

OMAC API
SET
Version 0.23

Working Document

OMAC API Work Group

October 12, 1999

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.23

 OCTOBER 12, 1999 I

TABLE OF CONTENTS

TABLE OF CONTENTS.. I

TABLE OF FIGURES ... III

EXECUTIVE SUMMARY.. IV

1. BACKGROUND ...1

1.1 ADVANTAGES OF OPEN ARCHITECTURE TECHNOLOGY .. 1
1.2 IMPEDIMENTS TO OPEN ARCHITECTURE TECHNOLOGY .. 2

2 REFERENCE MODEL ...2

2.1 FOUNDATION CLASSES ... 3
2.2 MODULES ... 3
2.3 ARCHITECTURAL DESIGN ... 6

2.3.1 Operator Control of a Set of IO Points Example ..6
2.3.2 One Axis Bootstrap ...7
2.3.3 Programmable Logic Example ...7
2.3.4 Drilling Motion Control Example...8

2.4 DETAIL DESIGN FRAMEWORK... 10

3 SPECIFICATION METHODOLOGY ..12

3.1 API SPECIFICATION .. 12
3.2 OBJECT ORIENTED TECHNOLOGY... 13

3.2.1 Inheritance ..13
3.2.2 Specialization..14

3.3 CLIENT SERVER BEHAVIOR MODEL.. 16
3.3.1 Directive Requests Discussion ..17

3.4 PROXY AGENT TECHNOLOGY... 18
3.5 INFRASTRUCTURE... 19
3.6 BEHAVIOR MODEL ... 19

3.6.1 Levels of Finite State Machines ..20
3.6.2 Computational Model ...22
3.6.3 Control Plan Unit NESTING ..26

3.7 DATA REPRESENTATION... 29

4 MODULE OVERVIEW ..31

4.1 TASK COORDINATOR .. 31
4.2 DISCRETE LOGIC .. 33
4.3 AXIS ... 34
4.4 AXIS GROUP ... 36
4.5 PROCESS MODEL.. 38
4.6 KINEMATICS ... 39
4.7 IO SYSTEM... 41

4.7.1 IO Notification ..42
4.7.2 IO Configuration...42
4.7.3 IO Customization ..42
4.7.4 IO Meta Data ..43
4.7.5 IO Issues..43

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.23

 OCTOBER 12, 1999 II

4.8 CONTROL PLAN GENERATOR.. 43
4.9 HUMAN MACHINE INTERFACE.. 44
4.10 MACHINE TO MACHINE INTERFACE.. 48

5 DISCUSSION ...48

5.1 SCHEDULING AND UPDATING.. 49
5.2 EVENT HANDLING .. 51
5.3 CONFIGURATION... 51
5.4 ERROR HANDLING, ERROR PROPAGATION ... 55

REFERENCES..56

APPENDIX A – UML INTERFACE DEFINITIONS..58

APPENDIX B – MIDL API DEFINITIONS...58

B.1 DISCLAIMER... 58
B.2 NAMING CONVENTIONS ... 58
B.3 MICROSOFT COM.. 58
B.3 MICROSOFT STATUS CODES.. 58
B.4 BASIC TYPES ... 59
B.5 OMAC BASE CLASSES TYPES ... 60
B.7 CONTROL PLAN ... 62
B.8 CAPABILITY ... 67
B.9 IO .. 68
B.10 TASK COORDINATOR ... 72
B.11 DISCRETE LOGIC.. 72
B.12 CONTROL PLAN GENERATOR... 74
B.13 AXIS GROUP .. 74
B.14 AXIS .. 80
B.15 CONTROL LAW... 91
B.16 HUMAN MACHINE INTERFACE ... 94
B.17 PROCESS MODEL ... 94
B.18 KINEMATICS .. 95
B.19 SCHEDULING UPDATER.. 98

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.23

 OCTOBER 12, 1999 III

TABLE OF FIGURES

FIGURE 1: CONTROLLER CLASS HIERARCHY... 3
FIGURE 2: OMAC MODULES.. 5
FIGURE 3: OPERATOR CONTROL OF A SET OF IO POINTS .. 7
FIGURE 5: LOADER/UNLOADER DISCRETE LOGIC CONTROL... 8
FIGURE 6: DRILLING EXAMPLE ... 9
FIGURE 7: DESIGN FRAMEWORK... 10
FIGURE 8: SPECIFICATION LANGUAGE MAPPING... 13
FIGURE 9: GENERAL CONTROL LAW... 14
FIGURE 10: PID CONTROL LAW.. 16
FIGURE 11: MULTIPLE THREADS OF CONTROL.. 17
FIGURE 12: GENERALIZED STATE DIAGRAM ... 20
FIGURE 13: LEVELS OF FSM ... 21
FIGURE 14: MODULE COMPUTATIONAL PARADIGM .. 22
FIGURE 15: EXAMPLE LOOSE COUPLING PROBE ARCHITECTURE.. 23
FIGURE 16: EXAMPLE TIGHT COUPLING PROBE ARCHITECTURE... 24
FIGURE 15: EXAMPLES OF DIFFERENT TYPES OF CONTROL PLAN UNITS .. 25
FIGURE 18: CONTROL PLAN BUILT FROM SERIES OF CONTROL PLAN UNITS ... 25
FIGURE 19: EXAMPLE CONTROL PLAN STATE TRANSITIONS .. 26
FIGURE 17: INTELLIGENT CPU SPAWNING LOWER LEVEL CPU ... 27
FIGURE 18: EMBEDDED CPU FORWARDING OBJECT INTERACTION DIAGRAM.. 28
FIGURE 19: TASK COORDINATOR COMPUTATIONAL MODEL... 31
FIGURE 20: TASK COORDINATOR AND CAPABILITY OBJECT INTERACTION DIAGRAM................................. 32
FIGURE 21: DISCRETE LOGIC COMPUTATIONAL MODEL ... 33
FIGURE 22A: AXIS CLASS DIAGRAM ... 34
FIGURE 22B: AXIS MODULE STATE DIAGRAM .. 35
FIGURE 23: AXIS GROUP MODULE.. 36
FIGURE 24: AXIS GROUP CLASS DIAGRAM ... 37
FIGURE 25: KINEMATICS MODEL .. 39
FIGURE 26: KINEMATICS EXAMPLE... 40
FIGURE 27: CONTROL PLAN GENERATOR ... 44
FIGURE 32: HMI “M” M IRRORS CONTROLLER... 46
FIGURE 30: SCHEDULE UPDATING AXIS OBJECT INTERACTION DIAGRAM .. 50
FIGURE 35: TYPE AND OBJECT REFERENCE LISTS FROM RECURSIVE.. 54

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.23

 OCTOBER 12, 1999 IV

EXECUTIVE SUMMARY

Open modular architecture controller technology offers great potential for integration of
process improvements and better satisfaction of application requirements. With an open
architecture, controllers can be built from best value components from best in class services.
The need for open-architecture controllers is high, but vendors are slow to respond. One
reason for the delay in industry action is that no clear open-architecture solution has evolved.
In an effort to promote open architecture control solutions, a workgroup within the Open
Modular Architecture Controller (OMAC) users group is working on defining an OMAC
Application Programming Interface (API). The goal of the OMAC API workgroup is to specify
standard APIs for a set of open architecture controller components. This document contains
background information, design methodology and actual API definitions.
As background, the following material will be presented:

• OMAC API definition of open architecture
• advantages and impediments to open architectures
• overview of the OMAC API reference model.

At a high level of conceptual design, the OMAC API reference model will be presented and
includes the following items:

• OMAC API core modules
• application framework
• application design and examples.

The OMAC API reference model does not specify a reference architecture. Instead, modules
can be freely connected. In lieu of a reference architecture, the document includes several
reference examples.
At a detailed level of design, the OMAC API specification methodology will be presented and
subscribes to the following principles:

• API programming abstraction is used
• Object Oriented techniques for encapsulation, inheritance, specialization and

object interaction are applied
• Client/Server is the communication model
• Proxy Agents provide transparency of distributed communication
• Finite State Machine (FSM) is the behavior model
• Finite State Machine (FSM) are passed as data to then provide control
• Reusability of software components is achieved through foundation classes
• System objects are mirrored in human machine interface
• No specification of an infrastructure is attempted instead a commitment to a

PLATFORM + OPERATING SYSTEM + COMPILER + LOADER +
INFRASTRUCTURE SUITE is necessary for it to be possible to swap modules.

 .

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 1

1. BACKGROUND

Most Computer Numerical Control (CNC) motion and discrete control applications incur high cross-
vendor integration costs and vendor-specific training. On the other hand, in a modular, standards-
based, open-architecture controller modules can be added, replaced, reconfigured, or extended based
on the functionality and performance required. Modifications to a module should provide equivalent
or better functionality as well as offer different performance levels. Ideally, the module interfaces
should be vendor-neutral, plug-compatible and platform independent.
However, it is important to note that openness alone does not achieve plug-and-play. One vendor’s
idea of openness need not be the same as another vendor’s. Openness is but one step towards plug-
and-play. In reality, plug-and-play openness is dependent on a standard. This leads to the following
definition of an open architecture controller:

An open architecture control system is defined and qualified by its ability to satisfy the
following requirements:
Open provides ability to piece together systems from components, provides ability to modify the way
a controller performs certain actions, and provides ability to start small and upgrade as a system
grows.

Modular refers to the ability of controls users and system integrators to purchase and replace
controller modules without unduly affecting the rest of the controller, or requiring extended
integration engineering effort.

Extensible refers to the ability of sophisticated users and third parties to incrementally add
functionality to a module without completely replacing it.

Portable refers to the ease with which a module can run on different platforms.

Scalable allows different performance levels and size based on the platform selection. Scalability
means that a controller may be implemented as easily and efficiently by systems integrators on a
stand-alone PC, or as a distributed multi-processor system to meet specific application needs.

Maintainable supports robust plant floor operation (maximum uptime), expeditious repair (minimal
downtime), and easy maintenance (extensive support from controller suppliers, small spare part
inventory, integrated self-diagnostic and help functions.)

Economical allows the controller of manufacturing equipment and systems to achieve low life cycle
cost.

Standard Interfaces allow the integration of off-the-shelf hardware and software components and
a standard computing environment to build a controller. Standard interfaces are vital to plug-and-
play.
Degree of openness can be evaluated by comparing a claim of openness against the above
requirements. Herein, the concept of an open-architecture control system that supports openness,
and the auxiliary requirements will be identified as “open, openness or open architecture.”

1.1 ADVANTAGES OF OPEN ARCHITECTURE TECHNOLOGY

Based on specific instances of problems encountered by users of proprietary controllers, the following
list of open-architecture requirements was generated. An open architecture should be able to do the
following:

• provide a migration path from existing practices;
• allow an integrator/end user to add, replace, and reconfigure modules;

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 2

• provide the ability to modify spindle speed and feed rate according to some user-
defined process control strategy;

• allow access to the real-time data at a predictable rate up to the servo loop rate;
• allow full 3-D spatial error correction using a user-defined correction strategy;
• decouple user interface software and control software and make control data

available for presentation;
• provide capability to integrate controller with other intelligent devices;
• increase the ability for 3rd party software enhancements. Examples of 3rd party

enhancements include:
∗ replace a PID control law with a more sophisticated Fuzzy Logic control law
∗ collect servo response data with a 3rd party tool, and set tuning parameters in

the appropriate control law
∗ add a force sensor, and modify the feed rate according to a user defined process

model
∗ perform high resolution straightness correction on any axis
∗ replace the user interface with a 3rd party user interface that emulates a user

interface familiar to your machine operators.

The initial validation strategy for the OMAC API would be to insure that this list of
capabilities can be addressed.

1.2 IMPEDIMENTS TO OPEN ARCHITECTURE TECHNOLOGY

It is difficult to define a controller specification that is safe, cost-effective, and supports real-time
performance.
A specification cannot be an island of technology. To be successful, a specification must satisfy legacy
needs, factor in current practices, as well as anticipate evolving technologies. Attaining an open
architecture specification that is flexible and isn’t biased toward legacy or emerging technology can
be hard.
Of great importance within the controls domain is the requirement for guaranteed, hard-real-time
performance. Without this, safety is at risk. Safety is a major concern voiced within the controller
industry that is especially concerned with the issues of liability and allocation of responsibility
within an open architecture paradigm. Industry would have to adopt new practices for open
architecture controllers. A greater responsibility would be placed on the integrator. Conformance
testing would play a larger role. Conformance could require regression and boot-up testing and
verification procedures to guarantee proper operation.
A further hindrance is the fact that modules are not “self-contained.” Defining an infrastructure
within which the modules can operate is necessary and quite difficult. An infrastructure is defined
as the services that tie the modules together and allow modules to use platform services. The
infrastructure is intended to hide specific hardware and platform dependence; however, this is often
difficult to achieve.
Containing the scope of the specification is also difficult. Openness goes beyond run-time APIs. There
can be “other” APIs, including configuration, integration, and initialization. As an example, consider
the simple use of a math library API. Even there, specification of the math library implementation
must be done to select either a floating point processor or software emulation.
Finally, group and industry dynamics can be a problem. From a workgroup perspective, getting
people to agree can be a challenge because there are difficult trade-offs in modularization, scope, life
cycle benefits, costs, time to market, and complexity. It is recognized that industry will find it
difficult to adopt the OMAC paradigm, due to entrenchment in the legacy of prior implementations,

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 3

the “comfort zone” of past practice and culture, the investment hurdle to effect change, and the
shortage of skilled resources. Proper acculturation, training and education of people and an orderly
introduction, demonstration, deployment, and scale-up will be needed to realize the potential
benefits. From an industry perspective, many companies do not perceive any direct benefit from an
open architecture. Overcoming the workgroup inertia and industry skepticism by promoting and
demonstrating the benefits of open architecture remains a fundamental key to open architecture
acceptance.

2 REFERENCE MODEL

The OMAC API requirements were derived from the OMAC or “Open Modular Architecture
Controller” requirements document [OMA94]. The OMAC document describes the problem with the
current state of controller technology and prescribes open modular architectures as a solution to
these problems. OMAC defines an open architecture environment to include Platform,
Infrastructure, and Modules.
In the interest of flexibility, scalability, and reusability, OMAC API does not specify a fixed
architecture. Instead, OMAC API assumes a reference model described by this abstraction hierarchy:

• Foundation Classes
• Modules
• Architectural Design
• Detailed Design Framework

The Foundation Classes are derived from decomposing a generic controller into classes. These
classes define the controller class hierarchy. Foundation classes are then grouped into Modules that
become plug-and-play components. A controller is generated by selecting from different
implementations of OMAC Modules containing object implementations of the foundation classes. A
system design is divided into two phases. The first phase is Architectural Design and deals with
system decomposition into OMAC Modules. The second phase is called Detailed Design and is
responsible for detailing individual object API, that is, the object attributes and methods. In this
case, the design uses the OMAC API or extends the API to suit the application.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 4

2.1 FOUNDATION CLASSES

Primitive Data Types (int,double, etc.)

Units Measures Containers
(matrix)(length)(meter)

Geometry
(coordinate frame; circle)

Kinematic structure

Control components
(pid; Filters)

Axis components
(sensors, actuators)

Machine tool axis or robotic joints
(translational; rotational)

Axis groups Fixtures
Other tooling

Simple machines; tool-changers; work changers Processes

PlansMachining systems/cells; workstations

Figure 1: Controller Class Hierarchy

The decomposition of a generic controller into classes spans many levels of abstraction and has
elements for motion control and discrete logic necessary to coordinate and sequence operations.
Figure 1 portrays the class hierarchy derived from a controller decomposition. At the lower levels,
the Foundation Classes are the building blocks that may be found in multiple modules. For example,
the class definition of a Geometry “position” would be found in most modules. Moving up the
hierarchy, the Foundation Classes broaden their scope to define device abstractions for such motion
components as sensors, actuators, and PID control laws. As the scope broadens however, not all
software objects have physical equivalents. Objects such as axis groups are only logical entities. Axis
groups hold the knowledge about the axes whose motion is to be coordinated and how that
coordination is to be performed. Services of the appropriate axis group are invoked by user-supplied
plans.
Within Foundation classes, OMAC API define base classes and add to the base classes using the
Object Oriented concept of inheritance to define derived classes. OMAC API also uses inheritance to
maintain levels of complexity. Level 1 constitutes base functionality seen in current practice. Level 2
constitutes functionality expected of advanced practices. Higher levels constitute advanced capability
seen in emerging technology, but unnecessary for simple applications.

2.2 MODULES

OMAC API defines a module to have the following characteristics:
• significant piece of software used in composing controller
• grouping of similar classes
• well-defined API
• well-defined states and state transitions

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 5

• replaceable by any piece of software that implements the API, states, and state
transitions.

Using the OMAC Specification [OMA94] as a baseline, Figure 2 diagrams the OMAC API Modules
including a brief description of a module’s general functional requirements. The Modules have the
following general responsibilities:
Axis modules are responsible for servo control of axis motion, transforming incoming motion
setpoints into setpoints for the corresponding actuators.

Axis Group modules are responsible for coordinating the motions of individual axes, transforming
an incoming motion segment specification into a sequence of equi-time-spaced setpoints for the
coordinated axes.

OMAC Base Class provides a uniform API base class for an OMAC module. The OMAC base class
defines a state model and methods for start-up and shutdown. The OMAC Base Class defines a
uniform name and type declaration and provides an error-logging interface. The OMAC Base Class
maintains a global directory service for name lookup and reference binding.

Capability is an object to which the Task Coordinator delegates for specific modes of operation.
Capability corresponds to the traditional CNC modes (AUTO, MANUAL, MDI, etc.) At the Capability
Level, there is no coordination between Capabilities. A Capability is a Control Plan Unit (see Control
Plan module) with the distinction being that a Capability is Control Plan Unit associated with a Task
Coordinator module.

Control Law components are responsible for servo control loop calculations to reach specified
setpoints.

Control Plan consists of a series of related Control Plan Units (CPU) and forms the basis of
control and data flow within the system. A Control Plan Unit is a base class that contains finite state
logic. A Motion Segment is a derived class of Control Plan Unit for motion control. Discrete Logic
Unit is a derived class of Control Plan Unit for discrete logic control. Capability is a derived class of
Control Plan Unit used within a Task Coordinator and because it is such a significant piece of
software, it is also considered an OMAC API module.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 6

Control Plan Generator modules are responsible for translating application programs into Control
Plans. As examples, programs written in the RS274D [RS274] and IEC 1131-3 [IEC93] languages
can be translated into Control Plans.

Discrete Logic modules are responsible for implementing discrete control logic or rules that can be
characterized by a Boolean function from input and internal state variables to output and internal
state variables. More than one discrete logic module is permitted, but not necessary. Multiple
discrete logic modules is similar to having many PLC’s networked together within the same
computing platform.

Human Machine Interface (or HMI) modules are responsible for human interaction with a
controller including presenting data, handling commands, and monitoring events. Defining a
presentation style (e.g., GUI look and feel, or pendant keyboard) is not part of OMAC API effort.

• trajectory following (loop
closure)

• gain tuning

Control Law

• kinematics calculations
• coordinate system

translations
• kinematics coordinate

transformation
• tool offsets, tool radius

correction
• other kinematic

compensations

Kinematics

• multi-axis coordination
• block look-ahead
• velocity profile generation
• feedhold
• stop

Axis Group

• specialization of finite state
machine

• graph of Control Plan units
or nested control plans

• units are control instructions

Control Plan

• Controlling one axis of
motion

• uses control law
• servo compensation
• axis properties
• axis state

Axis

• feedrate override
• spindle speed override

Process Model

• remote access
• transfer file across network
• program invocation and job

control (e.g. start, stop,
pause, etc. program)

• event monitoring

Machine-to-Machine

• specialization of finite state
machine

• perform 1131-like functions
• mode switching

Discrete Logic

• read/write data
• data subscription
• data notification
• sensor integration
• domain-independent data

sampling

IO Points

• specialization for IEC1131,
RS274D, etc.

• generate control plan

Control Plan Generator

• start-up / shutdown
• system snapshot
• mode selection
• configuration
• diagnostics
• maintenance
• setup

Human-Machine Interface

• naming, version control
• directory and naming

services

OMAC Base Module

• Coordination control plan
units

• corresponds to NC operating
modes

• operates independently of
other capabilities

Capability

• specialization of finite state
machine

• start-up, shut-down
sequencing

• task coordination
• control cycling (i.e. request
next unit from control plan)

• error-logging

Task Coordination

Figure 2: OMAC Modules

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 7

I/O Points are responsible for the reading of input devices and writing of output devices through a
generic read/write interface. The goal is to provide an abstraction for the device driver. Logically
related IO may be clustered within a Discrete Logic module.

Kinematics Models modules are responsible for geometrical properties of motion. Computing
forward and inverse kinematics, mapping and translating between different coordinate systems,
applying geometric correction and tool offsets, and resolving redundant kinematic solutions are
examples of kinematic model functionality.

Machine-to-Machine modules are responsible for connecting and communicating to controllers
across different domains (address spaces). An example of this functionality is the communication
from a Shop Floor controller to an individual machine controller on the floor.

Process Model is a module that contains dynamic data models to be integrated with the control
system. Process control modules (not detailed by this specification) produce adjustments or
corrections to nominal rates and path geometry. Feedrate override and thermal compensation are
examples of process model functionality. The process model is crucial to the concept of extensible
open systems.

Task Coordinator modules are responsible for sequencing operations and coordinating the various
motion, sensing, and event-driven control processes. The task coordinator can be considered the
highest level Finite State Machine in the controller.

Some clarifying observations about modules include:

• Interchangeable modules may differ in their performance levels.
• Modules may provide more functionality (added value) than required in the

specification. Specialization of a module interfaces is the mechanism to achieve
additional functionality.

• A controller may have more than one instance of a module.
• Modules can be explicitly control-related (e.g., Axis) or be inheritance-related

encapsulating common functionality (e.g., OMAC Base Class.)
• Modules do not need to run as separate threads (or intelligent agents.) Systems can

be built from a single thread of execution.
• Modules can contain multiple threads of execution.
• Modules may be used to build other components. For example, a discrete mechanism,

such as a tool changer component, can be built using OMAC modules.
• Multiple instances of a module are required to handle different configurations. For

example, assume a system with 3 axes x, y, z and a spindle. Three Axis Group
objects would be created at configuration time, ag1, ag2, ag3, with the following
configuration:

ag1: x, y, z
ag2: spindle
ag3: x, y, z, spindle

For most machining where the motion control and the spindle are loosely related, references to ag1
and ag2 would be used. However to do a Rigid Tap requiring tight synchronization of the spindle and
motion, a reference to ag3 would be used.

2.3 ARCHITECTURAL DESIGN

Since there is no explicit OMAC reference architecture, composing a system architecture from OMAC
modules is left to the developer. This offers much flexibility, but without guidance, can be confusing.
This section will give some application architecture examples for clarification. This section starts

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 8

with a simple application and then develops a series of examples to illustrate the stages of
development one might encounter when building an application architecture. The examples
highlight the static relationship between OMAC modules (as opposed to the data flow.) However, an
underlying assumption is directives flow from top to bottom.
2.3.1 OPERATOR CONTROL OF A SET OF IO POINTS EXAMPLE

The simplest case is an operator controlling several IO points. The OMAC API model allows the
connection of a Human Machine Interface (HMI) object to several IO points. Figure 3 shows the
simple connection between HMI and IO points. Within the diagram, an arrow indicates a reference
from one object to another.
The rationale for such a simple example is to show that the OMAC API is not monolithic, and a small
system together can be put together. With this ability, OMAC systems can start small and be pieced
together.

HMI

IO POINTS

 Figure 3: Operator Control of a Set of IO Points

2.3.2 ONE AXIS BOOTSTRAP

After establishing an HMI and IO connection, the natural progression in building a CNC machine
tool controller is to add an axis of motion under manual control. This scenario is typical in offline
assembly and testing of an axis that may eventually be assembled in a multi-axis CNC machine tool.
Jogging and Homing are the primary functionality used. At this point, there is no coordination with
any other motion, mechanism, or state in the NC machine tool. During this stage of the assembly of a
machine tool, it is also helpful to perform the calibration, tuning, or health monitoring tests.
The Axis Module coordinates IO points. Assume that the IO points will consist of a PWM motor
drive, an amplifier enable control, an amplifier fault status signal, an A-QUAD-B encoder with
marker pulse and switches for home and axis limits. Figure 4 shows a one-axis system that uses two
Control Laws, one for PID control of Position, and another to do PID control of velocity. The Axis will
output accelerations to the actuator and read encoder values through IO points referenced by the
Axis module. For operator control of the axis, an HMI module mirrors exists for the Axis module as
well as mirrors for each Control Law module. The mirrors provide a snapshot of control system
objects and use proxy agents for communication.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 9

AXIS
HMI

AXIS

IO POINTS IO POINTS

Control Law
HMI

Control Law
HMI

PID
Control Law

PID
Control Law

(Position)

(Velocity)

Method

Figure 4: Simple, Single Axis, Jog/Home Only System

2.3.3 PROGRAMMABLE LOGIC EXAMPLE

Consider a case of work-handling equipment that provides peripheral functions for a CNC machine
tool. The equipment includes two hydraulically actuated, two-position on-off mechanisms, named,
Loader and Unloader. Let their sensing, actuation, and control be under a Discrete Logic module,
named LUNL whose sequence of operations was originally specified in some manner conforming to
IEC 1131-3, and subsequently translated into a Control Plan Unit, named CPlunl.

Discrete Logic
HMI

Discrete Logic

IO POINTS IO POINTS IO POINTS

Control Plan
Generator HMI

Control Plan
Generator
(1131-3)

Control Plan

Control Plan

Programming
Phase

Run Time
Phase

Figure 5: Loader/Unloader Discrete Logic Control

Figure 5 illustrates the relationship of different OMAC modules within this LUNL application.
Within the block diagram, two phases, Programming Phase and Run Time Phase, are shown.
However, other phases are to be considered including a Configuration Phase and an Initialization
Phase. The following steps sketch the different phases of system development.

I. In the Programming phase,

a. Develop IEC 1131-3 code that performs logical mapping of IO functionality

b. Generate a number of Control Plan Units (CPU), possibly one associated with each state.

c. Group Control Plan Units to become a LUNL Control Plan (i.e., CPlunl)

II. At configuration phase,

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 10

a. Perform physical mapping of IO functionality

b. Load Control Plan into the Discrete Logic Module

III. At initialization phase,

a. Resolve external object and module references

b. Register events

IV. At runtime phase,

a. Clients (e.g., HMI or IO Points) generate events

b. The LUNL Discrete Logic Module executes each ControlPlanUnit at an assigned scan
rate. A ControlPlanUnit executes as a Finite State Machine (FSM).

2.3.4 DRILLING MOTION CONTROL EXAMPLE

An example describing programmed NC for one-axis drilling will be developed. A typical one-axis
drilling workstation would perform holeworking operations, e.g., drilling with a spindle drill-head,
boring a precision bore, counter-boring the bored hole, or probing the (axial) location of the
counterbored shoulder.

Process
Model

Kinematics

Kinematics

Axis Group

AXIS

Control Law

Task Coordinator

Axis Group

Axis GroupKinematics

AXIS

Control Law

SpindleMotion

Control
Plan

Generator
Discrete

Logic

...ControlPlanUnit

ControlPlanUnit

ControlPlanUnit

ControlPlanUnit

Methods

Methods

Methods

Methods Methods
Methods Methods

MethodsMethods

Methods

Methods
Methods

ControlPlanUnit

Methods

Tight Synchronization
of Motion and Spindle

Process
Model

Process
Model

IO POINTS IO POINTS

IO POINTS

IO POINTS

IO POINTS

IO POINTS

Figure 6: Drilling Example

Figure 6 illustrates the module and component relationships for a drilling application. Z motion
requires an Axis module for servoing and an AxisGroup module for Cartesian motion. Spindle control
requires another Axis module to interface to drive components assumed to provide a facility for
setting spindle speed and direction and to start and stop spindle rotation. The Spindle requires an
Axis Group for rate and override control. A third Axis Group is necessary for synchronized control of
both the Motion Axis and the Spindle Axis (shown as shaded with dashed line connections).
Generally, the Spindle Axis will not need a Control Law, however, when it is synchronized with
motion it will require servoed control.

In the diagram, a Task Coordinator exists to provide program control. A ControlPlanGenerator
module translates a part program into ControlPlanUnits. The primary command communication

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 11

between modules is reflected in the diagrams by showing the keyword Method or
ControlPlanUnits (which uses a method to pass it) next to an arrow. A Discrete Logic Module,
typical of the previous example, exists as an equivalent for part loading and unloading, as well as
machine state (e.g., temperature, estop). To improve predictability and reduce variation, a Process
Model module will exist to integrate sensing and control to prevent tool breakage by monitoring
spindle torques and thrust forces. A simple Kinematics module exists to model the workspace and
handle different tool offsets and part placements.

