3) = "Red" 
    States(1) = "Awair" 
    States(2) = "Semi concious" 
    States(3) = "Unconcious" 
    States(4) = "Unknown" 
    Situations(1) = "Surface" 
    Situations(2) = "Trapped" 
    Situations(3) = "Void" 
    Situations(4) = "Entombed" 
    Situations(5) = "Unknown" 
    SituationDetails(1) = "Full Body" 
    SituationDetails(2) = "Upper Body" 
    SituationDetails(3) = "Legs" 
    SituationDetails(4) = "Arms" 
    SituationDetails(5) = "Baby" 
    LoadVictim (1) 
    Map.Picture = LoadPicture(INFPath + "map.bmp") 



End Sub 
 
Private Sub NextVictim_Click() 
    Dim RetStr As String 
    RetStr = Space(2) 
    GetPrivateProfileString "Number Of Victims", "Vic-

tim Count", "No Victim", RetStr, Len(RetStr), INFPath + 
"Test.ini" 
    If RetStr = "No Victim" Then Exit Sub 
    If Val(RetStr) > Val(VNumber.Caption) Then LoadVic-

tim (Val(VNumber.Caption) + 1) 
End Sub 
 
Private Sub PreviuosVictim_Click() 
    Dim RetStr As String 
    GetPrivateProfileString "Number Of Victims", "Vic-

tim Count", "No Victim", RetStr, Len(RetStr), INFPath + 
"Test.ini" 
    If RetStr = "No Victim" Then Exit Sub 
    If Val(VNumber.Caption) > 1 Then LoadVictim 

(Val(VNumber.Caption) - 1) 
 
End Sub 
 

 These were some parts of our human interface program. Other parts will be 
added after adding automation and other features to our robot. 



5. Map generation/printing 

Please use this section to describe your plan for generating the map that you will 
submit immediately after each mission.  The rules and the performance metric clearly 
highlight the need for easy to understand, accurate maps.  You’ll see that automati-
cally generated, sensor-based maps are clearly encouraged.  Operators may annotate 
items of interest, like victims.  The intent is to improve accuracy and relieve the op-
erator of the intensive, ongoing workload associated with remote situational aware-
ness. We want to see improvements over having your operator watch a video stream 
and draw a map.  So please describe how you intend to track arena features, mark 
victims, and generally produce maps of the environment. 

Map generation has been done with Laser Range Finder. URG-X002 Laser range 
finder has been used to localize the robot and to generate the map simultaneously 
(SLAM). The approach which has been used to obtain the map is described com-
pletely in the next session. Here, we just take a look at the operator interface to gen-
erate a map. 

With a laser scanner the robot knows the position continuously and the map is im-
proved as the robot goes ahead and goes to the new areas or regions. So we have a 
map of arena and the location of robot in the map. This has been done for both 
autonomous and tele-operated robots. But in tele-operated robot, when the operator 
recognize a victim, door, wall and etc. he/she can make a caption or label for that 
place. This caption will appear in the generated map at the current location. This is in 
different with the usual caption which the operator can put everywhere in the map 
when he decided.  

In autonomous mode, current location of the robot and the distance and direction 
of the victim can locate the victim in the map and this has been easily done by dis-
tances come from the laser range finder.  

 
 



6. Sensors for Navigation and Localization 

Localization of a robot is one of the most important steps to make it autonomous 
and there are several approaches to find the location of a robot. Using vision, ultra-
sonic sensor, GPS, encoders, gyroscope, accelerometer, and compass and laser range 
finder is very common these days. And in some approaches a fusion method is used 
to mix several sensors to obtain more precious result. None of them can be called the 
best, but the best approach originally depends on the environmental condition in 
which the robot works. For example if the robot works in an indoor environment, 
GPS is not a good choice while encoders are more effective. 

In this case the complexity of the environment and lots of uncertainties has con-
fined the use of vision sensor. Since the robot performs missions in enclosed areas 
and due to scale of localization comparing with GPS precision, does not seem to 
solve any problem. Instead, a mixture of traditional and modern sensors is used for 
localization and map generating simultaneously.  