2.4 DETAIL DESIGN FRAMEWORK

Control Plan
Generator

Task

Axis

Axis1

Axis2

P V T

P V T

Line Arc -x-

SERCOS V T

Software

AM J

 Group

Coordinator

Nurb Weave-x-

Manual Automatic Jogging

D xyzKinematics

Nurb Weave

OMAC MODULE FRAMEWORK FRAMEWORK COMPONENTS

IO
Points

CanBus

IO 1 IO 2 ...

D/A

-C- -C- -C-

Line Arc

-X- -X-

P

V TP

I/O I/O I/O I/O I/O I/O

Figure 7: Design Framework

The Detailed Design is responsible for detailing individual object API, that is, the object attributes
and methods. At this phase, one determines which objects are available, the extent of object
capabilities, and whether the objects need to be bought or built. This phase corresponds to putting a
system together with the OMAC API Framework. Frameworks are object-oriented technology
consisting of sets of prefabricated software and building blocks that are extensible and can be
integrated to execute well-defined sets of computing behavior. Frameworks are not simply collections

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 12

of classes. Rather, frameworks come with rich functionality and strong “pre-wired” interconnections
between the object classes.
This contrasts with the procedural approach where there is difficulty extending and specializing
functionality; difficulty in factoring out common functionality; difficulty in reusing functionality that
results in duplication of effort; and difficulty in maintaining the non-encapsulated functionality.
With frameworks, application developers do not have to start over each time. Instead, frameworks
are built from a collection of objects, so both the design and the code of a framework may be reused.
In the OMAC API Framework the prefabricated building blocks are the implementations of 1) OMAC
modules and 2) framework components (e.g., ControlPlanUnits). As a simple example, Figure 7
illustrates a Detailed Design for assembling a controller application. An application developer buys
modules and components as commercial off-the-shelf (COTS) technology. Then, the application
developer configures the modules and “puts the pieces together” by linking the purchased COTS “.o”
object files.
Modules are configured based on their references to other objects. For the Axis modules in the
example, references are needed for position (P), velocity (V) or torque (T) Control Law modules.
These references could be to objects in software, hardware or some combination of hardware and
software. For software P control, a Control Law object from the Software set is selected. For
hardware P control, a Control Law object from the SERCOS[IEC95] set is selected. The applications
developer is also responsible for mapping the logical IO points onto physical devices (e.g., D/A or
CanBus).
Modules are also configured based on the selection of Control Plan Units (CPU) that define module
responsibilities. Within the example, there is a Task Coordinator module that has containers for
inserting Capability CPU (in the figure represented by a -C- framed by a diamond). The Capabilities
include Manual, Automatic or Jogging. The application developer is free to put one or more of these
Capabilities into the Task Coordinator or develop a unique Capability. For Control Plan Generator
and Axis Group, the application developer is already provided Line and Arc CPU but can plug in
NURB or Weave CPU.
Using the OMAC API Framework, application development involves three groups:
Users define the behavior requirements and the available resources. Resources include such items
as hardware, control and manufacturing devices, and computing platforms. For behavior, the user
defines the performance and functionality expected of the controller. Performance includes such
characteristics as speed or accuracy. Functionality defines the controller capability such as the
ability to handle planar part features versus complex part features.

System Integrators select modules and framework components to match the application
performance and functional requirements. The system integrator configures the modules to match
the application specification. The system integrator uses an integration architecture to connect
modules and verify system operation. The system integrator also checks compliance of modules to
validate the user-specification of performance and timing requirements.

Control Component Vendors provide module and framework component products and support.
For control vendors to conform to an open architecture specification, they would be required to
conform to several specifications including the following:

• customer specifications
• module class specification
• system service specification

The system service describes the platform and infrastructure support (such as communication
mechanisms) and the resources (disks, extra memory, among others) available. Computer boards
have a device profile that includes CPU type, CPU characteristics and the CPU performance
characteristics. Included within the profile is the operating system support for the CPU. A spec sheet

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 13

or computing profile [SOS94] is required to describe the system service specification that would
include such areas as platform capability, control devices, and support software.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 14

3 SPECIFICATION METHODOLOGY

The primary goal of the OMAC API workgroup is to define standard API for the Modules. This
section will refine the concept of “API” and describe the OMAC API specification methodology. The
API specification methodology applies the following principles:
• Stay at API level of specification. Use IDL or MIDL to define interfaces.

• Use Object Oriented technology.
• Use general Client Server communication model, but use state-graph to model state

behavior.
• Use Proxy Agents to hide distributed communication.
• Do not specify an infrastructure.
• Finite State Machine (FSM) is model for data and control.
• Mirror system objects in human machine interface.

The following sections will discuss these principles.

3.1 API SPECIFICATION

API stands for Application Programming Interface, and refers to the programming front-end to a
conceptual black box. The API consists of a list of signatures per black box. A signature specifies
the front-end with a function name, calling sequence, and return parameter. For example, “double
cos(x)” specifies a cosine signature. The API is concerned with the signature, not the
implementation. For the cosine, implementation could be it table-lookup or Taylor series. However,
the API does specify performance, which in turn, affects the implementation. For the cosine API,
performance may dictate speed over accuracy so that computing a cosine should be as fast and not
necessarily as accurate as possible.
A standard API is helpful because programming complexity is reduced when one alternative exists
as opposed to several. For example, the cosine signature is generally accepted as cos(x) , not
cosine(x) . This is a small but significant standardization. At a programmatic level, the importance
of a standard API can be seen within the Next Generation Inspection Project (NGIS) at NIST[NGI].
The NGIS project has integrated three commercial sensors and one generic sensor into the
Coordinate Measuring Machine controller. Each sensor had a different “front-end” - one had a
Dynamically Linked Library (.DLL) interface, one had a memory mapped interface, one had a
combination port and memory mapping. None of the sensors had the same API. Yet, all of the
sensors were “open.”
APIs can be defined in any number of programming languages. This creates a problem when defining
a standard API since the controller industry uses a variety of languages and platforms. OMAC API
chose IDL, (Interface Definition Language) [COR91] or MIDL (Microsoft IDL) [MIDL] , as its
specification language since it solves this problem. IDL is a technology-independent syntax for
describing interfaces. In IDL, interfaces have attributes (data) and operation signatures (methods).
IDL supports most object-oriented concepts including inheritance. IDL translates to object-oriented
(such as C++ and JAVA) as well as non-object-oriented languages (such as C). IDL specifications are
compiled into header files and stub programs for direct use by application developers. The mapping
from IDL to any programming language could potentially be supported, with mappings to C, C++,
and JAVA available.
To clarify the problem of unifying the specification, consider the mapping of the OMAC API IDL onto
three different validation testbeds. Figure 8 illustrates mapping IDL to the different implementation
strategies. For ICON, the standard API in IDL has to be mapped into JAVA. At the University of
Michigan, they are using the ROSE CASE tool to design their controller. ROSE accepts C++ header
through a reverse engineering process. At the NIST testbed, the IDL will be translated into C++

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 15

headers and use the Enhanced Machine Controller and its infrastructure[PM93]. For these three
implementations, only the IDL specification can be mapped into all the languages needed to support
the applications.

ICON NIST UMICH

Application API
Specifications

TESTBEDS

Implementation

API Standard
Specification

C++

JAVA C++C++/EMC

C++/CORBA

IDL

RTOS Kernel CC C

ROSE

S
P

E
C

IF
IC

A
T

IO
N

 L
E

V
E

L

JAVA

Figure 8: Specification Language Mapping

3.2 OBJECT ORIENTED TECHNOLOGY

OMAC API uses an object-oriented (OO) approach to specify the modules’ API with class definitions.
The following terms will define key object-oriented concepts. A class is defined as an abstract
description of the data and behavior of a collection of similar objects. Classes aggregate data and
methods. Class definitions offer encapsulation hiding details of a classes implementation. An
object is defined as an instantiation of a class. For example, SERCOS-Driven Axis describes an
instance of an Axis class in the running machine controller. A three-axis mill would have three
instantiations of that class - the three objects implementing that class. An object-oriented
program is considered a collection of objects interacting through a set of published APIs. A by-
product of the object-oriented approach is data abstraction, which is an effective technique for
extending a type to meet programmer needs.
3.2.1 INHERITANCE

Inheritance is useful for developing data abstraction. OO classes can inherit the data and methods
of another class through class derivation. The original class is known as the base or supertype
class and the class derivation is known as a derived or subtype class. The derived class can add to
or customize the features of the class to produce either a specialization or an augmentation of the
base class type, or simply to reuse the implementation of the base class. To achieve a object-oriented
framework strategy[Le95], all OMAC API class signatures (methods) are considered “virtual
functions.” Virtual functions allow derived classes to redefine an inherited base class method.
To illustrate inheritance, consider the case of a simplified Axis module acting as a server. Assume
that the Axis API only allows the functionality to set a variable x. The following sketches a base and
a derived Axis class definition.

class Axis
{
 virtual void setX(float x);
private:
 double myx;
}

application()
{

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 16

 Axis ax1;
 ax1.setX(10.0);
}

To extend the base server class, a class myAxis is derived to add an offset to its X value before
each set. This could also be achieved on the server side if so desired.

class myAxis : public Axis
{
 virtual void setX(float x){ x= x + offset; Axis::setX(x); }
 private:
 double myx;
 double offset; // set elsewhere for offset calculation
}

application()
{
 Axis ax1;
 myAxis ax2;
 double val=1.0;
 double offset =10.0;

 ax1.setX(val+offset); // explicit offset in application code
 ax2.setX(val); // offset hidden by configuration
}

3.2.2 SPECIALIZATION

OMAC API leverages the OO concept of inheritance to attain specialization. Specialization is
useful for managing the scope of an API. For example, when defining a control law, many options
exist including PID, Fuzzy Logic, Neural Nets, and Nonlinear. This proliferation of options begs for a
compartmental approach. The OMAC API approach is to define a base class (generally corresponding
to one of the OMAC Modules) and for each option derive a specialized class.
Specialization has many benefits. It helps manage the scope of capabilities, which reduces
complexity. It allows differing terminology based on need (e.g., weights versus gains). Specialization
provides a technique to handle evolving technology by allowing new derived class to be defined when
necessary. To expedite the OMAC API effort, only options considered most important have been
derived.

CommandedDotDot

Actual Feedback

CommandedDot

Commanded

Output

Actual
OFS

FollowingError
OFS

Output
OFS

TUNING PARAMETERS

FollowingError

calcControlCmd()

breakLoop()
makeLoop()

TuneIn

Figure 9: General Control Law

The control law module will be used to illustrate specialization. The responsibility of the Control Law
module is conceptually simple - use closed loop control to cause a measured feedback variable to

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 17

track a commanded setpoint value using an actuator. Figure 9 illustrates the definition of a base
control law class. The concept of tuning is encapsulated within the black box and is conceptually
controlled via “knob turning.” The concept of accepting third party signal injection is handled by the
inclusion of pre-and post-offsets (e.g., FollowingError). These offsets allow sensors or other
process-related functionality to “tap” and dynamically modify behavior by applying some coordinate
space transformation. The IDL definition of the illustrated control law module follows. The IDL
keyword interface signifies the start of a new interface, corresponding to a C++ class.

interface IControlLaw
{ // Parameters
 void setCommanded(double setpoint);
 double getCommanded();

 void setCommandedDot(double setpointdot);
 double getCommandedDot();

 void setCommandedDotDot(double setpointdotdot);
 double getCommandedDotDot();

 void setOutput(double value);
 double getOutput();

 void setFeedback(double actual);
 double getFeedback();

 void setFollowingError(double epsilon);
 double getFollowingError();

 // Offsets
 void setFollowingErrorOffset(double preoffset);
 double getFollowingErrorOffset();

 void setOutputOffset(double postoffset);
 double getOutputOffset();

 void setFeedbackOffset(double postoffset);
 double getFeedbackOffset();

 void setTuneIn(double value); // enable with breakLoop
 double getTuneIn();

 void breakLoop();
 void makeLoop();
 void calcControlCommand();

};

Each ControlLaw specialization is a subtype whereby each subtype inherits the definition of the
supertype. By applying this concept, an evolutionary process evolves to adapt to changes in the
technology. At first, only highly-demanded subtypes, such as PID, were handled. Figure 10
conceptually illustrates the PID specialization of the control law. The IDL definition of the PID
control law follows.

interface IPIDTuning: IControlLaw
{ // Attributes
 double getKp();
 double getKi();
 double getKd();

 void setKp(double val);
 void setKi(double val);
 void setKd(double val);

 double getKcommanded();
 double getKcommandedDot();
 double getKcommandedDotDot();
 double getKfeedback();

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 18

 void setKcommanded(double val);
 void setKcommandedDot(double val);
 void setKcommandedDotDot(double val);
 void setKfeedback(double val);
};

OMAC API also uses inheritance to maintain levels of complexity. Level 0 would constitute base
functionality seen in current practice. Level 2 would constitute functionality expected of advanced
practices. Level 3, 4,..., n would constitute advanced capability seen in emerging technology, but
unnecessary for simple applications.

K AF

Output

Actual Feedback

K feedback

FollowingError
OFS

Actual
OFS

K VF

K CF

Output OFS

K P K I K D

PID Compensator

+ + +

+

CommandedDotDot

CommandedDot

Commanded

FollowingError

+
-

TuneIn

Σ Σ Σ

Σ

calcControlCmd()
breakLoop()
makeLoop()

Figure 10: PID Control Law

3.3 CLIENT SERVER BEHAVIOR MODEL

OMAC API adopts a client server model for inter-object communication. In the client/server model,
an object is a server and a user of an object is called a client. Objects can act as both a client and a
server. Objects cooperate by having clients issue requests to the servers. The server responds to
client requests. For OMAC API, a client invokes class methods to achieve the described cooperative
behavior. A client uses accessor methods to manipulate data. Accessor methods hide the data’s
physical representation from the abstract data representation.
Standard client-server requests result in a synchronous execution of operation. The synchronous
execution has a client-server roundtrip where the client issues a request, server receives a method
invocation, performs the corresponding method implementation, and sends a reply back to the client.
OMAC API defines three types of client-server requests: (1) parametric requests, (2) directive
requests and (3) monitor requests. State space logic may be required to manage client-server
interaction.
Parametric requests are the get/set methods that are, in theory, satisfied in one roundtrip.
Parametric requests do not require state space logic.
Directive requests are events which cause a change in the server’s state space (or state transition)
and results in a new server state. These directive requests may run one or many cycles - such as, for

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 19

an Axis module completing a home() operation. Coordination between the client and server requires
state space logic and is based on the server’s Finite State Machine model
Monitor requests coordinate the execution of a module, for example, processServoLoop() or
isDone() for Axis module. Monitor requests are coordinated by the state space logic. The
processServoLoop method sends an event to Axis module execution to be interpreted by its state
space logic. Invoking processServoLoop every servo loop period attains cyclic execution of the Axis
module. In this cyclic mode, the Axis Module would be running as a software servomechanism: at
every period, it accesses data (e.g., commanded position, actual feedback) and executes a transform
function to derive a new setpoint. Status methods are necessary to monitor the progress of a directive
request.
Client Directive and Monitoring requests may come from separate threads of control. Figure 11
illustrates a server with multiple clients running in two separate processes: an Axis Group process
for issuing setpoints and a Periodic Updater process to coordinate execution. (These processes may be
running in one or more threads.) Generally, the Directive service requests would come from an Axis
Group module that is issuing setpoints to multiple axes. A Scheduling Updater module running in
another thread of execution provides timing, synchronization and sequencing service for the Axis
module. This Scheduling Updater module may be tied to some hardware device (such as a timer) to
guarantee periodic execution behavior.

Updater
Process

Axis Group

Axis Module

Commanded
Methods
e.g. home(), tune()

Timing, Synchronization and Sequence Methods
e.g. processServoLoop()

Client 1

Client 2

Server

Figure 11: Multiple Threads of Control

3.3.1 DIRECTIVE REQUESTS DISCUSSION

Client directive requests are serviced as client-push events. (Server-push is a more difficult
problem and is discussed in Section 5.2.) In a client-push request, events are “pushed” to the server
via method calls. Client-push events may be queued and ultimately cause state transitions. Below is
a code sketch of the client-push event model for an Axis class that defines two methods
processServoLoop and home. An AxisFSM class is defined to handle the events caused by
processServoLoop and home. Whenever the home method is invoked, it inserts a HOME_EVENT
event into the Axis FSM. The FSM has an internal queue (i.e., evq) for handling events. The FSM
may optionally spawn a separate thread of control (i.e., FSMThread()) for event handling. The
isDone() monitor request is used to determine when the home event has completed.

// This is the public interface
class Axis : OmacModule
{
public:
 processServoLoop();
 home();
 boolean isDone();
private:

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 20

 AxisFSM fsm;
 boolean myDone;
};

// This is hidden in the implementers code
Axis::processServoLoop() { AxisFSM.handleEvent(AxisFSM::PROCESS_SERVO_LOOP_EVENT); }
Axis::home() { AxisFSM.handleEvent(AxisFSM::HOME_EVENT); }
Axis::isDone() { return myDone; }

class AxisFSM : FSM {
 enum { PROCESS_SERVO_LOOP_EVENT, HOME_EVENT};
 MsgQueue evq;
 int curState;
 void handleEvent(EV_num)
 {
 evq.send(EV_NO);
 }
 void * FSMThread() // optional thread, this could be done in handleEvent
 {
 int evNum;
 evq.receive(&evNum);
 callAction(evNum, curState);
 }
 void homeUpdateAction() { /* perform homing */ }
 void processServoLoopAction() { /* evaluate state */ }
};

A key to the event model is to support local or remote method invocation identically. The next section
on proxy agents explains how this event model provides a transparent interface.
Server request actions should be as short as possible. In the example, the simple enqueuing of events
provides an efficient interface model. The rationale for short request cycles is to reduce the amount
of time the client will wait while the server services the request. Evaluating system timing and
performance is difficult unless the client-server round-trip time is bounded.

3.4 PROXY AGENT TECHNOLOGY

Client/server interaction can be local or distributed. In local interaction, the client uses a class
definition to declare an object. When a client accesses data or invokes object methods, interaction is
via a direct function call to the corresponding server class member. At its simplest, local interaction
can be achieved with the server implemented as a class object file or library. Interaction is achieved
by binding the client object to a newly created server object implementation. Such a binding could be
done by static linking, with a dynamic linked library (DLL), or through a register and bind process
that does not use the linker symbol table.
When distributed service is needed a proxy agent is used. A proxy agent is a set of objects that are
used to allow the crossing of address-space or communication domain boundaries[M.S86]. The class
describing a proxy agent uses the API of some other class (for which it is a proxy) but provides a
transparent mechanism that implements that API while crossing a domain boundary. The proxy
agent could use any number of lower level communication mechanisms including a network, shared
memory, message queues, or serial lines.
Below is a code example to illustrate the concept of proxy agents. We will assume that we have
defined an axis module by the class Axis that has but one method setX();. The following code
would be found in the axis module header file (or API specification):

class Axis : Environment
{
public:
 void setX();
private:
 double myX;
}

A user would then develop code to connect or bind to the axis module server, which in this case has
the name “Axis1.” The _bind service is similar to a constructor method, but returns a server

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 21

reference pointer rather than an address reference pointer. The _bind keeps track of the number of
client pointer references to the server. The bind establishes a client/server relationship with the axis
module. The application code is the client, and when Axis methods are invoked, a message is sent to
the server. In the following code, the application sets the x variable to 10.0:

application(){
 Axis * a1;
 a1 = Axis::_bind(“Axis1”);
 a1->setX(10.0);
}

If the server is co-located with the application, it is trivial to implement the object server. The
Axis::setX implements the value store.

Axis::setX(double _x){ myX = _x; }

However, for distributed communication, Axis::setX is defined twice - once on the client side and
once on the server side. On the client side we set up the remote communication, which in this case, is
an overview of a remote procedure call.

Axis::setX(double _x){
 callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)
}

On the server side, a server waits for service events (such as the bind, and the setX method). A
corresponding Axis::setX is defined to handle the x variable store. The server technology could
handle events in the background or use explicit event handling. In either case, the actions of the
server are transparent to the client.

Axis::setX(double _x){ myX = _x; }

server(){
 /* register rpc server name */
 while(1) { /* service events */ }
}

3.5 INFRASTRUCTURE

The infrastructure deals primarily with the computing environment including platform services,
operating system, and programming tools. Platform services include such items as timers, interrupt
handlers, and inter-process communications. The operating system (OS) includes the collection of
software and hardware services that control the execution of computer programs and provide such
services as resource allocation, job control, device input/output, and file management. Real Time
Operating System Extensions can be considered platform services since these extensions are
required for semaphoring, and pre-emptive priority scheduling, as well as local, distributed, and
networked interprocess communication. Programming tools include compilers, linkers, and
debuggers.
The OMAC API does not specify an infrastructure because many of the infrastructural issues are
outside the controller domain, and it would be better handled by the domain experts. Further, it is
more cost-effective to leverage industry efforts rather than to reinvent these technologies. For
example, commercial implementations of proxy agent technology are available. Microsoft has
developed and released DCOM (Distributed Common Object Model) [DCO] for Windows 95 and
Windows NT. Many implementations of CORBA (Common Object Request Broker Architecture)
[COR91] are available and Netscape incorporates an Internet Interoperable ORB Protocol (IIOP)
inside its browser. The question concerning the hard-real-time capability of such products remains.
But, industry is acting to solve this problem. In the interim, control standards that could provide a
real-time infrastructure are available [OSA96].

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 22

Because there are so many competing infrastructure technologies, OMAC API has chosen to let the
market decide the course of the infrastructure definition. As such, to achieve plug-and-play module
interchangeability, a commitment to a Platform + Operating System + Compiler + Loader +
Infrastructure suite is necessary for it to be possible to swap OMAC object modules.

3.6 BEHAVIOR MODEL

For the OMAC API, behavior in the controller is embodied in Finite State Machines (FSM). OMAC
API uses state terminology from IEC1131[IEC93]. An FSM step represents a situation in which the
behavior, with respect to inputs and outputs, follows a set of rules defined by the associated actions
of the step. A step is either active or inactive. Action is a step a user takes to complete a task that
may invoke one or more functions, but need not invoke any. A transition represents the condition
whereby control passes from one or more steps preceding the transition to one or more successor
steps.
 For the OMAC API, the following concepts apply. The receipt of a message causes an event that is
evaluated with the FSM and may cause a state transition. An object method invocation is the
mechanism in which messages are sent to cause an event. For distributed communication, OMAC
API makes the assumption that the proxy agent does the encoding of methods into messages and the
decoding of the transmitted message into the corresponding method calls.
3.6.1 LEVELS OF FINITE STATE MACHINES

For an OMAC API module, there can be nesting of FSMs. OMAC API does not dictate the number of
levels of FSM. In general, an outer administrative FSM exists to handle activities that include
initialization, startup, shutdown, and, if relevant, power enabling. The administrative FSM must
follow established safety standards. When the administrative FSM is in the READY state, it is
possible to descend into a lower level FSM.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 23

RESET

INIT

DISABLED

EXCEPTION

EXECUTING

init ()

startup() (second pass)

enable()

“command”()

terminated

resetException

CONFIGURING
 configure

 configured

resolve_abort

ABORTEDSTOPPING

shutdown()

reset()

DOWN

ENABLED/
READY

stop()
abort()

disable()

done()

powerup

throw_exception()

Figure 12: Generalized State Diagram

OMAC API defines the OMAC Base Class module to provide a uniform administrative state model
across modules. The OMAC Base Class state model is illustrated in Figure 12. The administrative
state model describes the start-up, shutdown, enabled/ready, configured, aborted, and initialization
operations that form the baseline of a module state space. States have methods (e.g., init(),
startup()) to cause state transitions.
To enter into a lower FSM, the module enters into the “executing” state as shown Figure 12. In the
“executing” state, client/server coordination uses a lower FSM for coordination. This lower FSM is
module- and application-dependent. This lower FSM, in turn, can have an FSM embedded within it
so that further nesting of embedded FSMs is possible.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 24

...

Administration
FSM

Reset, init, enabled
Ready, executing

Operation
FSM

Auto, manual

Dominion FSM
Buy, idle

Paused, running

pause

pause

pause

Figure 13: Levels of FSM

Figure 13 shows the nesting of FSM levels. Within the figure, the FSM icon is represented by a
rectangle inside a diamond. The dotted FSM icon represents an optional FSM. The nesting of one or
more lower level operation FSMs is possible depending on system complexity. Within the nesting of
the FSM shown in Figure 13, an “operational” FSM may handle different NC modes corresponding to
“auto,” “manual,” or “MDI”. For example, at the operation level for part programming, there may be
another level of FSM to handle a family of parts. The designer of a particular control system
determines the number of nested FSM levels, depending upon the complexity and organization of the
controlled system. The lowest level FSM or dominion FSM monitors the current focus of control.
The dominion FSM “rule” over lower level objects. There may be one or more dominion FSM at the
lowest level within an OMAC module.
For OMAC API, method invocations result in events to be propagated from the client to the server
that may cause server state transitions. Events are evaluated within the highest level FSM and then
recursively propagated through each lower level FSM. For example, in Figure 13 a pause event is
received at the highest Administration level and is evaluated. If the Operation FSM supports a
pause method then this method is invoked and the event evaluated. This event evaluation and
recursive cascading of the event may cross module boundaries and propagate all the way to the
“bottom” FSM in the application controller.
A major assumption concerning event propagation is the availability of the event method in a lower
FSM. In the previous example, there was an underlying assumption that all lower-level FSM
supported the pause method. This underlying assumption may or may not hold. For the interim, the
following rules characterize the FSM behavior with regard to specifying an event space:

• an OMAC module Administrative FSM supports all the events within the OMAC API Base
FSM

• any lower level FSM within an OMAC module supports both the OMAC Base FSM event
space as well any event specializations that an OMAC module supports. For example, the
Axis Group module defines events for hold, pause, resume and these would have to be
supported by lower level FSM contained within the Axis Group.

• Control Plan Units may have their own event model. It is unclear if they must support the
complete OMAC Base Class set of events.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 25

• optionally, an introspective query of an FSM could be specified to see if an event is supported
(e.g., canPause()). This mechanism is similar to that of reusable component functionality of
JavaBeans that provides for run-time and design-time methods. In addition to handling
event space matching, introspection could be useful as a safety feature to insure that
cooperating FSM understand each other.

3.6.2 COMPUTATIONAL MODEL

A general computational model exists for characterizing all OMAC control modules. Figure 14
illustrates the general computational model. Each OMAC module can support levels of nesting FSM
as part of general computational model. The OMAC API module may also have one or more FSM
simultaneously executing on a dominion FSM list. Each FSM on the dominion list is conceptually
equivalent to a concurrent thread of state logic. FSM on the dominion list can operate independently
or have dependencies between them.

ADMINISTRATION

MODULE

FSM STATE

QUEUE

FSM STATE

...

DOMINION

NESTING

EVENT CONTROL PLAN UNITor

FSM

FSM

FSM

FSM

Figure 14: Module Computational Paradigm

Within the FSM paradigm, different OMAC API modules have different FSM dominion list sizes. In
general, the OMAC modules exhibit the following computational model characteristics. The Discrete
Logic module generally has a multi-item dominion FSM list analogous to a scan list, (some active,
some not active), to coordinate IO points. The Axis Group has a multi-item dominion list, one or more
motion FSM and none, one, or more Process FSM. The Axis module has one FSM derived from the
OMAC Base Class and an embedded FSM to support Axis functionality.
In the general computational model, FSM are used for controlling behavior and also serve as
data. When events are sent from the client to the server and contain FSM as data, the FSM data is
called a ControlPlanUnit (CPU). A ControlPlanUnit is an FSM, but the internal representation is
not important to the OMAC API. Instead, a CPU is defined with a simple state management API
hiding messy FSM details. The following is a sketch of the ControlPlanUnit API.

interface ControlPlanUnit
{ // Option 1:
 ControlPlanUnit executeUnit(); // return next ControlPlanUnit
 // Option 2:
 // boolean isDone(); // state query
 // ControlPlanUnit getNextUnit(); // actually fetch next CPU when done
 void setActive(); // set when “executing”
 void setInactive();
 boolean isActive(); // for HMI to determine when active

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 26

 // ... methods for persistence data in binary or neutral format
 // ... methods for graph representation for navigation purposes,
 // such as when performing lookahead
};

The general computational model supports a mechanism to queue client requests - either events or
CPU. A CPU received by a server is queued and is eventually inserted into the dominion list. Three
types of CPU can exist on the dominion list:
Transient CPUs perform a fixed amount of work within a certain period. Transient CPUs execute
cyclically and are removed from the dominion list when an internal condition is satisfied. An
example of a transient CPUs is a motion segment CPU that has a beginning and an end. When the
CPU isDone() returns true, the CPU is removed from the dominion list.
Resident Cyclic CPUs execute “forever” and perform a function periodically. Resident cyclic CPUs
execute repeatedly with no internal completion condition. One example of a resident cyclic CPU is a
PLC operation to turn the oil/slides pump on/off every five minutes.
Resident Event-driven CPUs execute once when an event triggers their execution. An example of
a Resident Event-driven CPU is turning an IO point on or off.
The ability to have multiple CPU executing concurrently can be especially useful for Process Model
enhancement. Within the Axis Group for example, one can have a transient CPU for motion as well
as a resident cyclic CPU to handle data logging.
Equivalent application functionality can be achieved with different distributions of CPU within a
controller. Depending on the circumstances, tight coupling or loose coupling can be used to
coordinate logic and motion. Tight coupling is achieved by placing RESIDENT FSM on the dominion
list. Loose coupling is achieved by placing RESIDENT FSM in a separate thread under same
scheduler for all the other OMAC modules (which are resident FSM.)

Figure 15: Example Loose Coupling Probe Architecture

As an example, consider the integration of a Probe with an Axis Group to modify motion control.
Several ways exist for incorporating the Probe CPU into the system.

• The Probe CPU is placed in the Discrete Logic module to be run at a given period. The probe
could running at the same period as the Axis Group or be oversampled. This is an example of
loose coupling.

• The probe could run as standalone resident CPU scheduled like any other OMAC module.
The probe CPU could run at a slower, faster or the same frequency as the Axis Group. This is
an example of loose coupling and is illustrated in Figure 15.

• The Probe could be a Process Model resident CPU that runs inside of the Axis Group at the
same frequency as the Axis Group. This is an example of tight coupling and is illustrated in
Figure 16.

C om p ens at ion C P U

L o o se C o u p lin g
A xis G ro u p K in em at ic s

C P U
w rite

u p d a te

P ro b e

IO
P t

M o tio n
C P U fo rw a rd /re ve rs e

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 27

Figure 16: Example Tight Coupling Probe Architecture

3.6.2 Control Plan Unit Abstractions
The CPU is the base class, but the OMAC API defines several uses and specializations. Figure 17
illustrates the ControlPlanUnits hierarchy of possible ControlPlanUnit specializations. CPU
specialization is the mechanism to add extensions. For example, the NURB MotionSegment is
derived from the MotionSegment CPU. Specialization of CPU include:
 Capabilities

correspond to different machine modes (manual, auto). When the Capability FSM is in the READY
state, the Capability can descend into a lower FSM or ControlPlanUnit. For example, once in the
auto Capability FSM, a lower level FSM for the “cycle” ControlPlanUnit can be used to sequence
through a series of ControlPlanUnits.

MotionSegments
corresponds to the FSM input for an Axis Group module. In addition to the FSM directive and
parameter methods, a MotionSegment includes such information as rate, geometry, and a
reference to a velocity profile generator that are necessary for trajectory planning.

DiscreteLogicUnits
corresponds to the FSM input for a Discrete Logic module. DiscreteLogicUnits coordinate and
control an aggregation of IO points. In addition to the FSM directive and parameter methods, a
DiscreteLogicUnit contains the information necessary to either define asynchronous logic - the
event or condition trigger, or to define synchronous logic - the scan rate and FSM.

ProgramLogic
CPU for decision making, (e.g., statement, loops, end program and if/then/else).

forward/reverse

Axis Group Kinematics

write

update

Process
CPU

Probe

IO
Pt

Motion
CPU

Tight Coupling

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 28

Control
Plan Unit

Capability Motion
Segment

Discrete
Logic Unit

Program
Logic

Auto Manual
Joy

Stick Line Arc Nurb Mist Coolant Tool if then endif while

Figure 15: Examples of Different Types of Control Plan Units

A ControlPlanUnit is responsible for its own branching. For this reason, the method
executeUnit() returns a reference to the next ControlPlanUnit. A ControlPlanUnit may embed
other ControlPlanUnits. A series of ControlPlanUnit(s) is a ControlPlan. A ControlPlan
can be a simple list to represent sequential behavior or a complex tree. Figure 18 illustrates some
possible connections of ControlPlanUnits. Through the use of ProgramLogic CPU, one can achieve a
mapping from computer programming control constructs into a list representation.
To coordinate the ControlPlan (which is a graph of ControlPlanUnits) for outside observers (such as
the Human Machine Interface), there is a central ControlPlan header. The ControlPlan header
monitors navigation through the graph as ControlPlanUnit are activated and deactivated. As activity
in the ControlPlan occurs, the ControlPlan header points to active ControlPlanUnits. Traversal
methods are defined within a ControlPlanUnit so that external modules, such as the HMI, can
monitor progress of ControlPlan via the isActive() method.

whileifA=B then

else

endif

StepA stepB StepC

Control
Plan Unit

Control
Plan Unit

Control
Plan Unit

Control
Plan Unit

Control
Plan Unit

Control
Plan Unit

Control
Plan Unit

Control
Plan Unit

Control
Plan Unit

Control
Plan Unit

Control
Plan Unit

Figure 18: Control Plan built from Series of Control Plan Units

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 29

3.6.3 CONTROL PLAN UNIT NESTING

A ControlPlanUnit can contain other ControlPlanUnits. When activated, a CPU can send
embedded CPU to lower level servers. Thus, CPUs contain “intelligence” and understand how to
coordinate and sequence the lower level logic and motion modules.

Figure 19: Example Control Plan State Transitions

Figure 19 illustrates an example of the relationship between a CPU, its states, and its travel through
a control system. In this example, a ControlPlanGenerator, such as one for RS247D or IEC1131,
initially generates Control Plans from part programs most likely using a CPU constructor. During
execution of a Control Plan, the CPU is becomes the next active CPU in the Task Coordinator. The
Task Coordinator does an executeUnit on this CPU. The CPU determines if it can append an
embedded Motion Segment CPU onto the Axis Group motion queue. If for example, a tool change is
desired, then assume the CPU should wait until all current motion must be completed first. This
requires the CPU do synchronize with lower level modules. The synchronization would occur inside
the CPU and could be done with or without blocking. The code for a blocking CPU would look like
this:

 CPU execute_unit()
 { axgrp->wait_for_motion_idle(); // blocks until this is true
 axgrp->setNextMotionSegment(moveToToolChangerMS);
 // pass change tool CPU to discrete logic
 return nextCPU;
 }

The code for a non-blocking CPU would look like this and assumes that the Task Coordinator
periodically performs an executeUnit on the CPU.

 CPU executeUnit()
 { if(!axgrp->isIdle()) return this;
 axgrp->setNextMotionSegment(moveToToolChangerMS);
 // pass change tool CPU to discrete logic
 return nextCPU;
 }

Once the CPU is free to continue, embedded CPU(s) are passed to subordinate modules and loaded
onto their event queues. That is, the CPU running in the Task Coordinator passes the next Motion

upd ate(A xis G roup)

in itia lize
d

loaded

s ta rted

e xecute

e xecu te (Task C oo rd ina to r)

s ta rt(A xisG roup)

upd a te (A xisG roup
)

don e

done (se lf)

in itia lize (C on tro lP lanG ene ra to r)

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 30

Segment CPU to the Axis Group module and passes a Tool Change Discrete Logic Unit to the
Discrete Logic module.
Once the Motion Segment CPU is loaded onto the Axis Group queue, it waits for activation.
Activation can occur if the CPU is first on the queue and no CPU are on the dominion list running, or
the previous CPU already running on the dominion list returns a true to startNextCPU().
If ready for activation, the Axis Group moves the MotionSegment method from the motion queue to
the dominion list and calls start, which places the CPU in the started state. Herein, the
MotionSegment is in the executing state and the Axis Group periodically calls the Motion Segment
CPU update() method until the isDone() condition is true.
The transition from executing to done does not result from an externally-generated event, but
rather is achieved by the CPU satisfying an internal termination condition (hence the reference to
self).
Figure 20 illustrates the propagation of CPU through a controller. The Control Plan Generator
generates a top-level ControlPlanUnit CPU1 for the Task Coordinator. CPU1 contains embedded
MotionSegment CPU MotionSegmenta and DiscreteLogicUnit CPU DiscreteLogicUnitCPUb.
Consider the coordination required for a tool change. The top-level CPU1 forwards CPU1b or
DiscreteLogicUnitCPUb to the DiscreteLogic module to be placed on its scanning list. For
simplicity, assume the top-level CPU waits until the DiscreteLogic reports that it is done with the
tool change. Once the tool change motion is completed, the top-level CPU1 can then forward CPU1a or
MotionSegmenta to the AxisGroup.
It is important to understand the nesting of CPU and subsequent propagation of CPU. It
is the fundamental mechanism for passing data through an OMAC API controller.

Control Plan Generator
(RS274D Part Program

Translator)

Control Plan Generator
(IEC 1131-3 Translator)

Control Plan Generator
(IEC 1131-3 Translator)

Task Coordinator

Axis Group

Discrete Logic

Axis

(Capability)
Control Plan Unit

Control Plan Unit

Control Plan Unit

Control Plan Unit

Control Plan Unit

Methods

Methods

(Motion Segmenta

Discrete Logic Unitb)

(Motion Segmenta)

(Discrete Logic Unitb)

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 31

Figure 17: Intelligent CPU Spawning Lower Level CPU

Figure 18 is an Object Interaction Diagram for the following propagation scenario. Assume a Human
Machine Interface will set the current Capability to Auto mode. Then, the HMI interacts with the
Auto Capability to load a program name and then start the cycle. This will cause the Task
Coordinator to request the Control Plan Generator to translate the part program into a Control Plan.
Once translated, CPU1 will be executed via the executeUnit method. While CPU1 is executing, it
will forward two new Control Plan Units - first a Discrete Logic Unit dlub to perform a tool change
and afterwards a Motion Segment ms1. When it’s time, the scheduler or updater will cause the
DiscreteLogic module to execute. The DiscreteLogic module will then process its scan list and in turn
execute dlub. When the dlub tool change isDone, CPU1 will forward Motion Segment msa. At the
appropriate time, the scheduler or updater will cause the AxisGroup to execute and it will start
processing msa.

Schedu
ler
Update
r

HMI

Task
Coordina
tor

Auto
Capabilit
y
CPU

Control
Plan
Generat
or

CPU1

Axis
Group

Discrete
Logic

 SetCurrentCa
pabilty (auto)

 start()
 setProgramNa

me

 cycle()
update()
 executeUn

it()

 Cpu=trans
late

 executeUn
it()

 start()
update()
 (i0;in;i++)

scanlist->
cpu[i]->
executeUnit()
//DiscreteLogicU
nitb

 isDone()

 SetNext
Motion
Segmen
t()

 msa ->
calcNextIncre
ment
(actualpos,
 processCPU)
...

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 32

Schedu
ler
Update
r

HMI

Task
Coordina
tor

Auto
Capabilit
y
CPU

Control
Plan
Generat
or

CPU1

Axis
Group

Discrete
Logic

 isOK()
Figure 18: Embedded CPU Forwarding Object Interaction Diagram

The OMAC API specifies that ControlPlanUnit objects can embed module references and direct
method calls. On the surface, this approach appears implausible. However, because of proxy agent
technology, it is not hard to create a “forward reference” assuming one can dynamically bind to an
object. This dynamic binding is beneficial since it eliminates static encoding of methods (e.g., with id
numbers) necessary for methods to execute across domains (i.e., address spaces). To enable forward
references, the requirement does exist for the infrastructure to support some “lookup()” method to
map object names to addresses. Consider the following C++ code to handle generic Axis Group
control within the Task Coordinator.

class G0CPU : ControlPlanUnit
{
 void setMotionSegment(MotionSegment _msA); // parameters set by the CPG

 setAxisGroup(char * axgroupname) { ag=lookup(axgroupname); }
 setAxisGroup(AxisGroup * axgrp) { ag=axgrp; }

 CPU executeUnit()
 {
 if(!firstTime++)
 ag->setNextMotionSegment(msA); // message passing!
 if(!ag->isDone()) return this; // not done
 else return NULL; // return NULL or done CPU
 }

 private:
 MotionSegment msA;
 long firstTime;
};

In the example, a ControlPlanGenerator will create a G0CPU that contains a MotionSegment (i.e.,
msA). When the TaskCoordinator is executing the G0 CPU, the executeUnit method uses
explicit calls to an Axis Group object, (i.e. ag). In early binding, a “forward reference” must be
fulfilled by the ControlPlanGenerator to the Axis Group object is required. In late binding, the
TaskCoordinator could do the lookup of the AxisGroup reference. However, late binding can
unnecessarily slow down the “block throughput” of CPU, hence only early binding will be considered.
To achieve early binding, suppose the Control Plan Generator (CPG) constructor receives the name
“axisgroup1” for an Axis Group object. The CPG can lookup the object “axisgroup1” to retrieve a
reference address. Upon receiving a reference address to “axisgroup1,” the CPG passes this
reference address to a CPU, in this example, with the method setAxisGroup.
The degree of difficulty to do a reference address lookup depends on the execution environment. For
modules running as one or more threads in a process, the reference address is trivial. For reference
addresses that cross domain boundaries, proxy agent technology is required. Proxy agents must
encode reference addresses with a more sophisticated scheme to capture the domain (e.g., machine,
process) and encode the object reference and the methods. Proxy agent technology should hide the
reference address encoding from the programmer.

3.7 DATA REPRESENTATION

Exchange of information between modules relies on standard information representation. Such
control domain information includes units, measures, data structures, geometry, kinematics, as well

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 33

as the framework component technology. OMAC API has chosen two levels of compliance for data
definitions.
The first level defines named data types to allow type-checking. The OMAC API uses the IDL
primitive data types and builds on these data types to develop the foundation classes and framework
components. For control domain data modeling, the OMAC API used data representations found in
STEP Part Models for geometry and kinematics [Inta, Intb]. Internally, any desired representation
could be used. The STEP data representations were translated from EXPRESS[EXP] into IDL.
Representation units are assumed to be in International System of Units, universally abbreviated SI.
Below is the basic set of data types, which use STEP terminology for data names but reference other
terms for clarification.
Primitive Data

• IDL data types include constants, basic data types (float, double, unsigned long,
short, char, boolean, octet, any), constructed types (struct, union and enum),
arrays and template types bounded or unbounded sequence and string.

• IEC 1131 types - 64 bit numbers
• bounded string

Time

Length
• Plane angle
• Translation commonly referred to as position
• Roll Pitch Yaw (RPY) commonly referred to as orientation
• STEP notion of a Transform which is composed of a translation + rpy, also commonly

referred to as a “pose.”
• Coordinate Frame which is defined as a Homogeneous Matrix

Dynamics

• Linear Velocity, Acceleration, Jerk
• Angular Velocity, Acceleration, Jerk
• Force
• Mass
• Moment
• Moment of Inertia
• Voltage, Current, Resistance

The second level provides for more data semantics. The OMAC API adopted the following strategy to
handle data typing, measurement units, and permissible value ranges. Distinct data representations
were defined for specific data types. For example, the following types were defined in IDL to handle
linear velocity.

// Information Model - for illustrative purposes
typedef Magnitude double;

// Declaration
interface LinearVelocity : Units {

 Magnitude value; // should this value be used?
 // Upperbound and Lowerbound, both zero ignore
 Magnitude ub, lb; // which may be ignored

 disabled();
 enabled();
};

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 34

// Application
LinearVelocity vel;

In this case, linear velocity is a special class. Unit representation is inherited from a general unit’s
model. Permissible values are defined as a range from lowerbound to upperbound. The units and
range information are optional and may not be used by the application.
Another data typing problem that must be resolved concerns the use of a parameter. Not all
parameters are required or set by every algorithm. For example, setting the jerk limit may not be
necessary for many control algorithms. It was decided to use a special value to flag a parameter as
“not-in-use”. This approach seems simpler than having a useXXX type method for each parameter.
For now, OMAC API has decided that setting a parameter to an unrealistic “Not in use Number” (but
not actually “Not a Number”) value - such as MAXDOUBLE or 1.79769313486231570e+308 - renders a
double parameter to be ignored or not-in-use. A similar number would be required for an integer.
This works for level 1 and level 2. Within level 2, the methods enable and disable were added to
explicitly indicate use of a parameter.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 35

4 MODULE OVERVIEW

4.1 TASK COORDINATOR

The general characteristics of the Task Coordinator module include:
• act as central point for coordination
• initiate startup and shutdown since it understands the controller configuration -

what modules are in the system and how to start up the modules
• act as the highest level Finite State Machine within the controller.
• change frequently. The leaf nodes in the OMAC API architecture will be most stable.

As such, each system change should not require an entire rewrite of the TC. Instead,
TC should be flexible to accommodate change.

CAPABILITY
LIST

Home
Capability

Tool Change
Capability

Auto
Capability

“Executing”

ADMINISTRATION
EVENT

Capability

Auto

CPU Block1 CPU Block2

DOMINION

Control Plan

FSM STATE

Axis Group

FSM STATE

Discrete Logic Unit

FSM STATE

Figure 19: Task Coordinator Computational Model

The Task Coordinator module is an FSM. The Task Coordinator FSM functionality is defined by
ControlPlanUnits, called a Capability, that are received from clients. The Task Coordinator has a
one-element FSM dominion list to manage these Capabilities. The Capability class supports stop,
start, execute, and isDone methods.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 36

For an application controller, there is list of capabilities that a Task Coordinator can use. Figure 19
illustrates a CNC application with Capability instances. When a Capability is executing, it
coordinates the servicing of requests from the HMI. When the Auto Capability FSM is executing,
it interacts with the Control Plan Generator.

POWERUP

 setCurrentCapbility(m
anual)

 start()

PUSH AUTO
 setCurrentCapability(

auto)

stop()

 start()

LOAD
PROGRAM

setProgramName(file)

 execute()
... nothing to do
yet

PUSH CYCLE
startCycle()

 execute()

 Translate
part program
into
Control Plan

 execute()

 Run
Control Plan

Figure 20: Task Coordinator and Capability Object Interaction Diagram

Figure 20 illustrates a sequence of operations that takes a milling CNC from manual mode to
automatic mode. The diagram shows the use of Capability start, stop, and execute FSM
methods. In the scenario, the controller comes up in the manual mode as loaded by the HMI at
startup. Then, the operator pushes the auto button that causes the HMI to execute the Manual
Capability stop method, and load the Auto Capability onto the Task Coordinator queue. That
cycle, the Task Coordinator will see that the Manual Capability boolean isDone is True and will
swap the Auto Capability FSM into the dominion FSM list. The operator action to Load Program
will result in a program name loaded into the Control Plan Generator. When the operator pushes the

Operator

HMI Task
Coordinator

Manual
Capability
CPU

Auto
Capability
CPU

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 37

cycle start button, it will cause the Auto Capability FSM to translate a part program and then
start sequencing a ControlPlan generated by the Control Plan Generator.

4.2 DISCRETE LOGIC

ADMINISTRATION

EVENT

Thermal
Overheat

Mist On
Ladder Rung

I/O
Scanner

“Executing”

IO
Ladder
Rung IO

IO
MIST
ON IO IO IO

SOFTW ARE

(e.g., enable Mist On)

HARDWARE

IO POINTS

Figure 21: Discrete Logic Computational Model

The Discrete Logic module is similar to the Task Coordinator module in that it sequences and
coordinates actions through dominion FSM. However, instead of a one-element dominion FSM, the
Discrete Logic module has a multi-item dominion FSM list that is analogous to a scan list. In
general, a Discrete Logic FSM could be coded in any of IEC-1131 languages and translated into
ControlPlanUnits. Figure 21 illustrates the types of FSM that may be found on the Discrete Logic
dominion list for a typical CNC milling application. An FSM to handle IO scanning would be
expected. An FSM implemented as a Ladder Rung could be expected to handle a relay for turning a
Mist pump on. Below is a sketch of the activity for turning the IO mist pump on.

mistPumpOnRung()
execute()
{ logic: trigger relay to turn pump on
 wait till IO/pt says pump is on
 IOmist<- on;
}

At a higher level, a hardware-independent Mist FSM would be required to coordinate turning Mist
on and off. Below is a sketch of pseudo code to sequence the Mist on operation. For coordination
between FSM logic, polling or event-drive alternatives exist to wait for the IO Mist on activity to
complete.

mistOnFsm()
{ “MistOn LR IO <- on” to turn LR=ladder rung on

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 38

 “subscribe to event that IO Mist On ==on”
 “wait for event or poll for IO point for Mist On == on “
 “done - deactivate FSM for scanning”
}

4.3 AXIS

Axis module contains classes encapsulating the features pertaining to a single axis in a multi-axis
control system. Figure 22a diagrams the relationship of the various classes. Classes are defined to
provide a variety of setpoint control (e.g., following AxisPositionServo, AxisVelocityServo,
AxisAccelerationServo, AxisForceServo), actions (e.g., AxisHoming, AxisJogging) and
data (e.g., AxisCommandedOutput, AxisRates, AxisLimits, AxisSensedState). Figure 22b
diagrams the finite state model of execution.

Commanded
Output

SensedState

Rates

Limits

Kinematics

Dynamics

OMAC Module

Axis

Error and
Enable

AbsolutePos

Jogging

Homing

AccelerationServo

ForceServo

PositioningServo

VelocityServo

Control Law

Control Law

Control Law

Control Law

1

1
1

1

1
1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1 1

1 1

1 1

1

1

Figure 22a: Axis Class Diagram

The following list itemizes some basic open architecture requirements the axis module must support:
• nested control loops (e.g. position and velocity) using either derived feedback or

additional sensors (e.g. encoders and tachometers)
• perform backlash compensation
• ability to incorporate any appropriate sensors and actuators available in the system

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 39

• provide settable error limits and “clamping” of various quantities in the loop. If error
limits are exceeded, the loop will “safe” itself, and inform of an error condition.

E-Stopped

Disabled

r
e
s
e
t
_
a
x
i
s
(
)
/

E
_
S
t
o
p
.
r
e
s
e
t
_
a
c
t
i
o
n
(
)

e
_
s
t
o
p
_
a
x
i
s
(
)

/

E
_
S
t
o
p
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

Enabled/Ready

e
_
s
t
o
p
_
a
x
i
s
(
)

/

E
_
S
t
o
p
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

enable_axis() /
E_Stop.enable_action()

disable_axis() /
E_Stop.disable_action()

Following
Force

update_axis()/
Force.update()

E
R

R
O

R
 /

F
o
r
c
e
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

f
o
l
l
o
w
_
f
o
r
c
e
(
)

/

F
o
r
c
e
.
s
t
a
r
t
_
f
o
l
l
o
w
i
n
g
(
)

s
t
o
p
_
m
o
t
i
o
n
(
)

/

F
o
r
c
e
.
s
t
o
p
_
f
o
l
l
o
w
i
n
g
(
)

Following
Acceleration

update_axis()/
Accel.update()

E
R

R
O

R
 /

A
c
c
e
l
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

f
o
l
l
o
w
_
a
c
c
e
l
e
r
a
t
i
o
n
(
)

/

A
c
c
e
l
.
s
t
a
r
t
_
f
o
l
l
o
w
i
n
g
(
)

s
t
o
p
_
m
o
t
i
o
n
(
)

/

A
c
c
e
l
.
s
t
o
p
_
f
o
l
l
o
w
i
n
g
(
)

Following
Velocity

update_axis()/
Velocity.update

()

E
R

R
O

R
 /

V
e
l
o
c
i
t
y
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

f
o
l
l
o
w
_
v
e
l
o
c
i
t
y
(
)

/

V
e
l
o
c
i
t
y
.
s
t
a
r
t
_
f
o
l
l
o
w
i
n
g
(
)

s
t
o
p
_
m
o
t
i
o
n
(
)

/

V
e
l
o
c
i
t
y
.
s
t
o
p
_
f
o
l
l
o
w
i
n
g
(
)

Following
Position

update_axis()/
Position.update

()

E
R

R
O

R
 /

P
o
s
i
t
i
o
n
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

f
o
l
l
o
w
_
p
o
s
i
t
i
o
n
(
)

/

P
o
s
i
t
i
o
n
.
s
t
a
r
t
_
f
o
l
l
o
w
i
n
g
(
)

s
t
o
p
_
m
o
t
i
o
n
(
)

/

P
o
s
i
t
i
o
n
.
s
t
o
p
_
f
o
l
l
o
w
i
n
g
(
)

u
p
d
a
t
e
_
a
x
i
s
(
)
/

H
o
m
e
.
u
p
d
a
t
e
(
)

Homing
s
t
a
r
t
_
h
o
m
i
n
g
(
)

/

H
o
m
e
.
s
t
a
r
t
(
)

e
_
s
t
o
p
_
a
x
i
s
(
)
,

E
R

R
O

R

/

H
o
m
e
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

H
O

M
E

D
 /

H
o
m
e
.
c
o
m
p
l
e
t
e
d
(
)

Home Stopping

e
_
s
t
o
p
_
a
x
i
s
(
)
,

E
R

R
O

R

/

H
o
m
e
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

update_axis()/
Home.update()

s
t
o
p
_
m
o
t
i
o
n
(
)

/

H
o
m
e
.
c
a
n
c
e
l
(
)

S
T

O
P

P
E

D
 /

H
o
m
e
.
c
a
n
c
e
l
e
d
(
)

u
p
d
a
t
e
_
a
x
i
s
(
)
/

I
n
c
r
.
u
p
d
a
t
e
(
)

Incrementing

I
n
c
r
_
A
x
i
s
(
)

/

I
n
c
r
.
s
t
a
r
t
(
)

e
_
s
t
o
p
_
a
x
i
s
(
)
,

E
R

R
O

R

/

I
n
c
r
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

A
T

_P
O

S
IT

IO
N

 /
I
n
c
r
.
c
o
m
p
l
e
t
e
d
(
)

Increment
Stopping

e
_
s
t
o
p
_
a
x
i
s
(
)
,

E
R

R
O

R

/

I
n
c
r
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

update_axis()/
Incr.update()

s
t
o
p
_
m
o
t
i
o
n
(
)

/

I
n
c
r
.
c
a
n
c
e
l
(
)

S
T

O
P

P
E

D
 /

I
n
c
r
.
c
a
n
c
e
l
e
d
(
)

u
p
d
a
t
e
_
a
x
i
s
(
)
/

M
o
v
e
.
u
p
d
a
t
e
(
)

Moving_To

a
x
i
s
_
m
o
v
e
_
t
o
(
)

/

M
o
v
e
.
s
t
a
r
t
(
)

e
_
s
t
o
p
_
a
x
i
s
(
)
,

E
R

R
O

R

/

M
o
v
e
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

A
T

_P
O

S
IT

IO
N

 /
M
o
v
e
.
c
o
m
p
l
e
t
e
d
(
)

Move_To
Stopping

e
_
s
t
o
p
_
a
x
i
s
(
)
,

E
R

R
O

R

/

M
o
v
e
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

update_axis()/
Move.update()

s
t
o
p
_
m
o
t
i
o
n
(
)

/

M
o
v
e
.
c
a
n
c
e
l
(
)

S
T

O
P

P
E

D
 /

M
o
v
e
.
c
a
n
c
e
l
e
d
(
)

S
T

O
P

P
E

D
 /

J
o
g
.
c
o
m
p
l
e
t
e
d
(
)

Jogging

Jog
Stopping

s
t
a
r
t
_
j
o
g
g
i
n
g
(
)

/

J
o
g
.
s
t
a
r
t
(
)

s
t
o
p
_
m
o
t
i
o
n
(
)

/

J
o
g
.
e
n
d
(
)

e
_
s
t
o
p
_
a
x
i
s
(
)
,

E
R

R
O

R

/

J
o
g
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

e
_
s
t
o
p
_
a
x
i
s
(
)
,

JO
G

_E
R

R
O

R
 /

J
o
g
.
e
_
s
t
o
p
_
a
c
t
i
o
n
(
)

u
p
d
a
t
e
_
a
x
i
s
(
)
/

J
o
g
.
u
p
d
a
t
e
(
)

update_axis()/
Jog.update()

Figure 22b: Axis Module State Diagram

Within the Axis module definition, several issues exist.
One issue that occurs is mapping a single axis to multiple actuators. At this time, actuators are not
an OMAC API module. The current resolution to the single axis-multiple actuator problem is to
define specializations of the Axis base class to handle the multiple actuators.
Another issue is exposing the FSM methods. The reason for exposing the FSM methods is so that
such FSM classes (such as AxisAccelerationServo) can be a replaceable component within the
system. Different implementations of the class definition would adhere to the interface.
Another issue is what happens when a method is invoked in the wrong state? For example, suppose
an ACCEL_EVENT occurs when in the HOMING state and there is no defined transition? The first
possible action is to ignore the event, but this is poor system design. The preferable option is to throw
an exception, but OMAC API has not enumerated exceptions yet.
Another issue is how is a Control Law attached to a servo class such as Position, Velocity,
Acceleration, or Force? The answer is to use class specialization to extend the base class to contain
Control Law component. For example, AxisAccelerationServo may not need a control law
component if connected to SERCOS drive so that it uses the specified Base Class:

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 40

interface AxisAccelerationServo(){}

For software servoing, an Axis class specialization would be defined that incorporates a control law
component using a Derived Class:

interface CLAxisAccelerationServo() : AxisAccelerationServo
{ ControlLaw controllaw;
};

4.4 AXIS GROUP

The Axis Group module is responsible for transforming an incoming MotionSegment into a sequence
of equi-time-spaced setpoints, incorporating mechanism and process knowledge, and coordinating the
motions of individual axes.