As you know this robot will be used in various areas with various environmental 
conditions. Therefore the proposed method should be applicable for all possible con-
ditions and this means that the robot has to use several sensors simultaneously and 
find its location and map with a fusion algorithm. When a data coming from one 
sensor does not seem to be valid, the other one helps it. This is the main reason for 
sensor fusion. 

In this section first the mounted sensors are introduced and then one way to mix 
their data has been briefly described. 

1. Optical Encoders: 
 Sensors that are primarily used are simply encoders. Encoders are not 

hard to implement and are inexpensive but not too accurate. Odometry meth-
ods compute robot’s relative motion by measuring rotation of each wheel in 
short intervals. Localization with encoders which is also known as dead reck-
oning has an accumulative error which leads to a greater error after a few 
minutes. A lot of approaches have been taken to reduce the shaft encoder er-
ror. Here is a brief explanation of why these accumulative errors happen. 
Wheel slippage is the most important reason which means that the wheel ro-
tates but the robot's position doesn’t change. And the second reason is due to 
assumption of a constant acceleration for the robot. Second error could be 
omitted by increasing the microcontroller frequency in order to decrease the 
period of time and also changing the formula to consider acceleration in that 
period of time. For the first slippage problem several works have been done 
by now.  

Usually, robots use the encoders coupled to their drive wheels. This 
means that the measured angle is exactly the rotation angle of the wheel. But 
another factor needs to be considered to make sure that the robot moves re-
spectively while the wheels are rotating. That’s why we have coupled the en-
coders to separate free wheels instead of driving wheels of the robot. We ex-
amined both cases.  Results obtained from the latter case were more accurate. 



Figure 8.12(a) shows the encoder wheel which is particularly mounted on the 
encoder's shaft for the same purpose. 

Then we add two springs to make them suspend which let the robot pass 
unsmooth surfaces with valid data received from encoders. Figure 8.13 shows 
how the springs suspend encoder’s wheel. 

The encoder wheel is located close to the main wheel because the dis-
tance between them, would increase probability of colliding obstacles to the 
encoder wheel. In figure 8.12(a) vicinity of the wheels is considered. 

Finally, it would be better if the robot knows that whether there is any er-
ror in measured angles by the encoders. With two encoders it is definitely im-
possible to find errors (assuming that there is no other sensor). Thus two more 
encoders are added and comparison between the measured angles can be as-
sumed as real time calculated accuracy. It might not seem to be important in 
first scene. The importance appears when multi-sensors are used. In fact, 
when more that one sensor is in a robot, it will be important to know that 
which one is more accurate in comparison with the others. In rough areas 
where the robot can not rely on rotary encoders, the robot should understand 
this and use other sensors. See figure 8.12(b). 

As the robot tested with these corrections in indoor and outdoor areas, it 
was shown that these corrections can make an optical encoder useful for the 
main localization and the other methods like laser range finder localization 
can be based on it. 

Four rotary encoder manufactured by Autonics are used in our robot. The 
exact part number is E40S-1000-3-1 and a complete description is available 
at: 
http://ecp-co.com/pdf/rotary_encoder/e40s.pdf 

This encoder gives 1000 pulses in each 360° rotation and so the resolu-
tion of the rotary encoders is 360/1000 or 0.36 degree. As the diameter of en-
coder wheel is 7.30 cm, the linear resolution of robot displacement is 
7.30*3.1415/1000 or 0.0229 cm. This is quite sufficient while there are some 
other uncertainties which make the actual error more than this order of magni-
tude. 
 

2. Digital Compass: 
 Although a lot of work has been done to reduce the encoder error, the 

result was not satisfactory. When the robot the received data is unreliable due 
to the slippage of encoder wheels in direction of its pivot. . In fact a little 
change in angle could cause a huge amount of error when the robot goes 
ahead after that turning. In figure bellow this important and fine note is illus-
trated: 



 
Figure 6.1 – continuous lines are real trajectory, dashed lines are meas-

ured trajectory. e1 is the amount of error caused when robot goes straight, but 
e2 is caused after it turns. 

As you can see in this figure, small amount of error in encoders when the 
robot goes straight cause a little error to the calculated location. But small er-
ror caused large amount of error in estimated location after a while if robot 
turned. 

For that reason, the robot needs an angle sensor which can measure its 
angle accurately and without accumulated errors. A digital compass is picked 
up. While the robot turns if the encoder's data are different, it easily decides 
to change encoder data by applying compass measured angle.  