ADMINISTRATION

FSM STATE

QUEUE

FSM STATE

DOMINION

EVENT ControlPlan Unit

“Executing”

ProcessMotion

MotionSegment

Process

FSM STATEFSM STATE

Axis 1 Axis n

Figure 23: Axis Group Module

Figure 24 shows the class diagram for the Axis Group module. The Axis Group module consists of the
following classes:
AxisGroup

is the coordination module that has the following responsibilities:

• kinematics coordination transformation
• dynamic offset (e.g. sensing inputs) and overrides
• multi-axis coordination
• blending and block look-ahead
• feedhold
• operation stop
• execution on compensation look-up tables

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 41

• path or rate-control modification based on sensor-feedback (including operator
overrides)

PathElement is the class definition to define the motion geometry.

Rate is the class definition to define the motion rates and limits along a path.

VelocityProfileGenerator is generates time-based steps along a path. Time-scaling of motions is
performed along a path based on rate-control (desired velocities, accelerations) or time-duration.
Includes control of acceleration/deceleration.

MotionSegment is derived from ControlPlanUnit to define a motion-control FSM. Contains
references to VelocityProfileGenerator, PathElement and Rate classes.
Figure 23 illustrates AxisGroup computational model. The AxisGroup receives MotionSegment CPUs
that define the motion. MotionSegments are queued to allow blending or lookahead. Process CPUs
are required for integrating sensing and mechanism knowledge. Process CPUs have tightly-coupled
associations with the Kinematics Module (for mechanism knowledge) and the Process Model (for
sensing and application specific knowledge).
The Kinematics module describes the relationship of the machine and part to a world coordinate
system. Such information could include a relative offset to the machining bed and another offset to a
part origin. Obstacles such as fixtures would also be included within this description. The Process
Model integrates operator and sensor feedback into the trajectory motion. This feedback can be used
to modify the rate-control.

Axis Group Motion Segment

OMAC Module ControlPlanUnit

queue
n

Rates VelocityProfile
Generator

Path Element

AccDec
Profile

KinMechanism 1

1
1 1

1

Process Model
(CPU)

1

Figure 24: Axis Group Class Diagram

Discussion on some issues and procedures common to Axis Group operation follows.
Concerning the issue of power management, it is assumed to be user-specifiable by the
ControlPlanUnit within some timing constraint. For example, a sequence to set a bit, wait 3 seconds
and then check brakes can be embodied with a ControlPlanUnit.
A common Axis Group procedure is to stop running, change a broken tool and then resume operation.
For this Axis Group module has API to save motion queue context and then restore it. An underlying

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 42

assumption is that if there are other queues internal to the Axis Group (e.g., lookahead, blending)
that these too will be saved and restored.
The issue of standard stopping procedures is fundamental to a standard Axis Group API. OMAC API
proposes three modes to stop:

hard stop is a stop with max deceleration rate. Also called abort.

pause is a stop on the path as defined by the KinematicPath in the MotionSegment.

hold is a stop at end of segment as defined as the next increment provided by the Velocity
Profile Generator.

There are four recovery modes from stop:
resume start motion from the current point

skip skips to the next segment

flush flushes all segments on the motion queue

restore after a motion queue save after stopping, with possible intervening motions (such as
to change a broken tool or backing out), the motion queue can have its previous context
restored.

A standard Axis Group estop is not addressed because of the many different interpretations of
estop. For most purposes, a hard stop and estop are identical.
An issue of axis grouping and creating higher level objects can be resolved by defining a higher level
AxisGroup module. Some grouping issues include:

• error grouping - the AxisGroup has an inhibit() API for error recovery (e.g., 2 live
axis with 3 dead axis)

• power sequencing - TBD
• power chain grouping - TBD
• kinematic grouping is done with the Kinematics module.

4.5 PROCESS MODEL

The Process Model is responsible for dynamic control modifications. The Process Model exists to
encapsulate the application- or domain-dependent knowledge. For example, the Process Model for
machining would incorporate feedrate override, but the Process Model for a pick-and-place robot
would probably not. Some typical Process Model dynamic modifications associated with machining
include:

• feedrate override
• spindle speed override
• path offset (normal adjustment for cutter compensation)
• tool length offset (dynamically modified based on tool wear, not just tool change)
• data logging flag
• cycle interruptions (e.g., estop, hard stop, feed hold)

The Process Model is generally associated with the Axis Group in order to modify the current motion.
The relationship between the Process Model, Axis Group and MotionSegment modules can vary. This
variation greatly affects the openness flexibility.
In the dependent relationship, the Axis Group and the Process Model know each other’s API a priori.
For example, suppose the Axis Group understands that the Process Model supports feedrate override
via a getFeedrateOverride() API. Then, the Axis Group can retrieve the current feedrate
override value in order to modify the current MotionSegment’s feedrate.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 43

The dependent relationship is flexible if all the required shared variables between the Axis Group
and the Process Model exist. For example, if the feedrate override had been under operator-control, a
user may replace the Process Model with a custom module to change the feedrate override based on
some force/torque sensing. However, problems arise if the user wants to add a cutter compensation
normal to a MotionSegment and a pre-defined API does not exist. Now, the Axis Group or each
MotionSegment must be rewritten to incorporate this modification.
In an independent relationship, the Axis Group and Process Model coexist without a priori
knowledge of each other. For this case, OMAC API is proposing to allow the Process Model to send
CPU to Axes Group so that these CPU can modify the current motion CPU (i.e., MotionSegment).
Consider the following alternatives where the user wants to integrate a new probe into the control
system and coordinate when the motion controller to start recording points.

1. For the dependent relationship, a solution is to rewrite the Axis Group to accept a
“log data” flag and then record data.

2. Another possibility is to mandate that every control plan be rewritten to contain a
“log flag.”

3. In the proposed independent relationship, the Process Model would generate a CPU
that is sent to the Axes Group which is executed every cycle to actually log data
based on an external reference to a “log flag.”

In the independent relationship, countless other real-time modifications could be applied by
ControlPlanUnits within the AxisGroup (as well as the Kinematics Module). The ability to extend
the controller based on evolving sensor-based applications was a primary OMAC requirement.
Hence, the necessity to support the Process Model independent relationship.

4.6 KINEMATICS

Kinematics refers to all the geometrical and time-based properties of motion[Cra86]. The OMAC API
uses a graph representation to model the geometrical aspect of kinematics. The model is flexible
enough to handle kinematic chains and kinematic hierarchies. Figure 25 illustrates the terminology
used to model the geometric kinematics. A KinStructure describes the geometry of an axis link. A
KinStructure has a Base Frame (generally used to model compensation) and a Placement Frame
to model the axis link transformation. The BaseFrame is useful as an offset to model spindle growth
or other compensation variables. When no compensation is planned, the BaseFrame location equals
the placement frame location. A Connection models the relationship between two KinStructures
using a from KinStructure and a to KinStructure. A KinMechanism models a kinematic chain as a
series of connections. The OMAC API kinematic model allows recursive kinematic definition. A
KinStructure can itself be a kinematic chain modeled as a KinMechanism. This recursive definition
allows a static kinematic chain to collapse into a single pre-computation.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 44

K2
KinMechanism

KinMechanism

baseFrame baseFrame placementFrameplacementFrame

Connection

K1•K2

KinMechanism

K3
KinMechanism

baseFrame placementFrame

K1•K2

KinMechanism

baseFrame placementFrame

KinStructure

KinStructure

KinStructure KinStructure

Figure 25: Kinematics Model

A KinMechanism is responsible for computing the forward and inverse kinematics. A KinStructure
contains the following information necessary for these calculations:

• transform
• static or dynamic link
• home state
• link model - translational, prismatic, rotational

World

Table

Part

ax1

Goal Pt

ax2
ax3

tool

spindle

Figure 26: Kinematics Example

As an example, consider the case of a three axis machine with tool to mill parts on a table given a
part offset. The machine tool kinematic chain contains a spindle KinMechanism to model spindle
growth. Figure 26 illustrates the chain of KinStructures World, Table, Part, Goal Pt, a1,
a2, a3, spindle, and tool to model this example. We will assume the table is motionless.
The following code sketches an OMAC API kinematic model for this example.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 45

// Declarations
KinMechanism worldKM, axKM[3], spindleKM, toolKM;
KinMechanism overallKM; // collection w-a1-a2-a3-spindle-tool kinematic chain
KinStructure * worldKS, * axKS[3], * spindleKS, * toolKS;
Transform Identity = new Transform (1, 0 , 0, 0, 0 , 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);

// Define KinStructures and embed in KinMechanism
 worldKS= new KinStructure();
 worldKS->setBaseFrame(&Identity);
 worldKS->setPlacementFrame(&Identity);
 worldKM.setConnections(NULL); // trivial case, does not contain KinMechanisms
 worldKM.setKinMechanisms(NULL); // trivial case
 worldKM.setKinStructure(worldKS);

 axKS[0]= new KinStructure();
 axKS[0]->setBaseFrame(&Identity);
 axKS[0]->setPlacement(/*some transform*/);
 axKM[0].setConnections(NULL);
 axKM[0].setKinMechanism(NULL);
 axKM[0].setKinStructure(axKS[1]);
 ...

// Set connections
 Connection c[5]
 Connections connections;
 c[0] = setFrom(w);
 c[0] = setTo(axKM[0]);
 c[1] = setFrom(axKM[0]);
 c[1] = setTo(axKM[1]);
 c[2] = setFrom(axKM[1]);
 c[2] = setTo(axKM[2]);
 for(int i=0; i< 5; i++) connections.add(c[i]);

//Define overall KinMechanism
 overallKM.setConnections(connections);

// Modification of axis values
 axKM[0]->getKinStructure()->setPlacementFrame(&newFrame1);
 axKM[1]->getKinStructure()->setPlacementFrame(&newFrame2);
 axKM[2]->getKinStructure()->setPlacementFrame(&newFrame3);

The importance of the Kinematics module is not only calculating the forward and inverse solutions,
but also providing a mechanism to perform offsets and compensation. A few examples will be
considered.
Relative Positioning The equivalent to the RS274D Absolute and Relative positioning cases are
handled by two separate KinMechanisms.

Change Tool Suppose a tool table is to be maintained. A KinMechanism for each tool in the table
will need to be defined. For a tool change, a new reference to the new tool is substituted for the tool
KinMechanism in the overall kinematic chain.
 KinMechanisms tool[100];
 toolKM = &tool[2];

Tool Length Offset Consider the case in which tool length offset is changed to compensate for tool
wear, reconditioning, depth of cut (rough, finish), or dry run. In this case, the tool KinStructure
PlacementFrame is modified to reflect the change. For example, changing column 4 row 3 (i.e., the z
value) of Tool displacement frame will change the offset.

toolKM->getKinstructure->setPlacementFrame(newFrame);

Spindle Growth A majority of variation during machining is attributable to spindle growth. The
example kinematic chain contained a Spindle KinMechanism to model spindle growth. Modifying the
spindle BaseTransform based on spindle growth achieves good correction at a modest cost.

 spindleKM->getKinstructure->setPlacementFrame(newFrame);

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 46

Axial Growth Consider the case in which an axis is growing in length as the leadscrew mounting
bearings heat up during machining. In this case, the axial member is growing in length. Next to the
spindle, axis growth is the most common and cost-effective compensation technique. In this case, an
axis KinStructure baseFrame is changed.

 axKM[0]->getKinStructure()->setBaseFrame();

Cutter Radius Compensation Consider the scenario in which path modification is based on cutter
radius compensation. Assume the need to apply a normal offset to the pre-defined curvilinear
kinematic path from point A to point B.

In the static case, the entire kinematic path can be recomputed as specified based on a flag. In this
case, responsibility is delegated to the CPU to handle the change from the nominal path to the
compensated path.
In a quasi-static case, suppose the cutter radius is computed on-line by some process controller or
sensor to do radial compensation to adjust the path. In this case, a radial compensation value is
input to the Kinematic Path class and it returns a corrected value.

In the dynamic case, the modification is to the next increment of the interpolated path of the current
MotionSegment. This would be achieved by calling the KinematicPath (i.e., KP) with the normal
offset.

 KP->applyNormalOffset(&normalOffset);

Configuration Solution rules for configuration such as up/down elbow or redundant links are
handled by class specializations.

Update Unresolved is the responsible module and mechanism used to update dynamic (e.g., axis)
values.

4.7 IO SYSTEM

The purpose of the IO system is to provide a uniform interface to Physical or Virtual input or
output points in the system. The IOPoint class defines the uniform interface and hides the details of
the underlying hardware interactions. An example of an IO Point is a DAC on a multiple DAC digital
to analog output card. The IOPoint base class manages a single value, and provides an interface for
reading and writing that value. The IO Point base class contains readValue() and writeValue()
methods.
Each IOPoint may be accessed individually but IOPoints are controlled by an IO System. An IO
System is a module consisting of one or more IO Points, grouped together because they share some
resource (either hardware or software). There can be many IO systems in a controller (e.g., Sercos,
D/A board, etc.)

4.7.1 IO NOTIFICATION

Each IO System may optionally contain Callback Notification and Callback Handlers.
Callback Notification object(s) provide a mechanism for other modules to be informed when some
internal activity has taken place in the IO System. Each Callback Notification object contains a list of
Callback Handlers to be activated on the desired event. This allows multiple modules to be
informed on an IO System state change. The Callback Handlers are entered into the Callback
Notification object’s list at system integration time. For example, a Callback Notification might exist
to inform other modules when the values associated with an IO System’s IO Points have changed.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 47

The IO System may also by notified by Callback Handlers. A callback by other modules would inform
the IO System that some event has occurred. For example, the IO System may contain a Callback
Handler to be activated when it is time to sample all of its IO Points’ inputs.

4.7.2 IO CONFIGURATION

OMAC API uses a Presentation IO model in which each IO system (as one of many in the system)
creates a series of IOPoints that other objects in the system access via references (or handles). This
differs from an Attachment IO model, where each object in the system creates an IOPoint and
attempts to attach the IOPoint to some hardware.
As an analogy to differentiate between the Presentation and Attachment models, consider an IO
Point filled with bytes from a file. In the Attachment model one opens a file, and uses a copy of a
device driver to read bytes from the file. To read bytes within the Presentation Model, the
assumption exists that a separately running IO System module has already opened the file and has
presented a byte IOPoint for system-wide access. In IOPoint presentation, any number of objects in
the system can access the byte IOPoint buffer, which is updated by its IO System.
The Presentation IO model assumes that an object uses an ASCII naming and lookup service to
connect to an IOPoint. This IOPoint connection is performed at configuration time. However, at this
time the OMAC API does specify a configuration API for IO Point connection.

4.7.3 IO CUSTOMIZATION

Clients of I/O modules may wish to customize their interaction. OMAC API has defined IOPoint
classes for the major types (e.g., short, long, float, double). THE FOLLOWING SECTION
DISCUSSES ISSUES OF IO CUSTOMIZATION, HOWEVER, IO CUSTOMIZATION IS NOT WITHIN THE
SCOPE OF THE OMAC API SPECIFICATION EFFORT.
Customized IOPoint classes can be derived based on specializations (such as a read-only IOPoint) as
well as methods to manipulate the value’s units, name, type, and other properties. These methods
may be further supplemented with additional IO system-specific methods to configure IO waiting,
synchronization, as well as low-level communication protocols.

IO mechanism Since IO Systems will probably represent a particular piece of hardware
plugged into the system, customization of the io mechanism is also desirable to provide non-
generic, hardware specific interfaces. These interfaces are referred to as Control
Interfaces, and are somewhat analogous to the Unix ioctl() function calls. Unlike the
other interfaces provided by the IO System, there is no fixed form for these interfaces. They
exist to provide access, by knowledgeable software modules, to low level hardware functions
that cannot be put into the generic forms used by the other interfaces. They would probably
be used primarily by diagnostic software. Use of these interfaces by other modules, which are
intended to be generic, is not recommended, since their use would prevent the module from
using any other IO System that did not provide an identical interface.
IO Data Handling Customization of data handling requires some special characteristics.
For example, the IO module tailors the service to offer different sampling strategies, transfer
protocol and data age. The following is a list of customized IO data and protocol
characteristics:
Sampling Event IO system characteristic

• ON-DEMAND,

• ON-TRANSITION,

• ON CLOCK

Data Age

• Sample Num

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 48

• Sample Num + N

• Current Reading

• Current Reading + N

Transfer Type

• Synchronous : wait until complete

• Synchronous : wait up to specific time

• Asynchronous : initiate and specify complete event handler

• Asynchronous : continuous with completion event handler

4.7.4 IO META DATA

A major issue with handling IO is the aspect of IO Meta data. IO Meta data correlates the IO to the
device, for example, “what board is this IO Pt associated?” IO meta data incorporates knowledge
useful for maintenance and diagnostics. In many ways, IO Meta data is the bigger part of IO. OMAC
API has not specified a formal IO Meta data. OMAC supports the notion of an IO registry that
would include such IO Meta knowledge as:

• IO as shared across the system
• IO as used by different clients
• IO as defined from a physical aggregation
• IO grouping for efficiency (e.g., an IO group is clustered on one board)
• physical device to logical IO mapping (e.g., a device has 4 analog inputs, 4 analog outputs, 16

discrete IO).
Overall, IO registry would consist of a container of devices as well as a container of IOPoints. Each
IO point keeps a reference to a device as well as a device specific set of data which is needed to access
that IO point (e.g. which bit, how wide, what type). This format information is retrieved at start-up
and is returned in the form of a reference handle. This could allow a configuration utility to build a
GUI and supply the data, which is then stored in the registry.
Interaction with an IO registry is as follows. At configuration-time, IO registry functions include
service to bind a device to IO name (i.e., device maps into a board, point, type) and this builds the
internal tables. At initialization, the IO registry return handles for names for efficient access during
execution. At runtime, IO has facilities for the read and write of grouped outputs and single
outputs; as well as the read of grouped inputs and single inputs.

4.7.5 IO ISSUES

The OMAC API has not specified a solution to the issue of whether an IOPoint tells whether it is
input or output. A simple resolution would have an IO derived type from IO_PT used by
configuration for mode differentiation and type checking.
The OMAC API has not specified a solution to the issue of forcing IO and machine simulations
through IO points.

4.8 CONTROL PLAN GENERATOR

The Control Plan Generator is responsible for reading and translating programs, which represent
machine operation and tooling. The Control Plan Generator can either translate the entire file or
provide instructions a statement at a time. The Application Programming Interface to the Control
Plan Generator is not concerned with the format of the part program itself, but with syntax and
translating program elements into Control Plan Units. Functionality of the Control Plan Generator
includes:

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 49

• reading existing program files, which contain statements in the format understood by
the translator but not standardized by the OMAC API

• translating part program statements into ControlPlanUnits
• correlating source knowledge about a program, (e.g., current line number, active

statement) with a ControlPlanUnit.

valid?

Control Plan
Generator

CPU Table

Control Plan

syntax check

lookup(1..n)

generate(1..m)

Figure 27: Control Plan Generator

Figure 27 presents an overview of the Control Plan Generator. The Control Plan Generator is
responsible for syntax checking of the part program. If the syntax is valid, the Control Plan
Generator generates one or more Control Plan Units for each line of the part program. The Control
Plan Generator is responsible for correlating part program source information (such as line numbers)
with each ControlPlanUnits. Multiple source lines may be active with one ControlPlanUnit.
Table lookup to translate a part program statement into a ControlPlanUnit can be done in a number
of ways. OMAC API does not specify a standard lookup technique. One option to perform this lookup
would be to associate each part program statement with a separate translation object that queries or
is given the knowledge it requires. Each translation object would support an identical translate()
interface. Another possibility is to use “flat” canonical functions instead of “object-oriented”
translation classes. Any number of indexing or bidding schemes is also possible.
It would be desirable for Control Plan Generators to generate generic machine-independent Control
Plans. Then, translation from generic ControlPlan Unit to a machine specific ControlPlanUnit could
be done based on the specific objects in the system. For Control Plan machine-independence, adding
a machine profile (e.g., 3-axis versus 5-axis) and a Control Plan should produce identical results.
Concerning the issue of part program portability, OMAC API does not expect the
ControlPlanGenerator to produce a machine-independent ControlPlan. This flexibility is difficult to
attain and the OMAC API determined that defining a Neutral Language Definition was outside the
scope of the current effort.

4.9 HUMAN MACHINE INTERFACE

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 50

Figure 31: MVC Design Pattern

The Human Machine Interface is responsible for the connection between the controller and a human-
monitoring subsystem. The object-oriented design pattern called the model-view-controller (MVC)
will be used as the HMI reference model [GHJV94]. Figure 31 shows the relationship of the different
control and human aspects within the MVC pattern. The MVC model “M” defines the state of the
HMI objects. The MVC View “V” corresponds to the front-end or visual presentation with which the
user interacts. The MVC controller “C” is not the same as the motion controller, but refers to an
object that controls a View object in such a way that it responds to user input and delivers output.
Some clarifying objectives concerning the OMAC API HMI are in order. The goal of the OMAC API is
to define an HMI specification that is independent of the visualization medium (i.e., V), the data
entry mechanism, the operating system, or the programming language. The primary OMAC API
objective is to specify a technology-neutral data and event model (i.e., M) for exchange of information
between the Human subsystem and the Application Controller. The OMAC API would like to
encourage the bundling of a control component with an HMI viewing component (i.e., supply
component plus V & C). The OMAC API is not concerned with the “look and feel” of a HMI. The “look
and feel” of an HMI is generally application-specific.
To understand the HMI for OMAC API, the elements M,V, and C will each be reviewed.
Model

 The primary emphasis of the OMAC API is to define a model “M” API that allows the exchange of
data and events. The traditional standardization effort for “M” relates to the data collection or
back end that would be defined as a Dynamically (or Shared) Linked Library.

 The desired HMI “M” functionality is best understood in the context of simple problems. Three
canonical “M” problems exist that an HMI module must be able to handle. First, the HMI must
have the capability for solicited information reports about the state of the controller, such as
current axes position. Second, the user must have command capabilities such as the ability to
set manual mode, select an axis, and then jog an axis. Third, the user must be alerted when an
exception arises, in other words, handle unsolicited information reports.

(Application
 Specific)

View Control

(Presentation
 Specific)

Machine ControllerHMI Subsystem

(Application
 Specific)

View Control
Model

Data & Events

(Presentation
 Specific)

Machine ControllerHMI Subsystem

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 51

Figure 32: HMI “M” Mirrors Controller

 For “M” functionality, OMAC API specifies that every controller object has a corresponding HMI
object “mirror”. Figure 32 illustrates an “M” that mirrors an application controller where each
mirror object in the HMI has a reference to its companion object in the controller. The mirror
object can then use the reference to get/set data, or to invoke methods to initiate events. In other
words, these HMI and controller objects have identical interfaces for data manipulation and
event-initiation. For event-notification (unsolicited reports), this is a special problem that really
has to deal with the infrastructure. (See section on event-handling.) Compared to a conventional
“M”, the use of get data mimics a data base copying the desired viewable values from the
controller.

 The major mirror assumption is that HMI objects communicate to control objects via proxy
agents. An analysis of how the HMI mirror works will be developed.

H M I M IR R O R
R T O B J E C T

C L IE N T O B J E C T

p r e s e n t_ v ie w ()

= p r o x y a g e n t

h a n d le _ e v e n t - a le r t s , e r ro r s , e x c e p t io n

g e t /s e t m e t h o d s

Figure 33: Close-up of HMI Proxy Interaction

1. To handle the information report functionality, an HMI mirror acts as a remote data base
that replicates the state and functionality of the controller object and then adds different
presentation views of the object. These HMI mirrors are not exact mirrors of the
controller state, but rather contain a “snapshot” of the controller state. Figure 33
illustrates the interaction of the HMI mirror and the control object. In the basic scenario
of interaction, the control object is the server and the HMI mirror object is the client.
Each HMI mirror uses the accessor functions of “get” and “set” to interact with the
control object. Notice that each host controller object and its corresponding HMI mirror
have a proxy agent to mediate communication.

2. To handle command functionality, the HMI mirror contains the same methods as the
controller object so that a command is issued by invoking a method remotely.

3. To handle abnormal events when not polling, an HMI mirror must serve as a client to the
control object so that it can post alert events. For such unsolicited information reports,
the control object uses an event notification function, updateCurrentView, in which to
notify the HMI mirror that an event has occurred. This notification in turn may be
propagated to a higher-authority object.

View

 The MVC view “V” deals with the presentation medium, for example, whether it is a “V” for a
GUI or a teach pendant. As previously stated, the OMAC API is not concerned with the “V”
aspect pertaining to “look or feel” of a HMI.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 52

 Of importance to the OMAC API specification pertaining to the MVC control “V” is the aspect
that deals with data views. Different data views correspond to different modes of presentation.
For example, there can be a view for configuration, calibration, error handling - as well as normal
operation. In addition, the view “V” can be used to offer different screens to different levels of
authority, such as for operator, maintenance, or systems engineer.

 Given this emphasis on data views, the OMAC API defines the following “V” methods to handle
the different expected data views.
interface HMI
{
 void presentErrorView();
 void presentOperationalView();
 void presentSetupView();
 void presentMaintenanceView();
};

 The association of data views along with a control component offers a strong potential for
“complete” off-the-shelf integration. Instead of buying a control component with a standalone
calibration program, a control component would come with a control view component. Then, just
as the control component can be integrated into the application controller, so too can its
corresponding control view component be automatically integrated into the controller
presentation. As an example of this technology, a tuning package can provide a Windows-based
GUI to do some knob turning. Another example, is a tuning package that offers this capability to
be plugged inside a Web browser. With this development, unlimited component-based
opportunities are available.

 The MVC controller “C” discussion will further explore the coupling of a control component with
a view component for automated system development.

Controller

 The MVC controller “C” is responsible for controlling the views presented to the user. In
Figure 33 the control object is represented by the Client which changes views based upon the use
of different MVC “V” methods (i.e., the different types of presentView methods - see above).
However, the Client is not bound to use the mirror “V” methods when constructing presentation
views. There exists a range of approaches that the MVC “C” Client can use when controlling the
user presentation - from least to most customized.

 In Figure 33, the Client is using the HMI mirrors to present the view. Exclusive use of the HMI
mirrors presentation views could be considered the least customized option. The Client is
bound to the view that the control vendor supplies. However, the benefit is that Client-builder
has the least amount of work to do. In the least-customized, the following concepts apply.

• each object contains methods which can display the object in one of several views

• each of these methods can be given display real-estate by the caller

• each object may recursively use its real-estate to display objects which it uses

• users may override these methods, if desired, for minor customizations

 At the other extreme, a more monolithic, all-powerful Client could ignore the HMI mirror
presentation views altogether. This approach could be considered the most customized option.
In this case, the monolithic Client uses the HMI mirrors for data manipulation purpose only and
the Client presents its own view of the data. The Client can develop any view it wishes. However,

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 53

the Client-builder has the greatest amount of work in doing so. In the most-customized, the
following concepts apply.

• a “super-object”, which is aware of all of the other objects (and their types) is created

• the “super-object” contains all code needed to create displays

• the “super-object” may use the default methods if desired

• the “super-object” may implement exactly the screens desired

 Today, the MOST CUSTOMIZED approach with its monolithic, all-encompassing, micro-
management of the controller presentation is most prevalent. This monolithic approach is most
common mostly out of default because few, if any, control components provide HMI views. It is
hoped that OMAC API MVC “V” methods will help change this situation.

4.10 MACHINE TO MACHINE INTERFACE

MMS (Manufacturing Message Specification) is an OSI application layer protocol designed for
the remote control and monitoring of industrial devices such as PLCs, NCs or RCs. It provides
remote manipulation of a controller that includes the following services:
Variables can be simple (booleans, integers, strings...) or structured (arrays or records). MMS

variables can be read or written individually, in lists (predefined or explicitly defined).

 Programs can be remotely started, stopped, resumed, killed.

 Transfer allows for the download or upload of areas called domains, which can contain code,
data or both.

 Semaphores define two classes of semaphores, which can be used to ensure mutual exclusion
or synchronization of processes.

 Events provide services for attachment of an action to an event and enrollment of calling or
another process to receive the event notifications.

The goal of the OMAC API is to provide an object oriented programming interface for remote
functionality. It is expected that the baseline functionality would be the primary MMS capabilities.
The following MMS functionality was determined to be mandatory:

• initiate
• conclude
• cancel
• unsolicited status
• solicited status
• getnamelist
• identify
• read
• write
• information report
• get variable access attribute
• initiate download sequence
• download segment
• terminate download sequence
• initiate upload sequence

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 54

• terminate upload sequence
• delete domain
• get domain attributes

It is expected that the implementation of an OMAC API MMI interface would offer a convenient
programming interface that is not restricted to use MMS for its underlying communication
technology. As envisioned, the internal controller infrastructure could be an ORB, while the external
communication could be ORB or MMS based.