CMPS03 which is manufactured by Devantech is used in this robot. Fol-
lowing link includes lots of information and complete documentation of this 
compass: 

http://www.robot-electronics.co.uk/htm/cmps3doc.shtml  
 

 
Figure 6.2 – Digital compass CMPS03 manufactured by Devantech Ltd. 

 
Electrical connections are described in section 9. 
 

3. Laser Range Finder 

e1

e2 

robot 



The last sensor mounted on the robot is a laser range finder which can 
find distances between the robot and nearest objects within 270° of angle. 
Figure bellow shows what a laser range finder produces. 

 

 
Figure 6.3 – URG-X002 Laser Range Finder output data  

 
 

 
Figure6.4–URG-X002 Laser Range Finder manufactured by HOKUYO LTD. 



 
Originally a laser range finder can generate a map if we know where the 

robot is. Considering that there is no other sensor in the robot; the laser scan-
ner can find the location of the robot by matching current map in the general 
map if it is given. Therefore if the correct location of the robot is given it will 
be easy to generate the map and if the map is determined the location of the 
robot is simply obtained. This is a chicken and egg problem! 

Thus, it’s not possible to make one independently and the robot has to lo-
calize and generate the map simultaneously. This is usually called Simultane-
ous Localization and Mapping (SLAM). Generated map by means of a laser 
range finder is used to find the location and the current location helps generat-
ing the map. The main plot for SLAM of this robot is shown in figure bellow: 



 

 
 

Figure 6.5 – Main block diagram of our SLAM 
 
 
The robot is assumed to be placed in the starting point. Current distances 

are considered as generated map. When the robot moves after a short time 
comparison between the new map and the initial map simply gives the amount 
of movement and the direction. A geometric method has been used. In micro-
controllers, line segmentations and corners are found. This is called pre-



processing. The microcontroller is ATMega128L and is connected to the Lap-
top via a USB-to-Serial hub and to the Laser Range Finder via the second se-
rial port. Considerable corners are the ones where two walls intersect. These 
corners are called artificial landmarks. The microcontroller processes two se-
quential observation of laser range finder to compare these corners in polar 
coordination. Each corner connects to the nearest corner and a vector is drawn 
between them (the effect of encoder to find the corner will be described later). 
Secondly screen rotates to make the vectors parallel to themselves. The fol-
lowing figure illustrates this. 

 

 

 
Figure 6.6 – Vectors which connect new corners to old 
corners, when the corners rotate as much as vectors be-
come parallel, the robot rotation was found. 

 

robot 

robot 



In this picture it’s shown that new corners should rotate as the robot ro-
tates to make the vectors parallel.  As a result the rotation of the robot is cal-
culated by applying least square method and the accuracy of measurement is 
easily calculated by mean of the squared errors. Length of the vectors should 
be equal and variance of lengths is another method finding the accuracy. Av-
erage of lengths is considered as displacement of the robot. 

 This is a convenient way to determine the robot's movement and rotation 
in a short period of time which is implemented to find the location of robot by 
means of the laser scanner. In this way the process is not as complicated as 
other methods like Monte Carlo or Markov or other probabilistic localization 
methods for using Laser Scanner. 

New observation by the laser range finder is considered as a new map in 
the calculated location and will be added to the local map which has been 
generated by that time.  In this way the generated map will be improved while 
the robot navigates in different locations of an area. And after a while a large 
map of the area will be obtained and in this time new observation of the laser 
range finder is compared with the existing map to find the location more ac-
curately and reduce possible accumulative errors caused by the laser scanner.  

As you can see in this figure 6.x, in the first stage when corners should 
be found, encoders help the laser scanner to find it. In flat places encoder data 
is very close to the reality. But in rough surfaces laser range finder should 
corrects this amount of error. 

Finally, in these days, we are going to use Extended Kalman Filter (EKF) 
in our new designs; nevertheless we are still developing the theory. The result 
will hopefully be demonstrated in competitions. 



7. Sensors for Victim Identification 

7.1 – Thermal Sensor Circuit 

In this section we describe our thermal sensor which can give us the body heat of 
the victim. The temperature of live victim's skin is about 30˚C. 

The sensor is actually a pyrometer. The range of the sensor-element is between -40 
to 100˚C. Output of the sensor-element is a voltage proportional to IR radiation. 

Complete datasheet of the sensor element can be found in the manufacturer web-
site: 

http://www.raytek-
northamerica.com/tools/products/view.html?phase=show&id=1013538917&t
ool_id=14&cat_id=2.2.1.2  

We have designed a circuit that can amplify the signal and prepare it for entering 
analog to digital converter stage. Figure below shows how we have used Op-Amp in 
our circuit: 

 

 
Figure 7.11 – Schematic diagram of Thermal Sensor 

 
In the first stage, output voltage of sensor-element is multiplied by 1000 and in the 

second stage, difference between reference voltage and output of first stage is multi-
plied by 1000 again. Output voltage is proportional to temperature of skin of the 
nearest object and can be directly connected to A/D input pin of AVR Microcontrol-
ler (PORTA.0 pin 40). 



7.2 – Light Sensor 

The robot can measure the environment light intensity and send a feedback to the 
operator. Operator can see the light intensity status and turn off or turn on the lights 
(Illumination system). Light sensor-element is only a photo-resistor and our circuit is 
very simple as can be seen in the figure below: 

 
Figure 7.2 

Our Sensor Resistance is 1KΩ in regular light and 30 KΩ in dark environments. The 
output of this circuit can be directly connected to A/D input pin of AVR Microcon-
troller (PORTA.1 pin 39). Notice that this voltage is not proportional to resistance of 
the sensor. It is corrected by the software. In other words, in microcontroller we can 
assign a new value to each A/D value by regression or taking a table of data bytes in 
ROM and refer to it. 

7.3 –Gas Sensor: 

We take advantage of a gas sensor as well. More information about the sensor can 
be found at : http://www.metresys.nl/pages/show_prod.php?niv_code=460,0,789 
http://www.metresys.nl/pages/show_prod.php?niv_code=998,84,0,789 

7.4 –Motion Detection: 

The video sent to the operator will be analyzed using VideoCapX control and if 
any motion would be detected the operator will be prompted. 

7.5 – Sound Detection: 

As the operator has live video and audio (it has been thoroughly discussed in com-
munication part), the sound can be a means of victim identification as well. 

R1 

R_Sensor

 VCC 



8. Robot Locomotion 

At the moment Resquake owns 3 fully designed and manufactured robots. Mecha-
nisms and design procedures of the first robot were thoroughly described in our 2004 
Team Description Paper. The two other robots (snail & Avril) will be illustrated in 
this paper. Resquake mechanical group (RESQUAKE-m®) is planning to design and 
build a new rescue robot which will be more maneuverable and flexible. 

 
1. SNAIL 
 

 
Figure 8.1 

Mechanical structure of this robot is specially designed for locomotion in bumpy 
areas. A considerable range of obstacles are quite easy for Snail to climb due to its 
strong and maneuverable arms on both sides. Robot's locomotion is provided by tim-
ing belts, which makes the traction more efficient. In order to elevate the camera 
higher than the robot’s 30cm height, a compact device has been innovated which 
enables the operator to observe the area from a higher position. The camera is placed 
on the elevator with two degrees of freedom.  Snail’s suspension system not only 
damps the effect of bumps and prevents shocks to the internal devices, but also in-
creases the traction of the robot. Various parts of Snail are shown in figures bellow: 

 
 

PHYSICAL SPECIFICATIONS 

Total weight 25 kgram 

Length with expanded arms 82 cm 

Length with closed arms 42 cm 

Height 30 cm 

Width  36 cm 

Maximum elevation of camera  120 cm 
Table 8.1 



1.1)  LOCOMOTION SYSTEM 
 
Locomotion of the robot is provided by timing belts working as tracks (fig8.2), 

which are powered by two 70 W DC geared motors. A pair of rollers at each side 
keep the belt around it’s sprocket which is directly attached to motor’s shaft (fig8.3). 
Linear speed of the robot varies from 0 to 0.4 mps depending on the voltage given to 
motors. 