5 DISCUSSION

OMAC API has developed an API specification that is scaleable for the system design, integration
and programming for systems ranging from a single-axis device to a multi-arm robot. The OMAC
API working group’s initial focus was to establish programming requirements for precision
machining. Applicability to other control environments may be possible but is not guaranteed. The
OMAC API primary focus has been to define Application Programming Interfaces for certain
modules that the ICLP community routinely wants to upgrade. In addition, the workgroup has
defined an assembly framework with which to connect these modules.
OMAC API has posted other papers to describe related information on life cycle, general computation
models, and control models. For more information, see the Wide World Web at the Universal
Resource Locator address:

 http://isd.cme.nist.gov/info/omacapi

Within the OMAC API home page, there are hyperlinks to send comments, and to review comments
and responses.
The OMAC API effort is not finished. The focus of effort has been to develop module APIs and to
create a methodology for assembling and reconfiguring modules. Areas outside the OMAC API initial
thrust areas or areas of disagreement include:

• performance evaluation
• validation and verification
• resource profiling
• configuration construction
• error handling and error propagation
• scheduling
• module timing profile
• event handling
• machine-to-machine interface (MMI) is outlined but incomplete.

The remaining sections will discuss some of the issues in dispute or issues that remain unresolved.

5.1 SCHEDULING AND UPDATING

Hard real-time is fundamental to a controller operation and falls under the auspices of the Real-Time
Operating System. Often, commercial RTOS only support priorities to manage task scheduling. This
technique is flawed. It would be preferable if one could perform periodic updating by assigning
periods and a time quantum to tasks. However, the OMAC API could not agree on a single solution
to this problem. This section will discuss one of many solutions.
OMAC modules can run as asynchronous or synchronous tasks. Asynchronous tasks are event-driven
which is discussed in the next section. Synchronous tasks are expected to run periodically at a fixed
frequency and bounded duration. Execution of a synchronous task can be either handled externally
by a scheduling updater or internally by self-clocking. The remainder of this section will develop the
concept of a Scheduling Updater module.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 55

OMAC API has defined an Updater API for task execution. It is an optional API that can be useful as
a reference. The Update API contains Updatable, AsynchUpdater, and PeriodicUpdater
classes. If an OMAC module is periodic, it may derive the method update() by inheriting it from the
Scheduling Updater class Updatable. For the Axis Module, the method update() is a wrapper that
calls processServoLoop(). The update() method simplifies invocation, since the updater can go
down a list of modules and invoke one signature.
An example to illustrate the multi-client/server interaction will be developed. First, the object
naming and constructor definition that is done at configuration time will be sketched. The
integration creates object references (i.e., io1, io2, ax1, axgrp1) and then binds addresses to the
created objects through some name registration. Since ax1 and axgrp1 are periodic updating OMAC
modules, they have inherited a method update() and register with the PeriodicUpdater updater
using its registerUpdatable() method. The second parameter field in registerUpdatable()
method is the clock divisor.

integrationProcessInit(){
 // initialize parameters
 PeriodicUpdater updater;

 IOPoint io1= new IOPoint(“encoder1”);
 IOPoint io2= new IOPoint(“actuator1”);}
 Axis ax1= Axis(“Axis1”, io1, io2);
 AxisGroup axgrp1= AxisGroup(“AxisGroup1”, ax1);

 updater.setTimingInterval(.01); // 10 millisecond period
 updater.registerUpdatable((Updatable *) axgrp, 2);
 updater.registerUpdatable((Updatable *) ax1, 1);
}

Next, a sequence of operations will highlight the connection between the Scheduling Updater
(Updater), the Axis Group module (AxGrp), the Axis module (Axis) and the actuator and encoder IO
points. Within the Axis module, references to the component classes AxisVelocityServo,
AxisCommandOutput and Control Law module will be made. (Readers are referred to Section 4.0
to further review Axis components.)
Figure 30 presents an Object Interaction Diagram to track the sequence of axis operation as
triggered by a Scheduling Updater. The Updater calls the AxisGroup, which sets followingVelocity
servo control and sends a commanded velocity setpoint. The Updater then triggers the Axis which in
turn causes a processServoLoop() to perform a servo cycle. Since velocity servoing is enabled, the
AxisVelocityServo is responsible to get the velocity command, read the axis actual velocity (as
retrieved from io1), computes the next acceleration setpoint using a Control Law and then output a
commanded acceleration to io2.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 56

Updater

Axis Group Axis Axis
Velocity
Servo

Axis
Commanded
Output

Axis
Sensed
State

Control
Law

io2 io2

update()

 following
Velocity()

 startVelocityFollowi
ng()

 setCommandedVeloc
ity()

update()

 processServoLoop()

velocityUpdateActio
n()

 getVelocity
Command()

 getActual
Velocity()

 readValu
e()

 (load
parameters)

 calcControlC
md()

 (get results)

 setAcceleratio

n
Command()

 update()

 writeValue

()

Figure 30: Schedule Updating Axis Object Interaction Diagram

As seen, the Axis module method processServoLoop performs the basic inputs, computes and
outputs expected of a cyclic process. This functionality includes state interpretation so that an Axis
module typically has a reference to an Axis FSM. Within the Axis FSM, the calls to
AxisVelocityServo are made.
As stated earlier, one assumption within the object interaction is that a state transition, such as
followingVelocity, is permissible. If not, either the method invocation is ignored or an exception
is thrown.
Overall, the Scheduling Updater method update() is really a wrapper that calls
processServoLoop. Hence, it isn’t necessary to use an Updater. However, the update() wrapper
does provide a generic interface to simplify scheduling of a variety of modules.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 57

5.2 EVENT HANDLING

Standard client object requests to a server object result in synchronous execution of operation. In this
case, the client sends the request and awaits a server response. This synchronous model includes the
standard client-push model that sends an event through a method invocation. Section 3.3.1 has
more on the client-push model.
Many times client-server interaction requires a more decoupled communication model. Of interest is
the client-server interaction, called the server-push model, in which the server can spontaneously
(asynchronously) issue an event to the client. For example, it is desirable to send an asynchronous
informDone() event to the Task Coordinator when a CPU finished execution in the Axes Group.
The question arises, “How is the Task Coordinator informed that the Axis Group is finished?” There
are several options:

• The Task Coordinator polls the Axis Group with the isDone() method. This is the
client-pull event method.

• Use cross-reference pointers between the communicating objects. In this case, the
AxisGroup has a reference pointer back to the Task Coordinator, and it invokes a
method (e.g., informDone()) to alert the Task Coordinator. There still must be some
programming mechanism to tell the AxisGroup that it needs to call the Task
Coordinator. Most likely, informDone() is mirrored in the TaskCoordinator and the
AxisGroup to achieve this programming. The TaskCoordinator calls the AxisGroup
informDone() to set the event, and the AxisGroup calls the TaskCoordinator
informDone() when the event occurs. A simple event model is to add to all
isXstate() query methods an informXstate() corollary.

• Another approach is to have the Task Coordinator call an AxisGroup method
waitUntilDone() that blocks until the AxesGroup is done.

No agreement has been reached at this time regarding any standard server-push event model(s) or
any server-push events.
The following general-purpose sequence has been proposed as the server-push event model:

• clients register what events it cares about with the server capable of detecting the
event

• server send unique event id to client as part of registration
• when server detects an event it looks in a table (linked list) of clients which care

about that event and sends the event id to each client (id will be unique for each
client)

• clients use and unregister events using the id not the name.

5.3 CONFIGURATION

As a part of the open architecture life cycle, configuration and integration are important
elements. Configuration is defined as module specification that maps it into a specific solution.
Integration is defined as the capability to allow the connection and cooperation of two or more
modules within a system. Readers are urged to review an OMAC API document concerning the open
architecture Life Cycle that can be found at URL
http://isd.cme.nist.gov/info/omacapi/Bibliography/oalifecycle.pdf. Briefly summarizing, the following
steps outline the major configuration and integration steps.

1. distribution of modules to processes
2. distribution of processes to CPU
3. assignment of interprocess communication via proxy manager to processes
4. module/object construction and connection

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 58

This section will review the module construction phase because of the crucial role of global naming
within the open architecture paradigm.
The construction phase is responsible for building the name data base and registering names with
the appropriate lookup-information (e.g., address pointer or server information such as host id and
server name). Within the Object Oriented paradigm there is a constructor phase wherein all the
static application objects (in this case modules) must be constructed.
At this time, no agreement has been reached regarding configuration for module constructors.
Herein a couple of alternatives for module constructors will be discussed.
Advertisement Model - The constructor is an advertisement for what a module needs. As an

example, an OMAC API Configurator would construct a directed graph of modules in the system.
The Task Coordinator would use the directed graph to construct the system. In a pure approach
only the constructor would contain configuration information, as in the following example.

 X_AXIS = new Axis(new PID_CL());
 Y_AXIS = new Axis(new PID_ControlLaw());
 AG1 = new AxisGroup(X_AXIS, Y_AXIS);

 One problem with the pure constructor approach is resolving circular references. For example,
suppose the Axis and Axis Group modules’ constructor need a reference to each other.

Another problem with pure constructors for configuration is handling combinatorial explosion of
constructor possibilities. For example, if the system is not doing force control, does one need a set
of special constructors to allow AxisForceServo control law references? To handle the
combinatorial explosion, one could either define a monolithic constructor that accepts null
references, or define constructors for each potential configuration.

 The use of SETPARAMETERREFERENCE (e.g., setControlLaw below) helps reduce the
combinatorial constructor possibilities. However, in this case, configuration is now based on
selectively configuring parameters. The following example illustrates configuring the X and Y
positioning servo control law.
 X_AXIS = new Axis();
 Y_AXIS = new Axis();
 X_AXIS->AxisPositioningServo->setControlLaw(new PID_ControlLaw());
 Y_AXIS->AxisPositioningServo->setControlLaw(new PID_ControlLaw());
 ...
 AG1 = new AxisGroup(X_AXIS, Y_AXIS);
 if((s=AG1->isSatisfied)!=NULL) cout << “Missing Parameter”<< s << endl;

 Although flexible, selectively configuring parameters is vague so that it can be unclear what
parameters must be specified. The potential for chaos can arise without some formalism. Does
the AxisForceServo control law need to be configured? How does one determine when the
AxisForceServo control law needs to be configured? To avoid confusion, a configuration method
such as isSatisfied() that returns a string array of missing parameter definitions is
essential.

Registry Model – In this case, the constructor plays a small role and system generation is name-
driven. It is expected that names would be maintained in a globally accessible registry either a
simple table or data base. Resolving object references would use a setParameterReference - although
this time the method signature would be string-oriented.

 Naming is divided into two categories - local naming and global naming.

 Local naming is responsible for the names associated with a particular module. A vendor would
be responsible for distributing a local naming table associated with each module. For example,
the following table sketches a local naming table for an Axis module.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 59

Local Name Type Configured

“ENCODER” “IO_FLOAT” Y

“ACTUATOR” “IO_FLOAT” Y

“POSITION_CONTROL_LAW” “OMAC_CONTROL_LAW” y

“VELOCITY_CONTROL_LAW” “OMAC_CONTROL_LAW” y

…

 Global naming is responsible for mapping local names to global names. Global naming serves two
purposes. First, the global naming allows system access to local address references. Second,
global naming enables familiar naming conventions. For example, a three axis mill would have
three instances of the parameter ENCODER that could be resolved into corresponding global
names of X-ENCODER, Y-ENCODER, and Z-ENCODER.

Global Name Module Local Name

“X-AXIS-ENCODER” “X_AXIS” “ENCODER”

“X-POSITION-
CONTROL_LAW”

“X_AXIS” “POSITION_CONTROL_LAW”

… … …

“Y-AXIS-ENCODER” “Y_AXIS” “ENCODER”

“Y-POSITION-
CONTROL_LAW”

“Y_AXIS” “POSITION_CONTROL_LAW”

… … …

 There would be several steps in configuring a global naming scheme, including:

1. Create with “new” and constructor(string NAME). In this case, the constructor takes
a unique name, registers the name and module type in the global registry, and uses
recursion to back through the object's parents to add type/name for registry (or self-
discovery).
 Axis X_AXIS = new Axis(“X-AXIS”);
 Axis Y_AXIS = new Axis(“Y-AXIS”);
 ControlLaw CL1 = new PID_ControlLaw(“CL1”);
 ControlLaw CL2 = new PID_ControlLaw(“CL2”);

 Recursion is necessary because modules (i.e., objects) may be specialized and other
modules may need a less specialized object. For example, a “SercosAxis” module is also a
derived type of “Axis” and “OMAC Module”. Self-discovery of an object such as
“SercosAxis” would recursively descend its parents until it reached some base class, in
this case “OMAC Module”. To provide a flexible naming service, lists for types and objects
should exist to provide object references. Figure 35 illustrates the relationship between

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 60

each module base and derived types which have a pointer to a list of object names, which
in turn, contains the actual object reference. This table could preexist in some data base.

A c tive
M o tion C P U

C O N T R O L
P L A N
U N IT

A x is G ro u p
R ec us ive
 R ef erenc in g

Figure 35: Type and Object Reference Lists from Recursive

2. Initialize objects. This initialization scope is directed at objects’ local variables such as
zeroing private variables. No external references should be used as these references may not
have been resolved yet.

3. Connect objects by assigning names to different internal references. The general method
signature would be:
 setReference(string localName, string globalName);

 The following illustrates the registering some Axis and Axis Group names.
 AG1->setReference(“AXIS1”, “X-AXIS”);
 AG1->setReference(“AXIS2”, “Y-AXIS”);
 X_AXIS->setReference(“PositioningServoControlLaw”, “CL1”);
 Y_AXIS->setReference(“PositioningServoControlLaw”, “CL2”);
 if((s=AG1->isSatisfied)!=NULL) cout << “Missing Parameter”<< s << endl;

 Within a module, the setReference method would do a symbolic lookup of the type
based on the local name, and then use the type to retrieve the actual reference. The
following code sketches this approach.
 class Axis {
 ...
 IOFloat Encoder;
 string itemType;

 void setReference(LocalName localName, GlobalName globalName){
 itemType=typelookup(localName);
 switch(localName){
 case “encoder”:
 encoder= (IOFLoat) lookup(globalName, itemType);
 break;
 ...
 }
 }
 }

 As an alternative to hard coding the connections, a module could read a file or data base
to derive the references it needs. The table could contain other performance parameters
as well. Below is a sketch of the information that could be expected using a file registry.

Global Name Type Period Timing Local Names

 AxGrp1 AxisGroup .01 .002 Ax1=“X”

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 61

 Ax2=“Y”
 Ax3=“Z”
 X Axis .001 .0002 Output= “act1”
 Feedback= “enc1”
 Position= “PIDControlLaw”
 Velocity= “Sercos1”
 Acceleration= NULL

 Y Axis .001 .0002 Output= “act2”
 Feedback= “enc2”
 Position= “PIDControlLaw”
 Velocity= “Sercos2”
 Acceleration= NULL

 Z Axis .001 .0002 Output= “act3”
 Feedback= “enc3”
 Position= “PIDControlLaw”
 Velocity= “Sercos3”
 Acceleration= NULL
 Sercos1 SERCOSControlLaw
 Sercos2 SERCOSControlLaw
 Sercos3 SERCOSControlLaw

This is sketch of an Abstract to Physical IO Map
IOPTs Type Board Address Bytes
 act1 IO-W D/A1 0xFFFFFF00 8
 enc1 IO-R
 act2 IO-W
 enc2 IO-R
 act3 IO-W
 enc3 IO-R

4. Reinitialization of objects. The second pass assumes that all external references are
resolved, so that an object can access external objects as part of its initialization
sequence.

5.4 ERROR HANDLING, ERROR PROPAGATION

“Exception and error handling is 90% of the aggravation on the shop floor.” Attempting to resolve
errors/exceptions as they propagate through the system is difficult. Errors can be hard to anticipate
and/or resolve. However, errors and exceptions are really just server-push events (clients don't push
errors on the servers). Infrastructure support for server-push event handling is weak.
As an intermediary solution, a simple error propagation technique is to allow object cross-references
so that for every pair of objects, each one has a reference to the other object. In this case, each
invokes methods in the other to propagate and event.
Within OMAC API, a proposal for handling errors is for each OMAC module to support an error CPU
with a setErrorCPU(cpu) method. In the event an error occurs, an error(errcode) method could
be invoked. For example, in the case that a Task Coordinator received an error event, it could then
dispatch the ERROR Capability. The ERROR Capability could be passed an error code or be smart
enough to analyze the system and determine the error.
As another example, consider the handling of thermal overload on a drive. How does it trickle up? A
straightforward solution is to add a CPU to the Discrete Logic to monitor this event. If the overload
occurs and the Discrete Logic can not rectify the error it could then notify the Task Coordinator of an
error which will then initiate the ERROR Capability.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 62

REFERENCES

COR91
Object Management Group, Framingham, MA. OBJECT MANAGEMENT ARCHITECTURE GUIDE,
DOCUMENT 92.11.1, 1991.

Cra86
John J. Craig. INTRODUCTION TO ROBOTICS MECHANICS AND CONTROL. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1986.

DCOM
Distributed Common Object Model.

See Web URL: http://www.microsoft.com/oledev/olemkt/oledcom/dcom95.htm.

EXP
International Organization for Standardization. ISO-10303-11 DESCRIPTION METHODS: THE
EXPRESS LANGUAGE REFERENCE MANUAL.

IEC93
International Electrical Commission, IEC, Geneva. PROGRAMMABLE CONTROLLERS PART 3
PROGRAMMING LANGUAGES, IEC 1131-3, 1993.

IEC95
IEC. IEC1491 - SERCOS (SERIAL REAL-TIME COMMUNICATIONS SYSTEM) INTERFACE
STANDARD. International Electrical Commission, Geneva, 1995.

Inta
International Organization for Standardization. ISO 10303-42 INDUSTRIAL AUTOMATION
SYSTEMS AND INTEGRATION PRODUCT DATA REPRESENTATION AND EXCHANGE - PART 42:
INTEGRATED RESOURCES: GEOMETRIC AND TOPOLOGICAL REPRESENTATION.

Intb
International Organization for Standardization. ISO 10303-42 INDUSTRIAL AUTOMATION
SYSTEMS AND INTEGRATION PRODUCT DATA REPRESENTATION AND EXCHANGE - PART 105:
INTEGRATED APPLICATION RESOURCES: KINEMATICS.

Le95
T. Lewis and et al. OBJECT ORIENTED APPLICATION FRAMEWORKS. Manning Publications Co.,
Greenwich, CT, 1995.

MIDL
Microsoft Corporation. Microsoft Interface Definition Language (MIDL) Reference Manual.
WIN32 SDK Distribution CD, Redmond WA.

M.S86
M. Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy Principle. In 6TH
INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, pages 198-204. IEEE
Computer Society Press, May 1986.

NGI
Next Generation Inspection System (NGIS). See Web URL:
http://isd.cme.nist.gov/brochure/NGIS.html.

OMA94
Chrysler, Ford Motor Co., and General Motors. REQUIREMENTS OF OPEN, MODULAR,

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 63

ARCHITECTURE CONTROLLERS FOR APPLICATIONS IN THE AUTOMOTIVE INDUSTRY,
December 1994. White Paper - Version 1.1.

OSA96
OSACA. European Open Architecture Effort. See Web URL: http://www.isw.uni-
stuttgart.de/projekte/osaca/english/osaca.htm, 1996.

PM93
F. Proctor and J. Michaloski. Enhanced Machine Controller Architecture Overview. Technical
Report 5331, National Institute of Standards and Technology, December 1993.

RS274
Engineering Industries Association, Washington, D.C. EIA STANDARD - EIA-274-D,
INTERCHANGEABLE VARIABLE, BLOCK DATA FORMAT FOR POSITIONING, CONTOURING, AND
CONTOURING/POSITIONING NUMERICALLY CONTROLLED MACHINES, February 1979.

SOS94
National Center for Manufacturing Sciences. NEXT GENERATION CONTROLLER (NGC)
SPECIFICATION FOR AN OPEN SYSTEM ARCHITECTURE STANDARD (SOSAS), August 1994.
Revision 2.5.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 64

APPENDIX A – UML INTERFACE DEFINITIONS

Unified Modeling Language (UML) is a standard notation for the modeling of application objects in
developing an object-oriented program. UML contains notation to model the class (of objects), object,
association, responsibility, activity, interface, use case, package, sequence, collaboration, and state.
The advantage of UML is that it is vendor and language neutral. However, at this time, a UML
OMAC API specification has not been attempted.

APPENDIX B – MIDL API DEFINITIONS

Technical Note: These API are for review and comment only. There is no guarantee of correctness.
This specification approximates the intended direction of the final API.

B.1 DISCLAIMER

This software was produced in part by agencies of the U.S. government, and by statute is not subject
to copyright in the United States. Recipients of this software assume all responsibility associated
with its operation, modification, maintenance, and subsequent redistribution.

B.2 NAMING CONVENTIONS

The naming convention for the IDL specification uses the Hungarian notation of separating words
with CapitalLetters. (This release removed all the “_” and used concatenation of Capital letters to
distinguish words.) The following conventions are being followed.

 File Name : same as major class name (JAVA convention)
 #define for constants : entire name in UPPER CASE
 class name & declaration : CapStyle with beginning C
 class/variable instance : smallCapStyleAgain
 method arguments : smallCapStyleAgain

 general method signature : nameCapStyle
 query parameter : getParameterName
 assignment : setParameterName
 state query : isStateName

There is consideration for adding a classifying prefix to class instances, global and static variable
declarations and method arguments. In this case, d_VariableName would indicate a double variable.
Note, C++ function declarations need parameter types but not parameter names, however, IDL
requires both.
The use of get and set methods on these attributes, since IDL does not produce a get/set prefix to the
methods. This will not work for non-IDL-like systems.

B.3 MICROSOFT COM

B.3 MICROSOFT STATUS CODES

Except in special circumstances, nearly every COM API interface member function returns a value of
the type HRESULT. HRESULT is also called a "handle to a result." COM follows a naming
convention for different HRESULT success and error codes. Any name with E_ in it, which may be at
the beginning as in E_FAIL or RPC_E_NOTCONNECTED means that the function failed. Any name
with S_, as in S_TRUE, S_FALSE, or STG_S_CONVERTED, means that the function succeeded. The
most common codes are listed in the following table.

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 65

9DOXH� � 0HDQLQJ�

6B2.�)XQFWLRQ�VXFFHHGHG��$OVR�XVHG�IRU�IXQFWLRQV�WKDW�VHPDQWLFDOO\�UHWXUQ�
D�%RROHDQ�758(�UHVXOW�WR�LQGLFDWH�WKDW�WKH�IXQFWLRQ�VXFFHHGHG��

6B)$/6(� 8VHG�IRU�IXQFWLRQV�WKDW�VHPDQWLFDOO\�UHWXUQ�D�%RROHDQ�)$/6(�UHVXOW�WR�
LQGLFDWH�WKDW�WKH�IXQFWLRQ�VXFFHHGHG��

(B12,17(5)$&(� 4XHU\,QWHUIDFH�GLG�QRW�UHFRJQL]H�WKH�UHTXHVWHG�LQWHUIDFH��

(B127,03/� 0HPEHU�IXQFWLRQ�FRQWDLQV�QR�LPSOHPHQWDWLRQ��

(B)$,/� 8QVSHFLILHG�IDLOXUH��

(B2872)0(025<�)XQFWLRQ�IDLOHG�WR�DOORFDWH�QHFHVVDU\�PHPRU\��
�

B.4 BASIC TYPES
1 #ifndef DataRepresentation
2 #define DataRepresentation
3 import "oaidl.idl";
4 import "ocidl.idl";
5 // Level 1 - these will be backed out from the other API definitions
6 //
7 //interface test {
8
9 typedef long API;
10 typedef double AngularVelocity;
11 typedef struct __CoordinateFrame{
12 double c[4][4];
13 } CoordinateFrame;
14 //typedef struct _FILE {int fixme; } FILE;
15 typedef double Force;
16 typedef double Length;
17 typedef double LinearVelocity;
18 typedef double LinearAcceleration;
19 typedef double LinearJerk;
20 typedef double LinearStiffness;
21 typedef struct _LowerKinematicModel {int fixme; } LowerKinematicModel;
22 typedef double Magnitude;
23 typedef double Mass;
24 // Matrix???
25 typedef double Measure;
26 typedef struct _OacVector{
27 short size;
28 double axis[10];
29 } OacVector;
30 typedef double PlaneAngle;
31 typedef struct _RESOURCE {int fixme; } RESOURCE ;
32 typedef struct _RPY {int fixme;} RPY;
33 typedef long Status;
34 typedef struct _Time { int fixme; } Time;
35 typedef struct _Transform { int fixme; } Transform;
36 typedef struct _UNITS {int fixme; } UNITS;
37 typedef struct _UpperKinematicModel {int fixme; } UpperKinematicModel;
38 typedef double Velocity;
39
40 typedef struct _Translation {int fixme; } Translation;
41 typedef Translation CartesianPoint;
42
43 /*
44 //?? Or you can assume numbers are flagged not active at
45 //?? construction time.
46 // Below most control parameters would be typed as double
47 #define doubleNotActive 1.79769313486231570e+308
48 #define longNotActive 0x80000000

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 66

49 #define shortNotActive 0x8000
50
51
52 // Level 2 Example - not defined here
53
54 interface LinearVelocity : Units {
55 Magnitude value; // should this value be used?
56 // Upperbound and Lowerbound, both zero ignore
57 Magnitude ub, lb; // which may be ignored
58 disabled();
59 enabled();
60 };
61 interface Units
62 { // FIXME
63 };
64 */
65
66 #endif
67

B.5 CONNECTION TABLE FOR NAMING SERVICES
68 // ConnectionInfo.idl : IDL source for ConnectionInfo.dll
69 //
70
71 // This file will be processed by the MIDL tool to
72 // produce the type library (ConnectionInfo.tlb) and marshalling code.
73
74 import "oaidl.idl";
75 import "ocidl.idl";
76
77
78 cpp_quote("#define PublishInfoMaxNameSize 1028")
79 #define PublishInfoMaxNameSize 1028
80 typedef struct _PublishInfo {
81 wchar_t name[PublishInfoMaxNameSize];
82 wchar_t type[PublishInfoMaxNameSize];
83 IUnknown *address;
84 } PublishInfo;
85
86 typedef enum tagBINDSTATES { Mandatory=1,
87 Optional=2,
88 Connected=4,
89 Unconnected=8, any=0}

BINDSTATES;
90
91 typedef struct _BindInfo {
92
93 wchar_t localname[PublishInfoMaxNameSize];
94 wchar_t type[PublishInfoMaxNameSize];
95 wchar_t globalname[PublishInfoMaxNameSize];
96 wchar_t description[PublishInfoMaxNameSize];
97 unsigned long state;
98 IUnknown ** ref; // store into pointer variable
99 } BindInfo;
100 /*
101 [
102
103 uuid(6511417A-391B-11D3-AAB7-00C04FA375A6),
104
105 helpstring("IPublishInfo Interface"),
106 pointer_default(unique)
107]
108 interface IPublishInfo : IUnknown
109 {
110 // HRESULT getPublishInfo([out,retval] PublishInfo * info);
111 // HRESULT setPublishInfo([in] PublishInfo info);
112
113 };
114 */
115
116 [
117 object,

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 67

118 uuid(65114180-391B-11D3-AAB7-00C04FA375A6),
119
120 helpstring("IEnumPublishInfo Interface"),
121 pointer_default(unique)
122]
123 interface IEnumPublishInfo : IUnknown
124 {
125
126
127 [local]
128
129 HRESULT Next([in] ULONG celt,
130
131 [out] PublishInfo* rgelt,
132
133 [out] ULONG *pceltFetched);
134 /*
135 [call_as(Next)] // Later...
136
137 HRESULT RemoteNext([in] ULONG celt,
138
139 [out,

size_is(celt),
140
141

length_is(*pceltFetched)] PublishInfo* rgelt,
142
143 [out] ULONG

*pceltFetched);
144 */
145 HRESULT Skip([in] ULONG celt);
146
147 HRESULT Reset();
148
149 HRESULT Clone([out] IEnumPublishInfo **ppenum);
150
151 };
152
153 [
154 object,
155 uuid(7C045B5D-451C-11d3-AABB-00C04FA375A6),
156
157 helpstring("IEnumBindInfo Interface"),
158 pointer_default(unique)
159]
160 interface IEnumBindInfo : IUnknown
161 {
162
163
164 [local]
165
166 HRESULT Next([in] ULONG celt,
167
168 [out] BindInfo* rgelt,
169
170 [out] ULONG *pceltFetched);
171 /*
172 [call_as(Next)] // Later...
173
174 HRESULT RemoteNext([in] ULONG celt,
175
176 [out,

size_is(celt),
177
178

length_is(*pceltFetched)] BindInfo* rgelt,
179
180 [out] ULONG

*pceltFetched);
181 */
182 HRESULT Skip([in] ULONG celt);
183
184 HRESULT Reset();