   

 
Figure 8.2  

 

Sprocket Timing belt 



Figure 8.3 

1.2)  ARMS 
 
As shown in figures bellow when the arms are closed  Snail becomes smaller and 

thus more maneuverable in destructed areas(fig 8.4). Expanding the arms enhances 
stability of the robot in bumpy places. The robot is also capable of climbing obstacles 
up to its own height (30 cm) by using its arms. The arms are powered by a 30 W dc 
motor. A gear box contrived at the bottom of the body provides the required torque, 
which is transmitted by chains and sprockets to the main shafts (fig8.5). 

 
 

 
 

 
Figure 8.4 

 
 

 



 
Figure 8.5 

1.3)  CAMERA ELEVATOR 
 

This device feeds a pair of cables 
into the antennas shown and elevates 
the camera.(fig8.6) A 24V dc geared 
motor is used for this purpose. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.6 
  

Chai
n

12V dc motor 

Gears 



 
 
1.4)  SUSPENTION SYSTEM 
 

The main structure of the robot is not rigid. The shaft which the arms are attached to 
is fixed by a special kind of Bearing called POS.(fig8.8) This kind of bearing gives 
the shaft angular degree of freedom as well as rotational. Other parts of the robot are 
suspended over the main structure. The two parts are attached via 4 linear joints con-
sisting Ball-bushings and linear springs (fig8.9). (Ball-bushings are fixed in alumi-
num blocks and cannot be seen directly)  

 
Figure 8.7 

 

 
Figure 8.8 

 
 

 
Figure 8.9 

POS

Aluminum blocks 
Ball-bushing 

Main Structure

Main Shafts 

Springs

Ball-bushing inside 
aluminum block 



2. Avril 
Mechanical structure of this robot is designed for indoor purposes. Its locomotion 

is simply provided by 4 wheels.(fig8.10) Avril is slower than Snail. However it’s got 
the same power. It can easily climb inclined plains up to 40° depending on friction 
factor (between the wheels and surface matrial). The robot can also pass over obsta-
cles up to 10 cm height. 

 
 

 

 



 
Figure 8.10 

 
 

 
PHYSICAL SPECIFICATIONS 

Total weight 25 kgram 

Length 52 cm 

Width  28 cm 

Height  26.5 cm 

Wheels diameter 22 cm 

Wheels width 4 cm 
Table 8.2 

 
 
 
 
2.1) LOCOMOTION SYSTEM 
 
As mentioned before Avril’s motion is via 4 wheels. Wheels at each side are pow-

ered by a 24V, 30W dc geared motor. Motor’s torque is transferred to the wheels via 
chains and sprockets.(fig8.11) 

 



 
Figure 8.11 

 
2.2)  SENSORS PLACEMENT  
 
There are 4 shaft encoders placed at the bottom of the robot (fig 8.12). Each one is 

accurately suspended inside a wheel via springs. In order to make sure the encoder 
wheels are always in contact with ground surface these sprigs push them downward 
(fig8.13). 

 
 
 

 
Figure 8.12 

 

Chains 

Shaft encoders

Shaft encoders 



 
Figure 8.13 

 
 

2.3) LAPTOP CASE 
 
An aluminum case is built for covering the laptop. It is fixed at the top. The cam-

era is placed over the laptop case(fig 8.14). 
 

 
figure 8.15 

Encoder 

Springs 

Encoder 
Wheels 



9. Other Mechanisms 
 
9.1 – Electrical Structure 
Here all electrical and electronic devices are described in detail and every com-

ponent which has been used are listed and referred to their manufacturer website. In 
the following figure main block diagrams of electrical systems are shown. 

 

 
Figure 9.1 Main block diagrams and data flow diagram 

In the following table this devices are listed. 
 

Name Brand Part Number Qty Description 
Laptop HP nc4000 1 Main Processor 
Camera PROLINE 22X 1  
Capture Card V-Stream  1 USB output 
USB-to-Serial Hub MOXA NPORT 1240 1 4 RS232 output 
Pyrometer Raytek CI3A 1 See section 7 
Laser Range Finder Hokuyo URG-X002 1 See section 6 
Encoder Autonics E40S 4 See section 6 
Compass Devantech CMPS03 1 See section 6 
CO2 Sensor GfG MWG 2490 IR 1 See section 7 

Table 9.1 – Brief summarize of electrical part of the robot 
Some of these parts which have special notes are described bellow: 

1.Laptop: 
A laptop has been chosen as the main processor of the robot because it could sat-

isfy the robot demands like wireless data and video transmission on 5.4 GHz. The 
following table summarizes main features of the laptop. 