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 68

185
186 HRESULT Clone([out] IEnumBindInfo **ppenum);
187
188 };
189
190
191
192 [
193
194 uuid(6511417E-391B-11D3-AAB7-00C04FA375A6),
195
196 helpstring("IConnectionTable Interface"),
197 pointer_default(unique)
198]
199 interface IConnectionTable : IUnknown
200 {
201 HRESULT getBindCount([out,retval] long * pnCount);
202 HRESULT getPublishCount([out,retval] long * pnCount);
203
204 HRESULT getAllPublish(
205 [retval][out] IEnumPublishInfo **ppAllConnections);
206
207 HRESULT getAllBindings(
208 [retval][out] IEnumBindInfo **ppAllConnections);
209
210 HRESULT isFullyIntegrated(
211 [retval][out] boolean *b);
212
213
214 HRESULT getAllConnections(
215 [retval][out] IEnumString **ppAllConnections);
216
217 HRESULT getAllRequiredConnections(
218 [retval][out] IEnumString **ppRequiredConnections);
219
220 HRESULT getAllUnconnected(
221 [retval][out] IEnumString **ppUnconnectedLocalNames);
222
223 HRESULT getAllRequiredConnected(
224 [retval][out] IEnumString **ppConnections);
225
226 HRESULT isConnected(
227 [in] BSTR localName,
228 [retval][out] boolean *b);
229
230 HRESULT isConnectionRequired(
231 [in] BSTR localName,
232 [retval][out] boolean *b);
233
234 HRESULT getConnectionType(
235 [in] BSTR localName,
236 [retval][out] BSTR *type);
237
238 HRESULT getConnectionDescription(
239 [in] BSTR localName,
240 [retval][out] BSTR *description);
241
242 HRESULT getConnectedToName(
243 [in] BSTR localName,
244 [retval][out] BSTR *connection);
245
246 /* HRESULT setConnectionTo(
247 [in] BSTR localName,
248 [in] BSTR *registeredName);
249 */
250 HRESULT setConnectionTo(
251 [in] BSTR localName,
252 [in] IUnknown *connection);
253 };
254
255 [
256
257 uuid(6511417C-391B-11D3-AAB7-00C04FA375A6),

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 69

258
259 helpstring("ITestEnumInterface"),
260 pointer_default(unique)
261]
262 interface ITestEnumInterface : IConnectionTable
263 {
264
265 };
266
267 [
268
269 uuid(C9BA5F57-3BB0-11d3-AAB7-00C04FA375A6),
270
271 helpstring("ITestEnumAggregatedInterface"),
272 pointer_default(unique)
273]
274 interface ITestEnumAggregatedInterface : IUnknown
275 {
276
277 };
278
279
280
281 [
282 uuid(6511416D-391B-11D3-AAB7-00C04FA375A6),
283 version(1.0),
284 helpstring("Omac ConnectionInfo 1.0 Type Library")
285]
286 library CONNECTIONINFOLib
287 {
288 importlib("stdole32.tlb");
289 importlib("stdole2.tlb");
290 /*
291 [
292 uuid(6511417B-391B-11D3-AAB7-00C04FA375A6),
293 helpstring("PublishInfo Class")
294]
295 coclass PublishInfo
296 {
297 [default] interface IPublishInfo;
298 };
299 */
300
301
302 [
303 uuid(65114181-391B-11D3-AAB7-00C04FA375A6),
304 helpstring("EnumPublishInfo Class")
305]
306 coclass EnumPublishInfo
307 {
308 [default] interface IEnumPublishInfo;
309 };
310
311 [
312 uuid(DEB592DF-451C-11d3-AABB-00C04FA375A6),
313 helpstring("EnumBindInfo Class")
314]
315 coclass EnumBindInfo
316 {
317 [default] interface IEnumBindInfo;
318 };
319
320 [
321 uuid(6511417F-391B-11D3-AAB7-00C04FA375A6),
322 helpstring("ConnectionTable Class")
323]
324 coclass ConnectionTable
325 {
326 [default] interface IConnectionTable;
327 };
328
329 [
330 uuid(6511417D-391B-11D3-AAB7-00C04FA375A6),

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 70

331 helpstring("TestEnumInterface Class")
332]
333 coclass TestEnumInterface
334 {
335 [default] interface ITestEnumInterface;
336 };
337
338 [
339 uuid(ECD6C0BB-3BB0-11d3-AAB7-00C04FA375A6),
340 helpstring("TestEnumAggregatedInterface Class")
341]
342 coclass TestEnumAggregatedInterface
343 {
344 [default] interface IConnectionTable;
345 interface ITestEnumAggregatedInterface;
346 };
347 };
348

B.5 OMAC MODULE BASE CLASSES TYPES
1 // ControlLawModule.idl : IDL source for ControlLawModule.dll
2 //
3
4 // This file will be processed by the MIDL tool to
5 // produce the type library (ControlLawModule.tlb) and marshalling code.
6 import "oaidl.idl";
7 import "ocidl.idl";
8 import "ConnectionInfo.idl";
9
10 [
11
12 object,
13 uuid(8CBFD25C-C72F-11d2-AAAB-00C04FA375A6),
14
15 helpstring("IOmac Interface"),
16 pointer_default(unique)
17]
18 interface IOmac : IUnknown
19 {
20
21
22 HRESULT _stdcall update();
23 HRESULT _stdcall configToString([out,retval] BSTR * str);
24 HRESULT _stdcall configure([in] BSTR inifile, [in] BSTR keyname);
25 HRESULT _stdcall isConfigured([out,retval] BSTR * b);
26 HRESULT _stdcall isFullyConfigured([out,retval] boolean * b);
27 HRESULT _stdcall init();
28 HRESULT _stdcall toString([out,retval] BSTR * str);
29 HRESULT _stdcall integrate();
30 HRESULT _stdcall setName([in] BSTR name);
31 HRESULT _stdcall getName([out,retval] BSTR * str);
32
33 // Event Triggersing State Transition Methods
34 HRESULT _stdcall execute();
35 HRESULT _stdcall startup();
36 HRESULT _stdcall begin();
37 HRESULT _stdcall done();
38 HRESULT _stdcall stop();
39 HRESULT _stdcall terminate();
40 HRESULT _stdcall abort();
41 HRESULT _stdcall Enable();
42 HRESULT _stdcall Disable();
43
44 };
45 [
46
47 object,
48 uuid(AC04B49D-E6CA-11d2-AAB0-00C04FA375A6),
49

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 71

50 helpstring("Omac Named Factory Interface"),
51 pointer_default(unique)
52]
53 interface IOmacModuleClassFactory : IClassFactory
54 {
55 HRESULT _stdcall CreateModule(BSTR name, REFIID riid, [out, iid_is(riid)] void ** ppvObj);
56
57 /* ******************************** */
58 /* Registration services */
59 /* ******************************** */
60
61
62 // get a reference to an

object of type
63 HRESULT _stdcall lookupOmacObject([in] BSTR registryName, [out, retval] IUnknown ** address

);
64
65 // get a reference to an

object of a specific type
66 HRESULT _stdcall lookupTypedOmacObject([in] BSTR registryName,
67 [in] BSTR

objectType, [out, retval] IUnknown ** address);
68
69 // return an enumuration of

Strings of all the
70 // registered object types in

the system
71 HRESULT _stdcall getClassDirectory([out, retval] IEnumString ** ppEnumObjects);
72
73 // return an enumeration of

Strings of all the
74 // registered object

instances of the specified
75 // type
76 HRESULT _stdcall getObjectDirectory([in] BSTR objectType, [out, retval] IEnumString **

ppEnumObjects);
77
78
79 };
80
81 // Create OMAC type library
82 [
83 uuid(FF53F62B-E379-11d2-AAAF-00C04FA375A6),
84 version(1.0),
85 helpstring("Omac Module 1.0 Type Library")
86]
87 library OMACMODULELib
88 {
89 importlib("stdole32.tlb");
90 importlib("stdole2.tlb");
91
92 [
93 uuid(FF53F62C-E379-11d2-AAAF-00C04FA375A6),
94 helpstring("Omac Class")
95]
96 coclass Omac
97 {
98 [default] interface IOmac;
99 interface

IOmacModuleClassFactory;
100 [optional] interface IConnectionTable;
101 };
102
103 };
104
105

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 72

B.7 CONTROL PLAN
1 #ifndef _CONTROL_PLAN
2 #define _CONTROL_PLAN
3 import "oaidl.idl";
4 import "ocidl.idl";
5
6 interface IControlPlanUnit;
7 interface IEnumControlPlans;
8
9 [
10 object,
11 uuid(134A0282-E101-11d2-B512-AEC041D2957B),
12
13 helpstring("Control Plan Unit Interface"),
14 pointer_default(unique)
15]
16
17 interface IControlPlanUnit : IUnknown
18 { // approximate a graph structure
19 HRESULT _stdcall executeUnit([out,retval] IControlPlanUnit ** cpu); // return next

ControlPlanUnit
20 // HRESULT _stdcall getNextUnit([out,retval] ControlPlanUnit ** cpu);
21
22 HRESULT _stdcall setActive(); // set when "executing"
23 HRESULT _stdcall setInactive();
24 HRESULT _stdcall isActive([out, retval] boolean **flag); // for HMI to determine when

active
25
26 // persistence data a la binary image
27 HRESULT _stdcall save([in] BSTR file);
28 HRESULT _stdcall restore([in] BSTR file);
29
30 // persistence data in neutral format (pre-configuration)
31 HRESULT _stdcall saveNeutral([in] BSTR file);
32 HRESULT _stdcall restoreNeutral([in] BSTR file);
33 };
34
35 [
36 uuid(68B85C49-E86E-11d2-AAB1-00C04FA375A6),
37 version(1.0),
38 helpstring("Enumerated ControlPlan Interface")
39]
40 interface IEnumControlPlans : IUnknown
41 {
42 typedef [unique] IControlPlanUnit *LPENUMCONTROLPLANUNIT;
43
44 [local]
45 HRESULT Next(
46 [in] ULONG celt,
47 [out] IControlPlanUnit **rgelt,
48 [out] ULONG *pceltFetched);
49
50 [call_as(Next)]
51 HRESULT RemoteNext(
52 [in] ULONG celt,
53 [out, size_is(celt), length_is(*pceltFetched)]
54 IControlPlanUnit **rgelt,
55 [out] ULONG *pceltFetched);
56
57 HRESULT Skip(
58 [in] ULONG celt);
59
60 HRESULT Reset();
61
62 HRESULT Clone(
63 [out] IControlPlanUnit **ppenum);
64 };
65
66
67
68 const unsigned long E_SEQUENCERUNNING = 0x8004F001;
69

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 73

70 const unsigned long E_RERUN = 0x8004F002;
71 const unsigned long E_RESET = 0x8004F003;
72
73 const long EF_ABORT_PLAN = 0x000000F0;
74 const long EF_PRODUCT_PLAN = 0x000000F1;
75 const long EF_STEP_UNASSIGNABLE = 0x000000F2;
76 const long EF_STEP_EXECUTING = 0x000000F3;
77
78 typedef enum _StepStatus
79 {
80 step_waiting = 0x00,
81 step_ready = 0x01,
82 step_executing = 0x02
83 } StepStatus;
84
85
86 typedef enum _SequencerState
87 {
88 uninitialized,
89 dying,
90 idle,
91 running,
92 halting,
93 halted
94 }SequencerState;
95
96 // IOperation interface
97
98 [
99 uuid(ea6695e0-88af-11d2-a281-006097839e22),
100 helpstring("IOperation Interface"),
101 pointer_default(unique),
102 dual
103]
104 interface IOperation : IDispatch
105 {
106 [helpstring("method Execute")]
107 HRESULT Execute([in, out] VARIANT *vaData);
108 }
109
110
111 [
112 object,
113 uuid(C59C4BAD-EDBB-11d2-AAB1-00C04FA375A6),
114 dual,
115 helpstring("ISequence Interface"),
116 pointer_default(unique)
117]
118 interface ISequence : IDispatch
119 {
120 [helpstring("method InsertStep")]
121 HRESULT InsertStep(
122 [in] IOperation* pOperation,
123 [in] BSTR strStepID,
124 [in] VARIANT *vaData
125);
126
127 [helpstring("method AddFollower")]
128 HRESULT AddFollower(
129 [in] BSTR strStepID,
130 [in] HRESULT retVal,
131 [in] BSTR strFollowerID,
132 [in] IOperation* pFollowerOp,
133 [in] VARIANT *vaFollowerData
134);
135
136 [helpstring("method SetFollower")]
137 HRESULT SetFollower(
138 [in] BSTR strStepID,
139 [in] HRESULT retVal,
140 [in] BSTR strFollowerID
141);
142 [helpstring("method ClearSteps")]

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 74

143 HRESULT ClearSteps();
144
145 [helpstring("method GetStepCount")]
146 HRESULT GetStepCount(
147 [out] ULONG* pnCount
148);
149
150 [helpstring("method EnumerateSteps")]
151 HRESULT EnumerateSteps(
152 [out] VARIANT *pSteps,
153 [out] ULONG* pnReturnedCount
154);
155 [helpstring("method GetStepStatus")]
156 HRESULT GetStepStatus(
157 [in] BSTR strStepID,
158 [out] StepStatus* pStatus
159);
160
161 [helpstring("method GetPredecessorCount")]
162 HRESULT GetPredecessorCount(
163 [in] BSTR strStepID,
164 [out] ULONG* pnCount
165);
166 [helpstring("method EnumPredecessors")]
167 HRESULT EnumPredecessors(
168 [in] BSTR strStepID,
169 [out] VARIANT *pPredecessors,
170 [out] ULONG* pnReturnedCount
171);
172
173 [helpstring("method GetSuccessorCount")]
174 HRESULT GetSuccessorCount(
175 [in] BSTR strStepID,
176 [out] ULONG* pnCount
177);
178
179 [helpstring("method EnumSuccessors")]
180 HRESULT EnumSuccessors(
181 [in] BSTR strStepID,
182 [out] VARIANT *pSuccessors,
183 [out] VARIANT *pResults,
184 [out] ULONG* pnReturnedCount
185);
186
187 [id(1), helpstring("method EnumWaitingSteps")]
188 HRESULT EnumWaitingSteps([out] VARIANT *steps,
189 [out] ULONG *pnReturnedCount);
190
191 [id(2), helpstring("method AddPrecondition")]
192 HRESULT AddPrecondition(BSTR step, BSTR preStep, HRESULT condition);
193
194 [id(3), helpstring("method GetPreconditionCount")]
195 HRESULT GetPreconditionCount([in] BSTR stepID, [out] ULONG *pnCount);
196
197 [id(4), helpstring("method EnumPreconditions")]
198 HRESULT EnumPreconditions([in] BSTR strStepID,
199 [out] VARIANT *pPreconditions,
200 [out] VARIANT *pConditions,
201 [out] ULONG *pnReturnedCount);
202 };
203
204
205 [
206 object,
207 uuid(ea6695e3-88af-11d2-a281-006097839e22),
208 dual,
209 helpstring("ISequencer Interface"),
210 pointer_default(unique)
211]
212 interface ISequencer : IDispatch
213 {
214 [helpstring("method SetProductSequence")]
215 HRESULT SetProductSequence([in] ISequence* pProductPlan);

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 75

216
217 [helpstring("method GetProductSequence")]
218 HRESULT GetProductSequence([out] ISequence** ppProductPlan);
219
220 [helpstring("method SetAbortSequence")]
221 HRESULT SetAbortSequence([in] ISequence* pAbortPlan);
222
223 [helpstring("method GetAbortSequence")]
224 HRESULT GetAbortSequence([out] ISequence** ppAbortPlan);
225
226 [helpstring("method Go")]
227 HRESULT Go();
228
229 [helpstring("method Step")]
230 HRESULT Step([in] BSTR step);
231
232 [helpstring("method Stop")]
233 HRESULT Stop();
234
235 [helpstring("method Abort")]
236 HRESULT Abort();
237
238 [id(1), helpstring("method RunThruStep")]
239 HRESULT RunThruStep([in] BSTR step);
240
241 [id(2), helpstring("method StartAt")]
242 HRESULT StartAt([in] BSTR step);
243
244 [id(3), helpstring("method Reset")]
245 HRESULT Reset();
246
247 [id(4), helpstring("method Rerun")]
248 HRESULT Rerun();
249
250 [id(5), helpstring("method SetName")]
251 HRESULT SetName([in] BSTR name);
252
253 [id(6), helpstring("method GetState")]
254 HRESULT GetState([out] SequencerState *pState);
255 };
256
257
258
259 [
260 uuid(134A0283-E101-11d2-B512-AEC041D2957B),
261 version(1.0),
262 helpstring("ControlPlanModule 1.0 Type Library")
263]
264 library CONTROL_PLAN_MODULE_Lib
265 {
266 importlib("stdole32.tlb");
267 importlib("stdole2.tlb");
268
269 [
270 uuid(134A0284-E101-11d2-B512-AEC041D2957B),
271 helpstring("ControlPlanUnit Class")
272]
273 coclass ControlPlanUnit
274 {
275 [default] interface IControlPlanUnit;
276 };
277 [
278 uuid(134A0285-E101-11d2-B512-AEC041D2957B),
279 helpstring("Enumerated Control Plans Class")
280]
281 coclass EnumControlPlans
282 {
283 [default] interface IEnumControlPlans;
284 };
285
286 interface IOperation;
287
288 [

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 76

289 uuid(ea6695e7-88af-11d2-a281-006097839e22),
290 helpstring("Sequence component")
291]
292 coclass Sequence
293 {
294 [default] interface ISequence;
295 };
296
297
298 [
299 uuid(ea6695e9-88af-11d2-a281-006097839e22),
300 helpstring("Sequencer component")
301]
302 coclass Sequencer
303 {
304 [default] interface ISequencer;
305 };
306
307 };
308
309
310 #endif
311
312
313
314

B.8 CAPABILITY
1 // CapabilityModule.idl : IDL source for CapabilityModule.dll
2 #ifndef _Capability
3 #define _Capability
4
5 import "oaidl.idl";
6 import "ocidl.idl";
7 import "OmacModule.idl";
8
9 // Each capablity is an FSM and types of capabilities include: manual, auto, estop, etc.
10 // FIXME: What is the relationship of manual to auto and any to estop?
11 // Internally the capbility is a FSM.
12 [
13 object,
14 uuid(134A0281-E101-11d2-B512-AEC041D2957B),
15
16 helpstring("Capability Control Plan Interface"),
17 pointer_default(unique)
18]
19 interface ICapability : IUnknown
20 {
21 HRESULT _stdcall start();
22 HRESULT _stdcall execute();
23 HRESULT _stdcall updateCap(); //update() can call updateCap()
24 HRESULT _stdcall stop();
25 HRESULT _stdcall abort();
26 HRESULT _stdcall throwExecption();
27 HRESULT _stdcall resolveExecption();
28 HRESULT _stdcall isDone();
29 HRESULT _stdcall isActive();
30 };
31
32 [
33 object,
34 uuid(FDEC2BF7-E3AE-11d2-AAB0-00C04FA375A6),
35
36 helpstring("Capability Control Plan Interface"),
37 pointer_default(unique)
38]
39 interface IEnumCapabilities : IUnknown
40 {
41

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 77

42 typedef [unique] ICapability *LPENUMCAPABILITY;
43
44 [local]
45 HRESULT Next(
46 [in] ULONG celt,
47 [out] ICapability **rgelt,
48 [out] ULONG *pceltFetched);
49
50 [call_as(Next)]
51 HRESULT RemoteNext(
52 [in] ULONG celt,
53 [out, size_is(celt), length_is(*pceltFetched)]
54 ICapability **rgelt,
55 [out] ULONG *pceltFetched);
56
57 HRESULT Skip(
58 [in] ULONG celt);
59
60 HRESULT Reset();
61
62 HRESULT Clone(
63 [out] ICapability **ppenum);
64 };
65
66 [
67 uuid(134A0286-E101-11d2-B512-AEC041D2957B),
68 version(1.0),
69 helpstring("Capability CPU Module 1.0 Type Library")
70]
71 library CAPABILITY_MODULE_Lib
72 {
73 importlib("stdole32.tlb");
74 importlib("stdole2.tlb");
75
76 [
77 uuid(134A0287-E101-11d2-B512-AEC041D2957B),
78 helpstring("Capability CPU Class")
79]
80 coclass Capability
81 {
82 [default] interface ICapability;
83 };
84 };
85 #endif
86

B.9 IO
1 // IOModule.idl : IDL source for IO Points.dll
2
3 #ifndef __IOModule__IDL
4 #define __IOModule__IDL
5 import "oaidl.idl";
6 import "ocidl.idl";
7 import "OmacModule.idl";
8 import "DataRepresentation.idl";
9
10 //typedef unsigned char byte;
11
12 // Level 1
13 [
14 object,
15 uuid(252BD0E9-EDB6-11d2-AAB1-00C04FA375A6),
16
17 helpstring("IO Base Class Interface"),
18 pointer_default(unique)
19]
20 interface IIOPt : IOmac
21 {
22 // Metadata
23 typedef [v1_enum] enum tag_TYPE {
24 DONTCARE,
25 R_ONLY,

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 78

26 W_ONLY,
27 RW
28 } TYPE;
29
30 HRESULT _stdcall setType([in] TYPE value);
31 HRESULT _stdcall getType([out, retval] TYPE ** value);
32 HRESULT _stdcall setUnits([in] UNITS value);
33 HRESULT _stdcall getUnits([out, retval] UNITS ** value);
34 HRESULT _stdcall set([in] VARIANT value);
35 HRESULT _stdcall get([out, retval] VARIANT ** value);
36 HRESULT _stdcall setUpperBound([in]VARIANT value);
37 HRESULT _stdcall getUpperBound([out,retval]VARIANT ** value);
38 HRESULT _stdcall setLowerBound([in]VARIANT value);
39 HRESULT _stdcall getLowerBound([out,retval]VARIANT ** value);
40 HRESULT _stdcall enableBoundsChecking([in] boolean value);
41
42 };
43
44 [
45 object,
46 uuid(2CD39DE5-EDB6-11d2-AAB1-00C04FA375A6),
47 helpstring("IOPtlong Interface"),
48 pointer_default(unique)
49]
50 interface IOPtlong : IIOPt
51 {
52 HRESULT _stdcall getValue([out, retval] long ** value);
53 HRESULT _stdcall setValue([in] long value);
54
55 };
56
57 [
58 object,
59 uuid(37B6BADF-EDB6-11d2-AAB1-00C04FA375A6),
60 helpstring("IOPtshort Interface"),
61 pointer_default(unique)
62]
63 interface IOPtshort : IIOPt
64 {
65 HRESULT _stdcall getValue([out, retval] short ** value);
66 HRESULT _stdcall setValue([in] short value);
67
68 };
69
70 [
71 object,
72 uuid(42EAE7CD-EDB6-11d2-AAB1-00C04FA375A6),
73 helpstring("IOPtbyte Interface"),
74 pointer_default(unique)
75]
76 interface IOPtbyte : IIOPt
77 {
78 HRESULT _stdcall getValue([out,retval] byte ** value);
79 HRESULT _stdcall setValue([in] byte value);
80
81 };
82
83 [
84 object,
85 uuid(4D9BF365-EDB6-11d2-AAB1-00C04FA375A6),
86 helpstring("IOPtboolean Interface"),
87 pointer_default(unique)
88]
89 interface IOPtboolean : IIOPt
90 {
91 HRESULT _stdcall getValue([out,retval] boolean ** value);
92 HRESULT _stdcall setValue([in] boolean value);
93
94 };
95
96 [
97 object,
98 uuid(644BD3CD-EDB6-11d2-AAB1-00C04FA375A6),

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 79

99
100 helpstring("IOPtdouble Interface"),
101 pointer_default(unique)
102]
103 interface IOPtdouble : IIOPt
104 {
105 HRESULT _stdcall getValue([out,retval] double ** value);
106 HRESULT _stdcall setValue([in] double value);
107
108 };
109
110 [
111 object,
112 uuid(6D8B52E7-EDB6-11d2-AAB1-00C04FA375A6),
113
114 helpstring("IOPtfloat Interface"),
115 pointer_default(unique)
116]
117 interface IOPtfloat : IIOPt
118 {
119 HRESULT _stdcall getValue([out,retval] float ** value);
120 HRESULT _stdcall setValue([in] float value);
121
122 };
123
124 [
125 uuid(770B317F-EDB6-11d2-AAB1-00C04FA375A6), // New GUID
126 helpstring("ISubjectObserver Interface"),
127 pointer_default(unique)
128]
129 interface ISubjectObserver : IUnknown
130 {
131 [helpstring("method SubscribeByID")]
132 HRESULT SubscribeByID([in] DWORD dwSubjectID,
133 [in] long lFlags,
134 [in] long lNotificationFilter);
135
136 [helpstring("method SubscribeByName")]
137 HRESULT SubscribeByName([in] BSTR strname,
138 [in] long lFlags,
139 [in] long lNotificationFilter,
140 [in, out] long *plSubscriptions);
141 [helpstring("method Unsubscribe")]
142 HRESULT Unsubscribe([in]DWORD dwSubjectID,[in]BOOL bAllSubjects);
143
144 [helpstring("method IsSubscribed")]
145 HRESULT IsSubscribed(DWORD dwSubjectID);
146
147 [helpstring("method GetCountSubscriptions")]
148 HRESULT GetCountSubscriptions([out] long *lCount);
149
150 [helpstring("method GetCountSubscribers")]
151 HRESULT GetCountSubscribers([out] long *lCount);
152
153 [helpstring("method Notify")]
154 HRESULT Notify([in] long lSizeNotification,
155 [in, size_is(lSizeNotification)] [ptr] byte* pNotification,
156 [in] long lDataType, [in] long lNotificationType,
157 [in] long lExtra);
158
159 [helpstring("method GetIDFromName")]
160 HRESULT GetIDFromName([in] BSTR strname,[out]DWORD * dwObjectID);
161
162 [helpstring("method GetObjectID")]
163 HRESULT GetObjectID([out]DWORD * dwID);
164
165 [helpstring("method GetName")]
166 HRESULT GetName([out, retval]BSTR *strName);
167
168 [helpstring("method GetNameFromID")]
169 HRESULT GetNameFromID([in] DWORD dwID, [out, retval]BSTR *pbstrName);
170
171 [helpstring("method SetName")]

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 80

172 HRESULT SetName([in, string] BSTR bstrName);
173
174 [helpstring("method GetError")]
175 HRESULT GetError([out, retval] BSTR *pbstrError);
176 };
177 [
178 uuid(17A90B20-8221-11d2-9AD6-00C0D15709A3),
179
180 helpstring("IObserverNotification Interface"),
181 pointer_default(unique)
182]
183 interface IObserverNotification: IUnknown
184 {
185 [helpstring("method OnNotify")]
186 HRESULT OnNotify([in] VARIANT *pObj);
187
188 //[helpstring("method OnNotify")] HRESULT OnNotify([in] DWORD
189 // dwSubjectSender,[in] long
190 // nSizeNotification,[in,size_is(nSizeNotification)] [ptr] byte*
191 // pNotification);
192
193 [helpstring("method OnNotifySubjectBroken")]
194 HRESULT OnNotifySubjectBroken([in] DWORD dwSubjectID);
195 };
196
197
198
199 #ifdef IGNORE_THIS
200 OPC has defined this sort of interface
201 typedef sequence<IOPt> IOvalues;
202 typedef sequence<string> IOnames;
203 typedef sequence<string> IOmetadata;
204
205 // Or should this just be an array of IOPts?
206 interface IOgroup
207 {
208 IOvalues getValues();
209 void setValues(in IOvalues values);
210
211 void addIoPtlong(in IOPtlong io);
212 void addIoPtshort(in IOPtshort io);
213 void addIoPtboolean(in IOPtboolean io);
214 void addIoPtdouble(in IOPtdouble io);
215 void addIoPtfloat(in IOPtfloat io);
216 IOnames getNames();
217 IOmetadata getMetadata();
218 };
219
220 interface IOsystem
221 {
222 void addIoGroup(in IOgroup aIOgroup);
223 IOgroup getIoGroup(in string name);
224 // FIXME: how do you do this in IDL?
225 // IOPt getIoPt(char * name);
226 };
227 #endif
228
229 [
230 uuid(134A02A3-E101-11d2-B512-AEC041D2957B),
231 version(1.0),
232 helpstring("ControlPlanGenerator Module 1.0 Type Library")
233]
234 library IO_MODULE_Lib
235 {
236 importlib("stdole32.tlb");
237 importlib("stdole2.tlb");
238
239 [
240 uuid(903B079F-EDB8-11d2-AAB1-00C04FA375A6),
241 helpstring("IO Point Class")
242]
243 coclass IOPt
244 {

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 81

245 [default] interface IIOPt;
246 };
247
248
249
250 [
251 uuid(71CB82B7-EDB8-11d2-AAB1-00C04FA375A6),
252 helpstring("SubjectObserver Class")
253]
254 coclass SubjectObserver
255 {
256 [default] interface ISubjectObserver;
257 [default,source] interface IObserverNotification;
258 };
259
260 };
261
262 // Level 2: Hierarchy of Common IO Points - for type checking
263 // See IO API Document for further details
264 #endif
265