 
Laptop 

HP nc4000 

USB-to-Serial 
NPORT 1240 

 

 
Interface 
Circuit 

Pyrometer 

USB

R
S2

32
 

Laser Range Finder
URG-X002

RS232

Encoders

Compass

CameraExternal 
Capture Card

USB

Motors 

Se
ria

l 
Po

rt 

CO2 Sen-

Power Supply 



 
Laptop Features 

Brand HP 
Model nc4000 
LCD 12.1” 
CPU 1.6 Mobile 
RAM 512 MB 
Weight 1.6 Kg 
Dimensions 2.8cm x 28cm x 23.3cm 
Networking Wireless LAN 802.11a/b/g + Ethernet LAN 
Website http://www.hp.com 

Table 9.,2 – Main features of nc4000 notebook 
The laptop is very light and small as it is expected to be. Internal wireless LAN al-
lows the robot to connect to the station without any extra hardware.  

 
Figure 9.2 – nc4000 laptop 

 
2. USB-to-Serial Hub 

This is an industrial device which is usually used in cases in which a serial port is 
needed and the main system lacks it. In this case our laptop dose not have serial port, 
so a USB-to-serial Hub is used. This hub has 4 serial ports. First one is used for the 
interface board and the second one is used to connect the pyrometer. 



 
Figure 9.3 – USB-to-Serial converter 

 

 
Figure 9.4 – External capture card 



 
Figure 9.5 – PROLINE 22X zoom camer 

 
9.2 – Interface Circuit 

Due to complicated combination of several sensors and actuators, we had to make 
our circuit ourselves. This circuit is able to gather sensor data and distribute com-
mands coming from laptop to each actuator. For this reason an ATMEL AVR micro-
controller is used. This is one of the most powerful AVR microcontrollers. Some 
important features of this microcontroller are listed bellow. 

 
Number of Input/Output Pins 53 
Number of 10-bit A/D converter 8  
Number of PWM outputs 8 
Number of Serial Port 2 
Crystal Frequency Up to 16 MHz 
Number of External Interrupts 8 
Program Memory 128 KByte 
EEPROM (Non-Volatile) 4 KByte 
RAM 4 KByte 
Programming Modes JTAG/ISP 

Table 9.3 – Most significant features of the microcontroller chip 
 
This microcontroller is in charge of doing these works: 

1 Get commands from laptop via serial port and send them to each motor 
2 Drive the compass via its PWM output and send it to Laptop 
3 Drive four encoders and calculate location of robot 
4 Gather information coming from the laser range finder via the second serial 

port and pre-process them 
5 Read CO2 sensor output and send to Laptop via serial port 



Table 9.4 – Major activity of microcontroller 
As a result a controller board is designed and implemented which the microcon-

troller is placed and some amplifiers and drivers are added to apply microcontroller’s 
command to the actuators and get information from the sensor correctly. A picture of 
our proposal interface circuit is shown bellow. 

 
Figure 9.6 – Interface circuit with a LCD for monitoring 

 
 
9.3 - Power Supply 
 One of the most important parts of an autonomous system is power supply. 
Today, according to development in mobile technology, it’s necessary to use 

power sources with high density and efficiency. So there has been progress in battery 
technology and regulation circuits.  

 
Choose the battery type: 
The battery suppliers always try to produce their batteries in high density but lower 

price. The consumers, according to their plant, also try to have the best choice. 
In fixed systems, such as huge UPSs for servers, fuel cell technology has become 

more useful and worthy.  
But in small size projects, we have limitations in space. So energy density is more 

important than ever (even more important than the cost). In this case we have Nickel 
and Lithium technology. 

 
The following charts show the developments in portable cells technologies:  



 
 

 
Accordingly, for Resquake robots, we decided  to use Lithium-Ion batteries; and 

maybe Lithium-Polymer in future. Of course we have reasons for this selection; but 
the most important reasons are the price and availability. Of course we consider the 
complex circuits of protection & charging system for these kinds of batteries. Each 
cell needs current limiter in both charging & discharging. At the same time each cell 
requires under voltage lock or alarm circuit to protect its life. We also need heat pro-
tection to avoid of any hazardous event! 

Most problems occurred during charging cycle, because this kind of batteries need 
CC/CV charge method, and also they produce 3.7V with different current levels. So 
as we couldn’t have a single cell with required voltage, there will be separate PCBs 
for charging & protecting each cell in the pack. Now if we need high current battery 
pack, the devices on the PCB will become larger & also need more space to lose the 
extra heat of the power dissipation. In addition, we also need to know the battery 
status during the session.  

All of these features are possible to be embedded into a small PCB by SMD tech-
nology. So we consider this problem solved, as we have designed the circuit & found 
the required parts. 

 



 
Power supply Circuit Topology: 

 In previous versions of our robots, we used linear regulators to achieve the 
desired levels of voltage. But at the end, when we calculated the efficiency, there was 
a huge potion of power dissipation. Therefore there would be more battery usage and 
also larger heat sink. 
 

So we tried to find better ways to limit the power dissipations at least in the power 
supply circuits. The answer was clearly simple but a little new and so unavailable; 
switching regulators.  

When we use a linear regulator, the output current will be equal to input current, 
but input and output voltages are different and as we know W = V.I; the result is the 
difference between power consumption of battery and the power consumption of  the 
load. It means that there is an amount of power dissipation on the regulator. This 
requires larger battery and larger heat sink too. 

But when we use a switching regulator, power remains unchanged. It means that 
the current witch is required in input, is lower than the current in the output. In addi-
tion, there will be little power dissipation. Therefore we need smaller heat sink and 
also smaller battery pack. But the most important point is the fact that we can use the 
battery pack with more voltage, but less current. Therefore the power dissipation in 
the battery becomes lower and the risk of heat limitation or even explosion decreases, 
while the battery life increases.  

Another important advantage is the simple circuit, producing higher current. Thus, 
we chose the National® Semiconductor chip, LM2576HV-ADJ. This IC will give us 
the abilities to cut off output, in emergency situations such as short circuit or proces-
sor hang up. Of course we could change the circuit topology if any new feature is 
required. 

 
 The following schematic shows the simple circuit which is the base of our robot 

power supply. 
 



 
 
 

 



10. Team Training for Operation (Human Factors) 

Resquake Operator Interface has the least possible objects in the easiest and most 
accessible places and may need something about 10 minutes to describe what an 
operator should do to control the system. It is also very easy to setup Hardware parts, 
and we do our best to finalize the system in the way that they only would need to be 
turned on and would not need any time taking setup process. 

For team member training, as we were all involved with the implementation pro-
cedure no training will be needed. But of course we need to practice several times 
before the main competition. 



11. Possibility for Practical Application to Real Disaster Site 

Resquake has done his best to make a robust system practical for the real disas-
ters. There are some new ideas for working in real disaster, but of course the system 
is not completed yet. 

New idea is publishing the report on Internet which makes the data available for 
the ones who are not present at the scene, but should do something for the victims or 
send commands to the rescuers. 

The main limitation is the wireless LAN which can only solve the problem in small 
areas but not in the real site. It means we are to improve the communication system 
for operation in longer distances. 



12. System Cost 

These are the costs of each robot (all in US Dollars) 
 

 Part Name Qty. Total Price 
Motors 5 800 
Gear box 5 100 
Structure 1 1000 Mechanical Part 

Other Mechanical costs 1 100 
Localization System 1 3500 
Other Electronic boards 1 200 
Interfaces  300 Electronic Part 

All other Sensors  2500 
Wireless LAN and Ac-
cess point 

2 500 

Capture Card 2 400 
Laptop 1 1500 

Computer Part 

Others  300 
Sum   11200 

 



13. References 

1. Shigley, Joseph Edward: Mechanical Engineering Design, 6th edn. , McGraw-Hill 
2. Martin George Henry: Kinematics and Dynamics of Machines 
3. McComb, Gordon: The Robot Builders Bonanza, McGraw-Hill, 2000 
4. Oberg, Erik: Machinery Handbook, 26th  edn. , Industrial Press, 2000 

 5. MSDN Library, Microsoft Corporations 



14. Movies 

http://www.resquake.com/clip1.mpg 
http://www.resquake.com/clip2.mpg 
http://www.resquake.com/clip3.mpg 
 
 