B.10 TASK COORDINATOR
1 // TaskCoordinatorModule.idl : IDL source for TaskCoordinator.dll
2
3 #ifndef TaskCoordinator__IDL
4 #define TaskCoordinator__IDL
5 import "oaidl.idl";
6 import "ocidl.idl";
7 import "OmacModule.idl";
8 import "CapabilityModule.idl";
9
10 [
11 object,
12 uuid(134A0280-E101-11d2-B512-AEC041D2957B),
13
14 helpstring("TaskCoordinator Interface"),
15 pointer_default(unique)
16]
17
18 // Task Coordinator accepts one capability from a list of capabilities.
19 interface ITaskCoordinator : IOmac /*UPDATABLE*/
20 {
21
22 HRESULT _stdcall update(); //can be inherited from UPDATER
23
24 // Capability List Management
25 HRESULT _stdcall addToList([in] ICapability * cap);
26 HRESULT _stdcall removeFromList([in] ICapability * cap);
27 HRESULT _stdcall getList([out, retval] IEnumCapabilities **cap);
28
29 // Current Capability Management
30 HRESULT _stdcall getCurrentCapability([out, retval] ICapability **cap);
31 HRESULT _stdcall setCurrentCapability([in] ICapability * cap);
32 };
33
34 [
35 uuid(134A0288-E101-11d2-B512-AEC041D2957B),
36 version(1.0),
37 helpstring("Task Coordinator Module 1.0 Type Library")
38]
39 library TASK_COORDINATOR_MODULE_Lib
40 {
41 importlib("stdole32.tlb");
42 importlib("stdole2.tlb");
43
44 [
45 uuid(134A0289-E101-11d2-B512-AEC041D2957B),
46 helpstring("Task Coordinator Class")
47]
48 coclass TaskCoordinator
49 {

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 82

50 [default] interface ITaskCoordinator;
51 };
52 };
53 #endif
54

B.11 DISCRETE LOGIC
1 //
2 // DiscreteLogic.idl
3 //
4 #ifndef DiscreteLogic__idl
5 #define DiscreteLogic__idl
6
7 import "oaidl.idl";
8 import "ocidl.idl";
9
10 import "OmacModule.idl";
11 import "ControlPlanModule.idl";
12
13 interface IDiscreteLogicUnit;
14
15 // Discrete Logic Module contains a list of logic units. A PLC like scan
16 // goes down the list and executes each logic unit if it is on. Logic units
17 // will be executed as often as its posted scan rate indicates.
18 // Internally each discrete logic unit is an FSM.
19 // Discrete Logic Units (DLUs) are grouped by scan rates.
20
21 [
22 object,
23 uuid(134A028C-E101-11d2-B512-AEC041D2957B),
24
25 helpstring("Discrete Logic Interface"),
26 pointer_default(unique)
27]
28 interface IDiscreteLogic : IOmac
29 {
30
31 // Logic Units Management
32 HRESULT _stdcall createDiscreteLogicUnit([out, retval] IDiscreteLogicUnit ** d);
33 HRESULT _stdcall addLogicUnit([in] IDiscreteLogicUnit * dlu);
34 HRESULT _stdcall removeLogicUnit([in] IDiscreteLogicUnit * dlu);
35 HRESULT _stdcall enableLogicUnit([in] IDiscreteLogicUnit * dlu);
36 HRESULT _stdcall disableLogicUnit([in] IDiscreteLogicUnit * dlu);
37 };
38
39 // Derived from ControlPlanUnit, see: part program translator
40 [
41 object,
42 uuid(134A028D-E101-11d2-B512-AEC041D2957B),
43
44 helpstring("Discrete Logic Interface"),
45 pointer_default(unique)
46]
47 interface IDiscreteLogicUnit: IControlPlanUnit
48 {
49 HRESULT _stdcall setInterval([in] long aInterval);
50 HRESULT _stdcall getInterval([out,retval] long ** val);
51
52 HRESULT _stdcall start();
53 HRESULT _stdcall scanUpdate();
54 HRESULT _stdcall stop();
55 HRESULT _stdcall isOn([out,retval] boolean ** flag);
56 HRESULT _stdcall turnOn([out,retval] boolean ** flag);
57 HRESULT _stdcall turnOff([out,retval] boolean ** flag);
58 };
59
60 [
61 uuid(134A028E-E101-11d2-B512-AEC041D2957B),
62 version(1.0),
63 helpstring("DiscreteLogicModule 1.0 Type Library")

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 83

64]
65 library DISCRETE_LOGIC_MODULE_Lib
66 {
67 importlib("stdole32.tlb");
68 importlib("stdole2.tlb");
69
70 [
71 uuid(134A028F-E101-11d2-B512-AEC041D2957B),
72 helpstring("DiscreteLogic Class")
73]
74 coclass DiscreteLogic
75 {
76 [default] interface IDiscreteLogic;
77 };
78 [
79 uuid(134A0290-E101-11d2-B512-AEC041D2957B),
80 helpstring("DiscreteLogicUnit Class")
81]
82 coclass DiscreteLogicUnit
83 {
84 [default] interface IDiscreteLogicUnit;
85 };
86 };
87 #endif
88

B.12 CONTROL PLAN GENERATOR
1 //
2 // ControlPlanGenerator.idl
3 //
4 #ifndef ControlPlanGenerator__idl
5 #define ControlPlanGenerator__idl
6
7 import "DataRepresentation.idl";
8 import "ControlPlanModule.idl";
9
10 // Level 1 assuming simple File Manipulation
11 [
12 object,
13 uuid(134A02A2-E101-11d2-B512-AEC041D2957B),
14
15 helpstring("Control Plan Generator Interface"),
16 pointer_default(unique)
17]
18 interface IControlPlanGenerator :IUnknown
19 {
20 HRESULT _stdcall setProgramName([in] BSTR s);
21 HRESULT _stdcall getProgramName([out,retval] BSTR **name);
22
23 HRESULT _stdcall checkSyntax([out,retval] boolean **flag);
24
25 //get error codes or returns file name or file pointer?
26 HRESULT _stdcall getErrorCodes([out,retval] BSTR ** results);
27
28 // complete translation into ControlPlan
29 HRESULT _stdcall translate([out,retval] IEnumControlPlans ** cp);
30
31 // step by step translation
32 HRESULT _stdcall getNextControlPlanUnnit([out,retval] IControlPlanUnit ** cpu);
33 };
34
35 [
36 uuid(134A02A3-E101-11d2-B512-AEC041D2957B),
37 version(1.0),
38 helpstring("ControlPlanGenerator Module 1.0 Type Library")
39]
40 library CONTROL_PLAN_GENERATOR_MODULE_Lib
41 {
42 importlib("stdole32.tlb");
43 importlib("stdole2.tlb");
44
45 [

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 84

46 uuid(134A02A4-E101-11d2-B512-AEC041D2957B),
47 helpstring("Control Plan Generator Class")
48]
49 coclass ControlPlanGenerator
50 {
51 [default] interface IControlPlanGenerator;
52 };
53 };
54
55 #endif
56

B.13 AXIS GROUP

There are some inconsistencies within the Axis Group module API. The major remaining problem is
to resolve the use of the axis group velocity profile generator (VPG) versus having the VPG
embedded within a motion segment.
1 #ifndef AxisGroup__IDL
2 #define AxisGroup__IDL
3
4 import "DataRepresentation.idl"
5 import "OmacModule.idl"
6 import "Kinematics.idl"
7 import "ControlPlan.idl"
8
9 //+ add accel mode - use instead of enum - windows problem
10 typedef long ACCMode;
11 #define SCURVE 1
12 #define TRAPEZOIDAL 2
13
14 interface IAxisGroup;
15 interface IMotionSegment;
16 interface IRate;
17 interface IVelocityProfileGenerator;
18 typedef long AccDecProfile;
19 struct _CoordinatedAxes {
20 double axis[10];
21 } CoordinatedAxes;
22
23 struct _CRCMODE { /* FIXME */ } CRCMODE;
24
25 [
26 object,
27 uuid(134A0292-E101-11d2-B512-AEC041D2957B),
28
29 helpstring("Axis Group Interface"),
30 pointer_default(unique)
31]
32 interface IAxisGroup : IOmac
33 {
34 //+ enum { ERROR, HELD, HOLDING, STOPPED, STOPPING,
35 // PAUSED, PAUSING, RESUME, EXECUTING, IDLE };
36
37 // STATE LOGIC
38 // ===
39
40 HRESULT _stdcall hardStopAxes(); // Stop at max deceleration rate (abort)
41 HRESULT _stdcall pauseAxes(); // stop on path
42 HRESULT _stdcall holdAxes(); // stop at end of segment
43 HRESULT _stdcall resumeAxes(); // Resumes motion from current point
44
45 // HRESULT _stdcall updateAxes();
46 HRESULT _stdcall update(); //+ changed for consistent interface
47
48 HRESULT _stdcall getCurrentState([out,retval] long **value);
49 HRESULT _stdcall getCurrentStateName(BSTR statename);
50 HRESULT _stdcall isOk(boolean **flag);
51 HRESULT _stdcall isExecuting([out,retval] boolean **flag);
52 HRESULT _stdcall isHeld([out,retval] boolean **flag);
53 HRESULT _stdcall isHolding([out,retval] boolean **flag);
54 HRESULT _stdcall isPaused([out,retval] boolean **flag);
55 HRESULT _stdcall isPausing([out,retval] boolean **flag);

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 85

56 HRESULT _stdcall isStopping([out,retval] boolean **flag);
57 HRESULT _stdcall isStopped([out,retval] boolean **flag);
58
59 // These methods could be operator Control Plan Unit
60 HRESULT _stdcall jogAxis([in] long axisNo,
61 [in] Velocity speed);
62
63 HRESULT _stdcall homeAxis([in] long axisNo,
64 [in] Velocity speed);
65
66 HRESULT _stdcall moveAxisTo([in] long axisNo,
67 [in] Velocity speed,
68 [in] Length toPosition);
69
70 HRESULT _stdcall incrementAxis([in] long axisNo,
71 [in] Velocity speed,
72 [in] Length increment);
73
74 // BUFFERING MANAGEMENT
75 //===
76 HRESULT _stdcall setNextMotionSegment([in] IMotionSegment block);
77 // MotionSegment getCurrentMotionBlock(); //hazardous to your controller’s health
78 HRESULT _stdcall getMaxqsize([out,retval] long ** val); // largest queue size possible=n
79 HRESULT _stdcall setQlength([in] long value); // maximum number of queue members=(1..n)
80 HRESULT _stdcall getQlength([out,retval] long ** val);
81 HRESULT _stdcall getCurrentQsize([out,retval] long ** val); // number of items in queue=i
82 HRESULT _stdcall isFull([out,retval] boolean **flag); // number of items = n
83 HRESULT _stdcall isEmpty([out,retval] long ** val); // number or items = 0
84
85 HRESULT _stdcall flush(); // flush all segments
86 HRESULT _stdcall skip(); // skip to next segment
87 HRESULT _stdcall saveQContext(); // save current queue
88 HRESULT _stdcall restoreQContext(); // restore saved queue
89
90 // FIXME: possibly more queue mgt functions (accessor, query, ...)
91
92 // CONVENIENCE FUNCTIONS TO ACCESS MOTION SEGMENT DATA
93 //===
94 HRESULT _stdcall getNeighborhood([out,retval] Length ** dval);
95 HRESULT _stdcall getFeedrate([out,retval] LinearVelocity ** dval);
96 HRESULT _stdcall getTraverserate([out,retval] Velocity ** dval);
97 HRESULT _stdcall getFeedrateOverride([out,retval] double ** val);
98 HRESULT _stdcall getSpindleRateOverride([out,retval] double ** val);
99 HRESULT _stdcall getJerkLimit([out,retval] LinearJerk ** lj);
100 HRESULT _stdcall getInPosition([out,retval] boolean ** flag);
101 HRESULT _stdcall setInPosition([in] boolean value); /* privapte method*/
102
103 // See Note 1
104 HRESULT _stdcall getActualAxisPosition([in] long axisNo, [out,retval] Measure **value);
105 HRESULT _stdcall getActualAxesPositions([out, retval] OacVector ** vector);
106 HRESULT _stdcall getXformedActualPositions([out,retval] CoordinateFrame ** coord);
107 HRESULT _stdcall getCommandedAxisPosition([in] long axisNo, [out,retval] Measure ** dVal);
108 HRESULT _stdcall getCommandedAxesPositions([out,retval] OacVector ** vector);
109 HRESULT _stdcall getXformedCommandedPositions([in] OacVector axisPositions, [out,retval]

CoordinateFrame ** cf);
110
111 HRESULT _stdcall getAccmode([out,retval] ACCMode ** accmode);
112
113 // KINEMATIC INFORMATION
114 //===
115 // Axis under control
116 HRESULT _stdcall getCoordinatedAxes([out,retval] CoordinatedAxes ** ca);
117 HRESULT _stdcall getKinstructure([out,retval] IKinStructure ** kin);
118 HRESULT _stdcall setKinstructure([in] IKinStructure value);
119 HRESULT _stdcall getToolTransform([out,retval] Transform ** t);
120 HRESULT _stdcall getBaseframe([out,retval] Transform ** t);
121 HRESULT _stdcall setBaseframe([in] CoordinateFrame value);
122
123 // recovery from fault error, sharing
124 HRESULT _stdcall inhibitAxis([in] long axisNo, [in] boolean inhibit);
125 HRESULT _stdcall axisInhibitd([in] long axisNo, [out,retval] boolean ** flag);
126 HRESULT _stdcall inhibitSpindle([in] boolean inhibit);
127 HRESULT _stdcall spindleInhibitd([out,retval] boolean ** flag);

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 86

128
129 // TRAJECTORY INFORMATION
130 //===
131 HRESULT _stdcall setBlending([in] boolean flag); // TRUE=ON, FALSE=OFF
132 HRESULT _stdcall setSingleStep([in] boolean flag); // TRUE=ON, FALSE=OFF
133
134 // HRESULT _stdcall setVpg([in] IVelocityProfileGenerator vpg);
135 // VelocityProfileGenerator getVpg();
136
137 // Timing is now a reference to another object
138 // timeMeasure getAxisupdateinterval() const;
139 // HRESULT _stdcall setAxisupdateinterval(timeMeasure value);
140 // attribute Time timing;
141
142 HRESULT _stdcall setPhysicalLimits([in] Rate limits); //+ 3-Jun-1997
143 HRESULT _stdcall getPhysicalLimits([out,retval] Rate ** r); //+
144 };
145
146 // NOTES
147 // 1. There is a problem in JAVA with returning data type.
148 // Storing into calling parameter as a side effect Side
149 // instead of
150 // OacVector getCommandedAxesPositions();
151 // use
152 // getCommandedAxesPositions(OacVector positions);
153 // It is possible to redo above in this signature style.
154 // 2. Issue: There are issues as to maximum acceleration of device
155 // versus Control Plan Unit (Motion Segment)
156
157 // Control Plan Class Definitions- Motion Segments
158
159
160 [
161 object,
162 uuid(134A0293-E101-11d2-B512-AEC041D2957B),
163
164 helpstring("Path Node Interface"),
165 pointer_default(unique)
166]
167
168 interface IPathNode
169 {
170 HRESULT _stdcall getControltransform([out,retval] Transform ** t);
171 HRESULT _stdcall setControltransform(Transform value);
172 };
173 [
174 object,
175 uuid(134A0294-E101-11d2-B512-AEC041D2957B),
176
177 helpstring("PathElement Interface"),
178 pointer_default(unique)
179]
180 interface IPathElement : IKinematicPath
181 {
182 HRESULT _stdcall initAccDecProfile([in] LinearVelocity vel);
183 HRESULT _stdcall setStartPoint([in] IPathNode startPoint); // axgroup sets
184 HRESULT _stdcall getStartPoint([out,retval] IPathNode ** pn);
185 HRESULT _stdcall getEndPoint([out,retval] IPathNode ** pn); // axgroup sets
186 // HRESULT _stdcall setEndPoint([in] IPathNode endPoint); // ppt or internal use
187 HRESULT _stdcall getDistanceToGo([out,retval] LengthMeasure ** len);
188 HRESULT _stdcall isPathComplete([out,retval] boolean ** flag);
189 HRESULT _stdcall pathLength([out,retval] LengthMeasure ** len);
190 // LengthMeasure pathLength(XYZ xyz); // what is this
191 };
192
193
194 [
195 object,
196 uuid(134A0295-E101-11d2-B512-AEC041D2957B),
197
198 helpstring("Rate Interface"),
199 pointer_default(unique)
200]

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 87

201 interface IRate
202 {
203 HRESULT _stdcall setNominalFeedrate([in] double vnom);
204 HRESULT _stdcall setCurrentFeedrate([in] double vmax, [out,retval] long ** pplVal); //

includes override
205 HRESULT _stdcall setMaximumAcceleration([in] double amax, [out,retval] long **pplVal);
206 HRESULT _stdcall setMaximumJerk([in] double jmax, [out,retval] long **value);
207
208 HRESULT _stdcall getNominalFeedrate([out,retval] double ** ppdVal);
209 HRESULT _stdcall getCurrentFeedrate([out,retval] double ** ppdVal); // includes

override
210 HRESULT _stdcall getMaximumAcceleration([out,retval] double ** ppdVal);
211 HRESULT _stdcall getMaximumJerk([out,retval] double ** ppdVal);
212
213 HRESULT _stdcall getCurrentVelocity([out,retval] double ** val);
214 HRESULT _stdcall setCurrentVelocity([in] double vcur);
215
216 HRESULT _stdcall getFinalVelocity([out,retval] double ** val);
217 HRESULT _stdcall setFinalVelocity([in] double vcur);
218
219 HRESULT _stdcall getCurrentAcceleration([out,retval] double ** val);
220 HRESULT _stdcall setCurrentAcceleration([in] double acur);
221
222 HRESULT _stdcall getAccState([out,retval] long **value);
223 HRESULT _stdcall setAccState([in] long val);
224 HRESULT _stdcall isDone([out,retval] boolean ** flag);
225 HRESULT _stdcall isAccel([out,retval] boolean ** flag);
226 HRESULT _stdcall isConst([out,retval] boolean ** flag);
227 HRESULT _stdcall isDecel([out,retval] boolean ** flag);
228
229 HRESULT _stdcall setNominalSpindleSpeed([in] double spd); // why here?
230 HRESULT _stdcall getNominalSpindleSpeed([out,retval] double ** val);
231 };
232 [
233 object,
234 uuid(134A0296-E101-11d2-B512-AEC041D2957B),
235
236 helpstring("Kinematic Info Interface"),
237 pointer_default(unique)
238]
239 interface IKinematicInfo
240 {
241 HRESULT _stdcall setToolCenter([in] Length effectiveDisplacement,
242 [in] CRCMODE cutterRadiusCompensation);
243
244 HRESULT _stdcall getCurrentFrame([out,retval] Transform ** tr);
245 HRESULT _stdcall setCurrentFrame([in] Transform currentFrame);
246
247 HRESULT _stdcall getKinematics([out,retval] IKinMechanism ** kin);
248 HRESULT _stdcall setKinematics ([in] IKinMechanism kin);
249 };
250
251 [
252 object,
253 uuid(134A0297-E101-11d2-B512-AEC041D2957B),
254
255 helpstring("VelocityProfileGenerator Interface"),
256 pointer_default(unique)
257]
258 interface IVelocityProfileGenerator
259 {
260 HRESULT _stdcall getAccdecprofile([out,retval] AccDecProfile ** accdec);
261 HRESULT _stdcall setAccdecprofile([in] AccDecProfile value);
262
263 HRESULT _stdcall setBlendingPointDistance([in] double distance);
264 HRESULT _stdcall getBlendingPointDistance([out,retval] double ** val);
265
266 HRESULT _stdcall getSamplingTime([out,retval] Time ** t);
267 HRESULT _stdcall setSamplingTime([in] Time value);
268 /* New 3-Jun-1997 */
269 HRESULT _stdcall holdSegment();
270 HRESULT _stdcall pauseSegment();
271 HRESULT _stdcall resumeSegment();

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 88

272 };
273 // Base Class for Motion Segment
274 // Derived from ControlPlanUnit - see part program translator
275 [
276 object,
277 uuid(134A0298-E101-11d2-B512-AEC041D2957B),
278
279 helpstring("MotionSegment Interface"),
280 pointer_default(unique)
281]
282 interface IMotionSegment : IControlPlanUnit
283 {
284 HRESULT _stdcall getKinematicInfo (KinematicInfo **kin);
285 HRESULT _stdcall setKinematicInfo (KinematicInfo kin);
286
287 HRESULT _stdcall setVpg([in] IVelocityProfileGenerator aVPG);
288 HRESULT _stdcall getVpg([out,retval] IVelocityProfileGenerator ** vpg);
289
290 HRESULT _stdcall setTranslationalRate([in] IRate rate);
291 HRESULT _stdcall getTranslationalRate([out,retval] IRate ** rate);
292
293 HRESULT _stdcall setOrientationRate([in] Rate rate);
294 HRESULT _stdcall getOrientationRate([out,retval] Rate ** rate);
295
296 HRESULT _stdcall setAngularRate([in] IRate rate); // does this belong in axis group?
297 HRESULT _stdcall getAngularRate([out,retval] IRate ** rate);
298
299 // if internal velocity profile generation supply this interface
300 HRESULT _stdcall setBlendingPointDistance([in] double distance);
301 HRESULT _stdcall getBlendingPointDistance([out,retval] double **val);
302
303 HRESULT _stdcall calcDistanceRemaining([out,retval] Length **l); // axes
304
305 HRESULT _stdcall getIncrementalDistance([out,retval] OacVector **vector);
306 HRESULT _stdcall getLengthsRemaining([out,retval] OacVector ** vector); // per axis
307 HRESULT _stdcall calcNextIncrement([in] double feedOverride,
308 [in] double spindleOverride,
309 [out,retval] OacVector ** vector
310);
311 HRESULT _stdcall startNextSegment([out,retval] boolean ** flag); //? what does this mean init?
312 //? int init(double cycleTime); //+ 3-Jun-1997
313 HRESULT _stdcall pauseSegment();
314 HRESULT _stdcall holdSegment(); /* new */
315 HRESULT _stdcall stopSegment(); /* new 3-Jun-1997 set motion to done */
316 HRESULT _stdcall resumeSegment();
317 HRESULT _stdcall isPaused([out,retval] boolean ** flag);
318 HRESULT _stdcall isHeld([out,retval] boolean ** flag);
319
320 #ifdef SKIPTHIS
321
322 // Program information (file, line number, block) and signals(active)
323 HRESULT _stdcall setPpb(PartProgramBlock ppb);
324 HRESULT _stdcall segmentStarted();
325 HRESULT _stdcall segmentFinished();
326 #endif
327 };
328 //NOTES:
329 // 1. Handling Termination Condition:
330 // a. Exact Stop = blending distance=0
331
332 [
333 uuid(134A0299-E101-11d2-B512-AEC041D2957B),
334 version(1.0),
335 helpstring("Axis Group Module 1.0 Type Library")
336]
337 library AXIS_GROUP_MODULE_Lib
338 {
339 importlib("stdole32.tlb");
340 importlib("stdole2.tlb");
341
342 [
343 uuid(134A029A-E101-11d2-B512-AEC041D2957B),
344 helpstring("Axis Group Class")

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 89

345]
346 coclass AxisGroup
347 {
348 [default] interface IAxisGroup;
349 interface IOmac;
350 };
351 [
352 uuid(134A029B-E101-11d2-B512-AEC041D2957B),
353 helpstring("PathNode Class")
354]
355 coclass PathNode
356 {
357 [default] interface IPathNode;
358 };
359
360 [
361 uuid(134A029C-E101-11d2-B512-AEC041D2957B),
362 helpstring("PathElement Class")
363]
364 coclass PathElement
365 {
366 [default] interface IPathElement;
367 interface IKinematicPath;
368 };
369
370 [
371 uuid(134A029D-E101-11d2-B512-AEC041D2957B),
372 helpstring("Rate Class")
373]
374 coclass Rate
375 {
376 [default] interface IRate;
377 };
378
379 [
380 uuid(134A029B-E101-11d2-B512-AEC041D2957B),
381 helpstring(" KinematicInfo Class")
382]
383 coclass KinematicInfo
384 {
385 [default] interface IKinematicInfo;
386 };
387
388 [
389 uuid(134A029E-E101-11d2-B512-AEC041D2957B),
390 helpstring("VelocityProfileGenerator Class")
391]
392 coclass VelocityProfileGenerator
393 {
394 [default] interface IVelocityProfileGenerator;
395 };
396
397 [
398 uuid(134A029F-E101-11d2-B512-AEC041D2957B),
399 helpstring("MotionSegment Class")
400]
401 coclass MotionSegment
402 {
403 [default] interface IMotionSegment;
404 interface IControlPlanUnit;
405 };
406
407 };
408
409
410 #endif
411

B.14 AXIS
1 // AxisModule.idl : IDL source for AxisModule.dll

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 90

2 //
3
4 // This file will be processed by the MIDL tool to
5 // produce the type library (AxisModule.tlb) and marshalling code.
6
7 import "oaidl.idl";
8 import "ocidl.idl";
9
10 import "DataRepresentation.idl";
11 import "OmacModule.idl";
12 import "ControlLawModule.idl";
13
14 interface IAxis;
15 interface IAxisAbsolutePos;
16 interface IAxisAccelerationServo;
17 interface IAxisCommandedInput;
18 interface IAxisCommandedOutput;
19 interface IAxisDyn;
20 interface IAxisErrorAndEnable;
21 interface IAxisForceServo;
22 interface IAxisHoming;
23 interface IAxisIncrementPos;
24 interface IAxisKinematics;
25 interface IAxisJogging;
26 interface IAxisLimits;
27 interface IAxisMaintenance;
28 interface IAxisPositioningServo;
29 interface IAxisRates;
30 interface IAxisSensedState;
31 interface IAxisSetup;
32 interface IAxisVelocityServo;
33
34 typedef double AxisAccelCmd;
35 typedef double AxisForceCmd;
36 typedef double AxisPositionCmd;
37 typedef double AxisVelocityCmd;
38
39 // {9C56BEC5-07CB-11d3-AAB2-00C04FA375A6}
40 cpp_quote("const CATID CATID_AxisModule = { 0x9c56bec5, 0x7cb, 0x11d3, { 0xaa, 0xb2, 0x0, 0xc0,

0x4f, 0xa3, 0x75, 0xa6 } };")
41
42 //const GUID CATID_ControlLawModule =

{0xE1D6F9F1,0xB1FE,0x11D2,{0xAA,0xA8,0x00,0xC0,0x4F,0xA3,0x75,0xA6}};
43
44 // Example: This CLSID is specific for one vendor, (i.e., NIST) Control Law Server
45 // {803B45C1-07CB-11d3-AAB2-00C04FA375A6}
46 cpp_quote("const CLSID CLSID_NISTAxisModuleServer = { 0x803b45c1, 0x07cb, 0x11d3, { 0xaa, 0xb2,

0x0, 0xc0, 0x4f, 0xa3, 0x75, 0xa6 } };")
47
48 [
49 object,
50 uuid(0A70EBB0-06D9-11D3-AAB2-00C04FA375A6),
51
52 helpstring("IAxisModuleClassFactory Interface"),
53 pointer_default(unique)
54]
55 interface IAxisModuleClassFactory : IUnknown
56 {
57 HRESULT _stdcall CreateModule([in] BSTR name, [in] REFIID riid, [out, iid_is(riid)] void

** ppvObj);
58 };
59
60 [
61
62 uuid(AA03FCE5-FF08-11D2-AAB2-00C04FA375A6),
63
64 helpstring("IAxis Interface"),
65 pointer_default(unique)
66]
67 interface IAxis : IOmac
68 {
69 // Get Reference Objects
70 HRESULT _stdcall getAbsolutePos([out,retval] IAxisAbsolutePos ** val);

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 91

71 HRESULT _stdcall getAccelerationServo([out,retval] IAxisAccelerationServo ** a);
72 HRESULT _stdcall getCommandedInput([out,retval] IAxisCommandedInput ** a);
73 HRESULT _stdcall getCommandedOutput([out,retval] IAxisCommandedOutput** a);
74 HRESULT _stdcall getDynamics([out,retval] IAxisDyn ** val);
75 HRESULT _stdcall getErrorAndEnable([out,retval] IAxisErrorAndEnable** a);
76 HRESULT _stdcall getForceServo([out,retval] IAxisForceServo **a);
77 HRESULT _stdcall getHoming([out,retval] IAxisHoming ** a);
78 HRESULT _stdcall getIncrementPosition([out,retval] IAxisIncrementPos ** a);
79 HRESULT _stdcall getJogging([out,retval] IAxisJogging ** a);
80 HRESULT _stdcall getKinematics([out,retval] IAxisKinematics ** val);
81 HRESULT _stdcall getLimits([out,retval] IAxisLimits ** val);
82 HRESULT _stdcall getMaintenance([out,retval] IAxisMaintenance ** val);
83 HRESULT _stdcall getPositioningServo([out,retval] IAxisPositioningServo ** a);
84 HRESULT _stdcall getSensedState([out,retval] IAxisSensedState ** a);
85 HRESULT _stdcall getSetup([out,retval] IAxisSetup ** val);
86 HRESULT _stdcall getVelocityServo([out,retval] IAxisVelocityServo ** a);
87
88 HRESULT _stdcall setAbsolutePos([in] IAxisAbsolutePos * val);
89 HRESULT _stdcall setAccelerationServo([in] IAxisAccelerationServo * val);
90 HRESULT _stdcall setCommandedInput([in] IAxisCommandedInput * val);
91 HRESULT _stdcall setCommandedOutput([in] IAxisCommandedOutput * val);
92 HRESULT _stdcall setErrorAndEnable([in] IAxisErrorAndEnable * val);
93 HRESULT _stdcall setForceServo([in] IAxisForceServo * val);
94 HRESULT _stdcall setHoming([in] IAxisHoming * val);
95 HRESULT _stdcall setIncrementPosition([in] IAxisIncrementPos * val);
96 HRESULT _stdcall setJogging([in] IAxisJogging * val);
97 HRESULT _stdcall setKinematics([in] IAxisKinematics * val);
98 HRESULT _stdcall setLimits([in] IAxisLimits * val);
99 HRESULT _stdcall setMaintenance([in] IAxisMaintenance * val);
100 HRESULT _stdcall setPositioningServo([in] IAxisPositioningServo * val);
101 HRESULT _stdcall setSensedState([in] IAxisSensedState * val);
102 HRESULT _stdcall setSetup([in] IAxisSetup * val);
103 HRESULT _stdcall setVelocityServo([in] IAxisVelocityServo * val);
104
105 HRESULT _stdcall setPositionControlLaw([in] IControlLaw * val);
106 HRESULT _stdcall setVelocityControlLaw([in] IControlLaw * val);
107 HRESULT _stdcall setAccelerationControlLaw([in] IControlLaw * val);
108 HRESULT _stdcall getPositionControlLaw([out,retval] IControlLaw ** a);
109 HRESULT _stdcall getVelocityControlLaw([out,retval] IControlLaw ** a);
110 HRESULT _stdcall getAccelerationControlLaw([out,retval] IControlLaw ** a);
111
112
113 HRESULT _stdcall processServoLoop(); // the primary function.
114 HRESULT _stdcall checkPreconditions([out, retval] long * val); // checked at every servo loop.
115
116 // State transition methods and state queries
117 HRESULT _stdcall disableAxis(); // DISABLEEvent
118 HRESULT _stdcall enableAxis(); // ENABLEEvent
119 HRESULT _stdcall followCommandedPosition(); // FOLLOWPositionEvent
120 HRESULT _stdcall followCommandedTorque(); // FOLLOWTorqueEvent
121 HRESULT _stdcall followCommandedVelocity(); // FOLLOWVelocityEvent
122 HRESULT _stdcall followCommandedForce(); // FOLLOWForceEvent
123 HRESULT _stdcall home([in] double velocity); // STARTHomeEvent
124 HRESULT _stdcall jog([in] double velocity); // STARTJogEvent
125 HRESULT _stdcall resetAxis(); // RESETEvent
126 HRESULT _stdcall stopMotion(); // CANCELEvent
127 HRESULT _stdcall estop(); //

ESTOPEvent
128 HRESULT _stdcall updateAxis(); // UPDATEEvent
129
130 // Instead of:
131 // int currentState();
132 // DISABLED = 1,
133 // ENABLED = 2,
134 // EStopped = 3,
135 // FOLLOWINGPosition = 4,
136 // FOLLOWINGTorque = 5,
137 // FOLLOWINGVelocity = 6,
138 // HOMING = 7,
139 // JOGGING = 8,
140 // STOPPING = 9; // Use accessor functions so there is no confusion about

numbering
141 // Also inherit state queries from OMAC Base Module

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 92

142
143 HRESULT _stdcall isFollowingAcceleration([out,retval] boolean * b);
144 HRESULT _stdcall isFollowingForce([out,retval] boolean * b);
145 HRESULT _stdcall isFollowingPosition([out,retval] boolean * b);
146 HRESULT _stdcall isFollowingVelocity([out,retval] boolean * b);
147 HRESULT _stdcall isHoming([out,retval] boolean * b);
148 HRESULT _stdcall isIncrementingPosition([out,retval] boolean * b);
149 HRESULT _stdcall isJogging([out,retval] boolean * b);
150 HRESULT _stdcall isMovingto([out,retval] boolean * b);
151
152 HRESULT _stdcall isReset([out,retval] boolean * b);
153 HRESULT _stdcall isInited([out,retval] boolean * b);
154 HRESULT _stdcall isEnabled([out,retval] boolean * b);
155 HRESULT _stdcall isDisabled([out,retval] boolean * b);
156 HRESULT _stdcall isReady([out,retval] boolean * b);
157 HRESULT _stdcall isEstopped([out,retval] boolean * b);
158
159 // Add isStopping() which includes any stopping?
160 // Returns a ASCII readable string
161 HRESULT _stdcall currentStateName([out,retval] BSTR * name);
162
163 };
164
165 [
166
167 uuid(50B62B8D-4513-11d3-AABB-00C04FA375A6),
168
169 helpstring("IAxisAccelerationServo Interface"),
170 pointer_default(unique)
171]
172 interface IOmacAxis : IOmac
173 { HRESULT _stdcall setAxisContainer([in] IAxis * a);
174 };
175
176 [
177
178 uuid(AA03FCE7-FF08-11D2-AAB2-00C04FA375A6),
179
180 helpstring("IAxisAccelerationServo Interface"),
181 pointer_default(unique)
182]
183 interface IAxisAccelerationServo : IOmacAxis
184 {
185 // All invoked by Axis FSM
186 HRESULT _stdcall stopFollowingAccelerationAction();
187 HRESULT _stdcall estopFollowingAccelerationAction();
188 HRESULT _stdcall startFollowingAccelerationAction();
189 HRESULT _stdcall updateFollowingAccelerationAction();
190
191 HRESULT _stdcall isDone([out,retval] boolean * b);
192 HRESULT _stdcall isFollowingAccelerationError([out,retval] boolean * b);
193
194
195 };
196 [
197
198 uuid(AA03FCE9-FF08-11D2-AAB2-00C04FA375A6),
199
200 helpstring("IAxisCommandedInput Interface"),
201 pointer_default(unique)
202]
203 interface IAxisCommandedInput : IOmacAxis
204 {
205 HRESULT _stdcall getPositionCmdInput([out,retval] AxisPositionCmd * a);
206 HRESULT _stdcall getVelocityCmdInput([out,retval] AxisVelocityCmd * a);
207 HRESULT _stdcall getAccelerationCmdInput([out,retval] AxisAccelCmd * a);
208 HRESULT _stdcall getForceCmdInput([out,retval] AxisForceCmd * a);
209 HRESULT _stdcall setPositionCmdInput([in] AxisPositionCmd positioningCmd);
210 HRESULT _stdcall setVelocityCmdInput([in] AxisVelocityCmd velocityCmd);
211 HRESULT _stdcall setAccelerationCmdInput([in] AxisAccelCmd accelerationCmd);
212 HRESULT _stdcall setForceCmdInput([in] AxisForceCmd forceCmd);
213 HRESULT _stdcall updateCommandedInput(); // updates using connections to IO
214

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 93

215 };
216
217 [
218
219 uuid(AA03FCEB-FF08-11D2-AAB2-00C04FA375A6),
220
221 helpstring("IAxisCommandedOutput Interface"),
222 pointer_default(unique)
223]
224 interface IAxisCommandedOutput : IOmacAxis
225 {
226 HRESULT _stdcall getPositionCmdOutput([out,retval] AxisPositionCmd * a);
227 HRESULT _stdcall getVelocityCmdOutput([out,retval] AxisVelocityCmd * a);
228 HRESULT _stdcall getAccelerationCmdOutput([out,retval] AxisAccelCmd * a);
229 HRESULT _stdcall getForceCmdOutput([out,retval] AxisForceCmd * a);
230 HRESULT _stdcall setPositionCmdOutput([in] AxisPositionCmd positioningCmd);
231 HRESULT _stdcall setVelocityCmdOutput([in] AxisVelocityCmd velocityCmd);
232 HRESULT _stdcall setAccelerationCmdOutput([in] AxisAccelCmd accelerationCmd);
233 HRESULT _stdcall setForceCmdOutput([in] AxisForceCmd forceCmd);
234 HRESULT _stdcall updateCommandedOutput(); // updates using connections to IO
235
236 };
237 [
238
239 uuid(AA03FCED-FF08-11D2-AAB2-00C04FA375A6),
240
241 helpstring("IAxisDyn Interface"),
242 pointer_default(unique)
243]
244 interface IAxisDyn : IOmacAxis
245 {
246 HRESULT _stdcall getAccelerationLimit([out, retval] LinearAcceleration *pVal);
247 HRESULT _stdcall getAxmass([in] Mass newVal);
248 HRESULT _stdcall getBacklash([out, retval] Length *pVal);
249 HRESULT _stdcall getDamping([out, retval] Force *pVal);
250 HRESULT _stdcall getDeadband([out, retval] Length *pVal);
251 HRESULT _stdcall getDecelerationLimit([out, retval] LinearAcceleration *pVal);
252 HRESULT _stdcall getInertia([out, retval] Mass *pVal);
253 HRESULT _stdcall getJerkLimit([out, retval] LinearJerk *pVal);
254 HRESULT _stdcall getLoadedCaseSpringRate([out, retval] LinearStiffness *pVal);
255 HRESULT _stdcall getMaxVelAccLim([out, retval] LinearAcceleration *pVal);
256 HRESULT _stdcall getOvershootStepInput([out, retval] Length *pVal);
257 HRESULT _stdcall getQuasiStaticLoadLimit([out, retval] Force *pVal);
258 HRESULT _stdcall getRisingTimeStepInput([out, retval] Time *pVal);
259 HRESULT _stdcall getRunFriction([out, retval] Force *pVal);
260 HRESULT _stdcall getStaticFriction([out, retval] Force *pVal);
261 HRESULT _stdcall getTimeConstant([out, retval] Time *pVal);
262 HRESULT _stdcall getWorstCaseSpringRate([out, retval] LinearStiffness *pVal);
263 HRESULT _stdcall getZeroVelAccLim([out, retval] LinearAcceleration *pVal);
264
265 HRESULT _stdcall setAccelerationLimit([in] LinearAcceleration newVal);
266 HRESULT _stdcall setAxmass([out, retval] Mass *pVal);
267 HRESULT _stdcall setBacklash([in] Length newVal);
268 HRESULT _stdcall setDamping([in] Force newVal);
269 HRESULT _stdcall setDeadband([in] Length newVal);
270 HRESULT _stdcall setDecelerationLimit([in] LinearAcceleration newVal);
271 HRESULT _stdcall setInertia([in] Mass newVal);
272 HRESULT _stdcall setJerkLimit([in] LinearJerk newVal);
273 HRESULT _stdcall setLoadedCaseSpringRate([in] LinearStiffness newVal);
274 HRESULT _stdcall setMaxVelAccLim([in] LinearAcceleration newVal);
275 HRESULT _stdcall setOvershootStepInput([in] Length newVal);
276 HRESULT _stdcall setQuasiStaticLoadLimit([in] Force newVal);
277 HRESULT _stdcall setRisingTimeStepInput([in] Time newVal);
278 HRESULT _stdcall setRunFriction([in] Force newVal);
279 HRESULT _stdcall setStaticFriction([in] Force newVal);
280 HRESULT _stdcall setTimeConstant([in] Time newVal);
281 HRESULT _stdcall setWorstCaseSpringRate([in] LinearStiffness newVal);
282 HRESULT _stdcall setZeroVelAccLim([in] LinearAcceleration newVal);
283
284 };
285
286 [
287

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 94

288 uuid(AA03FCF2-FF08-11D2-AAB2-00C04FA375A6),
289
290 helpstring("IAxisForceServo Interface"),
291 pointer_default(unique)
292]
293 interface IAxisForceServo : IOmacAxis
294 {
295 // All invoked by Axis FSM
296
297 HRESULT _stdcall stopFollowingForceAction();
298 HRESULT _stdcall estopFollowingForceAction();
299 HRESULT _stdcall startFollowingForceAction();
300 HRESULT _stdcall updateFollowingForceAction();
301
302 HRESULT _stdcall isDone([out,retval] boolean * b);
303 HRESULT _stdcall isFollowingForceError([out,retval] boolean * b);
304
305 };
306 [
307
308 uuid(AA03FCF4-FF08-11D2-AAB2-00C04FA375A6),
309
310 helpstring("IAxisErrorAndEnable Interface"),
311 pointer_default(unique)
312]
313 interface IAxisErrorAndEnable : IOmacAxis
314 {
315 HRESULT _stdcall resetAxisAction();
316 HRESULT _stdcall disableAxisAction();
317 HRESULT _stdcall enableAxisAction();
318 HRESULT _stdcall estopAxisAction();
319 };
320
321 [
322
323 uuid(AA03FCF6-FF08-11D2-AAB2-00C04FA375A6),
324
325 helpstring("IAxisHoming Interface"),
326 pointer_default(unique)
327]
328 interface IAxisHoming : IOmacAxis
329 {
330 HRESULT _stdcall startHomingAction([in] double startVelocity); // prepares homing
331 HRESULT _stdcall updateHomingAction(); // called each servo cycle
332 HRESULT _stdcall stopHomingAction(); // stops homing before completion
333 HRESULT _stdcall estopHomingAction(); // On transition from homing to E-stopped
334 HRESULT _stdcall completedHomingAction(); // On transition from homing to disabled
335 HRESULT _stdcall isDone([out,retval] boolean * b); // signals when homing

is completed
336 HRESULT _stdcall isStopping([out,retval] boolean * b);
337 HRESULT _stdcall isHomingError([out,retval] boolean * b); // true if error has

occurred during homing
338 };
339 [
340
341 uuid(AA03FCF8-FF08-11D2-AAB2-00C04FA375A6),
342
343 helpstring("IAxisJogging Interface"),
344 pointer_default(unique)
345]
346 interface IAxisJogging : IOmacAxis
347 {
348 HRESULT _stdcall completedJoggingAction();
349 HRESULT _stdcall estopJoggingAction();
350 HRESULT _stdcall startJoggingAction([in] double targetVelocity);
351 HRESULT _stdcall stopJoggingAction();
352 HRESULT _stdcall updateJoggingAction();
353 HRESULT _stdcall updateJoggingStoppingAction();
354
355 HRESULT _stdcall isDone([out,retval] boolean * b);
356 HRESULT _stdcall isStopping([out,retval] boolean * b);
357 HRESULT _stdcall isJoggingError([out,retval] boolean * b);
358

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 95

359 };
360 [
361
362 uuid(AA03FCFA-FF08-11D2-AAB2-00C04FA375A6),
363
364 helpstring("IAxisKinematics Interface"),
365 pointer_default(unique)
366]
367 interface IAxisKinematics : IOmacAxis
368 {
369 HRESULT _stdcall getKs([out, retval] double *pVal);
370 HRESULT _stdcall setKs([in] double newVal);
371 HRESULT _stdcall getPosFeedBackGain([out, retval] double *pVal);
372 HRESULT _stdcall setPosFeedBackGain([in] double newVal);
373 HRESULT _stdcall getVelFeedBackGain([out, retval] double *pVal);
374 HRESULT _stdcall setVelFeedBackGain([in] double newVal);
375 HRESULT _stdcall getUpperKinematicModel([out, retval] UpperKinematicModel *pVal);
376 HRESULT _stdcall setUpperKinematicModel([in] UpperKinematicModel newVal);
377 HRESULT _stdcall getLowerKinematicModel([out, retval] LowerKinematicModel *pVal);
378 HRESULT _stdcall setLowerKinematicModel([in] LowerKinematicModel newVal);
379 HRESULT _stdcall getPlacement([out, retval] CoordinateFrame *pVal);
380 HRESULT _stdcall setPlacement([in] CoordinateFrame newVal);
381
382 };
383 [
384
385 uuid(AA03FCFD-FF08-11D2-AAB2-00C04FA375A6),
386
387 helpstring("IAxisLimits Interface"),
388 pointer_default(unique)
389]
390 interface IAxisLimits : IOmacAxis
391 {
392 HRESULT _stdcall getCutOffPosition([out, retval] Length *pVal);
393 HRESULT _stdcall getFollowingErrorViolationLim([out, retval] Length *pVal);
394 HRESULT _stdcall getFollowingErrorWarnLim([out, retval] Length *pVal);
395 HRESULT _stdcall getHardFwdOTravelLim([out, retval] Length *pVal);
396 HRESULT _stdcall getHardRevOTravelLim([out, retval] Length *pVal);
397 HRESULT _stdcall getJerkLimit([out, retval] LinearJerk *pVal);
398 HRESULT _stdcall getMaxForceLimit([out, retval] Force *pVal);
399 HRESULT _stdcall getMaxVelocity([out, retval] LinearVelocity *pVal);
400 HRESULT _stdcall getOvershootViolationLim([out, retval] Length *pVal);
401 HRESULT _stdcall getOvershootWarnLevelLimit([out, retval] Length *pVal);
402 HRESULT _stdcall getSoftFwdOTravelLim([out, retval] Length *pVal);
403 HRESULT _stdcall getSoftRevOTravelLim([out, retval] Length *pVal);
404 HRESULT _stdcall getUnderreachViolationLim([out, retval] Length *pVal);
405 HRESULT _stdcall getUnderreachWarnLevelLimit([out, retval] Length *pVal);
406 HRESULT _stdcall getUsefulTravel([out, retval] Length *pVal);
407
408 HRESULT _stdcall setCutOffPosition([in] Length newVal);
409 HRESULT _stdcall setFollowingErrorViolationLim([in] Length newVal);
410 HRESULT _stdcall setFollowingErrorWarnLim([in] Length newVal);
411 HRESULT _stdcall setHardFwdOTravelLim([in] Length newVal);
412 HRESULT _stdcall setHardRevOTravelLim([in] Length newVal);
413 HRESULT _stdcall setJerkLimit([in] LinearJerk newVal);
414 HRESULT _stdcall setMaxForceLimit([in] Force newVal);
415 HRESULT _stdcall setMaxVelocity([in] LinearVelocity newVal);
416 HRESULT _stdcall setOvershootViolationLim([in] Length newVal);
417 HRESULT _stdcall setOvershootWarnLevelLimit([in] Length newVal);
418 HRESULT _stdcall setSoftFwdOTravelLim([in] Length newVal);
419 HRESULT _stdcall setSoftRevOTravelLim([in] Length newVal);
420 HRESULT _stdcall setUnderreachViolationLim([in] Length newVal);
421 HRESULT _stdcall setUnderreachWarnLevelLimit([in] Length newVal);
422 HRESULT _stdcall setUsefulTravel([in] Length newVal);
423
424 };
425 [
426
427 uuid(AA03FCFF-FF08-11D2-AAB2-00C04FA375A6),
428
429 helpstring("IAxisMaintenance Interface"),
430 pointer_default(unique)
431]

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 96

432 interface IAxisMaintenance : IOmacAxis
433 {
434 };
435
436 [
437
438 uuid(AA03FD01-FF08-11D2-AAB2-00C04FA375A6),
439
440 helpstring("IAxisPositioningServo Interface"),
441 pointer_default(unique)
442]
443 interface IAxisPositioningServo : IOmacAxis
444 {
445 // All invoked by Axis FSM
446 HRESULT _stdcall stopFollowingPositionAction();
447 HRESULT _stdcall estopFollowingPositionAction();
448 HRESULT _stdcall startFollowingPositionAction();
449 HRESULT _stdcall updateFollowingPositionAction();
450
451 HRESULT _stdcall isDone([out,retval] boolean * b);
452 HRESULT _stdcall isFollowingPositionError([out,retval] boolean * b);
453
454 };
455
456 [
457
458 uuid(AA03FD03-FF08-11D2-AAB2-00C04FA375A6),
459
460 helpstring("IAxisRates Interface"),
461 pointer_default(unique)
462]
463 interface IAxisRates : IOmacAxis
464 {
465 //Specifications of travel capabilities.
466 //worst-case conditions. But to take advantage of more
467 //capability provide a model that describes conditions
468 //when more capability is available and the corresponding
469 //values or value-functions.
470 // FIXME: Problem here with typedef derivative of double, versus real class definition?
471 HRESULT _stdcall getMaxAcceleration([out, retval] LinearAcceleration *pVal);
472 HRESULT _stdcall getMaxJerk([out, retval] LinearJerk *pVal);
473 HRESULT _stdcall getMaxTravel([out, retval] Length *pVal);
474 HRESULT _stdcall getMaxVelocity([out, retval] LinearVelocity *pVal);
475 HRESULT _stdcall getPosErrRatioCutMoving([out, retval] Length *pVal);
476 HRESULT _stdcall getPosErrRatioIdleMoving([out, retval] Length *pVal);
477 HRESULT _stdcall getPosErrRatioIdleStationary([out, retval] Length *pVal);
478 HRESULT _stdcall getRepeatability([out, retval] long *pVal);
479
480 HRESULT _stdcall setMaxAcceleration([in] LinearAcceleration newVal);
481 HRESULT _stdcall setMaxJerk([in] LinearJerk newVal);
482 HRESULT _stdcall setMaxTravel([in] Length newVal);
483 HRESULT _stdcall setMaxVelocity([in] LinearVelocity newVal);
484 HRESULT _stdcall setPosErrRatioCutMoving([in] Length newVal);
485 HRESULT _stdcall setPosErrRatioIdleMoving([in] Length newVal);
486 HRESULT _stdcall setPosErrRatioIdleStationary([in] Length newVal);
487 HRESULT _stdcall setRepeatability([in] long newVal);
488
489 };
490 [
491
492 uuid(AA03FD05-FF08-11D2-AAB2-00C04FA375A6),
493
494 helpstring("IAxisSensedState Interface"),
495 pointer_default(unique)
496]
497 interface IAxisSensedState : IOmacAxis
498 {
499 //if(!hardFwdOTravel) && if(!softFwdOTravel) &&if(!hardRevOTravel) &&
500 // if(!softRevOTravel)
501 //then enablingPrecondition = 1;
502 //else enablingPrecondition = 0;
503 // Concurrency: Sequential
504 HRESULT _stdcall getEnablingPrecondition([out, retval] boolean * b);

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 97

505 HRESULT _stdcall inPosition([out, retval] boolean * pVal);
506 HRESULT _stdcall isSoftFwdOTravel([out, retval] boolean *pVal);
507 HRESULT _stdcall isHardFwdOTravel([out, retval] boolean *pVal);
508 HRESULT _stdcall isSoftRevOTravel([out, retval] boolean *pVal);
509 HRESULT _stdcall isHardRevOTravel([out, retval] boolean *pVal);
510 HRESULT _stdcall isFollowingErrorWarn([out, retval] boolean *pVal);
511 HRESULT _stdcall isFollowingErrorViolation([out, retval] boolean *pVal);
512 HRESULT _stdcall isOverShootViolation([out, retval] boolean *pVal);
513 HRESULT _stdcall isEnablingPrecondition([out, retval] boolean *pVal);
514
515 HRESULT _stdcall setAxisContainer([in] IAxis * a);
516
517 HRESULT _stdcall getActualPosition([out,retval] Length * a);
518 HRESULT _stdcall getActualVelocity([out,retval] LinearVelocity * a);
519 HRESULT _stdcall getActualAcceleration([out,retval] LinearAcceleration * a);
520 HRESULT _stdcall getActualForce([out,retval] Force * a);
521
522 };
523 [
524
525 uuid(AA03FD07-FF08-11D2-AAB2-00C04FA375A6),
526
527 helpstring("IAxisSetup Interface"),
528 pointer_default(unique)
529]
530 interface IAxisSetup : IOmacAxis
531 {
532 // sets the reference to the axis rates for physical limits, software limits.
533 HRESULT _stdcall getCurrentRates([out, retval] IAxisRates **pVal);
534 HRESULT _stdcall getDynamicRates([out, retval] IAxisDyn **pVal);
535 HRESULT _stdcall getPhysicalLimits([out, retval] IAxisRates **pVal);
536 HRESULT _stdcall setCurrentRates([in] IAxisRates * newVal);
537 HRESULT _stdcall setDynamicRates([in] IAxisDyn * newVal);
538 HRESULT _stdcall setPhysicalLimits([in] IAxisRates * newVal);
539
540 };
541
542 [
543
544 uuid(AA03FD09-FF08-11D2-AAB2-00C04FA375A6),
545
546 helpstring("IAxisVelocityServo Interface"),
547 pointer_default(unique)
548]
549 interface IAxisVelocityServo : IOmacAxis
550 {
551 // All invoked by Axis FSM
552 HRESULT _stdcall stopFollowingVelocityAction();
553 HRESULT _stdcall estopFollowingVelocityAction();
554 HRESULT _stdcall startFollowingVelocityAction();
555 HRESULT _stdcall updateFollowingVelocityAction();
556
557 HRESULT _stdcall isDone([out,retval] boolean * b);
558 HRESULT _stdcall isFollowingVelocityError([out,retval] boolean * b);
559
560 };
561 [
562
563 uuid(AA03FD0B-FF08-11D2-AAB2-00C04FA375A6),
564
565 helpstring("IAxisAbsolutePos Interface"),
566 pointer_default(unique)
567]
568 interface IAxisAbsolutePos : IOmacAxis
569 {
570 HRESULT _stdcall completedAbsolutePosAction();
571 HRESULT _stdcall estopAbsolutePosAction();
572 HRESULT _stdcall startAbsolutePosAction([in] double targetVelocity);
573 HRESULT _stdcall stopAbsolutePosAction();
574 HRESULT _stdcall updateAbsolutePosAction();
575
576 HRESULT _stdcall isDone([out,retval] boolean * b);
577 HRESULT _stdcall isStopping([out,retval] boolean * b);

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 98

578 HRESULT _stdcall isAbsolutePosError([out,retval] boolean * b);
579 };
580
581 [
582 object,
583 uuid(AA03FD0D-FF08-11D2-AAB2-00C04FA375A6),
584 helpstring("IAxisIncrementPos Interface"),
585 pointer_default(unique)
586]
587 interface IAxisIncrementPos : IOmacAxis
588 {
589 HRESULT _stdcall completedIncrementingAction();
590 HRESULT _stdcall estopIncrementingAction();
591 HRESULT _stdcall startIncrementingAction([in] double targetVelocity);
592 HRESULT _stdcall stopIncrementingAction();
593 HRESULT _stdcall updateIncrementingAction();
594
595 HRESULT _stdcall isDone([out,retval] boolean * b);
596 HRESULT _stdcall isStopping([out,retval] boolean * b);
597 HRESULT _stdcall isIncrementingError([out,retval] boolean * b);
598
599 };
600 [
601 uuid(AA03FCD8-FF08-11D2-AAB2-00C04FA375A6),
602 version(1.0),
603 helpstring("AxisModule 1.0 Type Library")
604]
605 library AXISMODULELib
606 {
607 importlib("stdole32.tlb");
608 importlib("stdole2.tlb");
609
610
611 [
612 uuid(0A70EBB1-06D9-11D3-AAB2-00C04FA375A6),
613 helpstring("AxisModuleClassFactory Class")
614]
615 coclass AxisModuleClassFactory
616 {
617 [default] interface IAxisModuleClassFactory;
618 interface IOmacModuleClassFactory;
619 };
620
621 [
622 uuid(AA03FCE6-FF08-11D2-AAB2-00C04FA375A6),
623 helpstring("Axis Class")
624]
625 coclass Axis
626 {
627 [default] interface IAxis;
628 };
629 [
630 uuid(AA03FCE8-FF08-11D2-AAB2-00C04FA375A6),
631 helpstring("AxisAccelerationServo Class")
632]
633 coclass AxisAccelerationServo
634 {
635 [default] interface IAxisAccelerationServo;
636 };
637 [
638 uuid(AA03FCEA-FF08-11D2-AAB2-00C04FA375A6),
639 helpstring("AxisCommandedInput Class")
640]
641 coclass AxisCommandedInput
642 {
643 [default] interface IAxisCommandedInput;
644 };
645 [
646 uuid(AA03FCEC-FF08-11D2-AAB2-00C04FA375A6),
647 helpstring("AxisCommandedOutput Class")
648]
649 coclass AxisCommandedOutput
650 {

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 99

651 [default] interface IAxisCommandedOutput;
652 };
653 [
654 uuid(AA03FCEE-FF08-11D2-AAB2-00C04FA375A6),
655 helpstring("AxisDyn Class")
656]
657 coclass AxisDyn
658 {
659 [default] interface IAxisDyn;
660 };
661 [
662 uuid(AA03FCF0-FF08-11D2-AAB2-00C04FA375A6),
663 helpstring("IAxisErrorAndEnable Class")
664]
665 coclass AxisErrorAndEnable
666 {
667 [default] interface IAxisErrorAndEnable;
668 };
669 [
670 uuid(AA03FCF3-FF08-11D2-AAB2-00C04FA375A6),
671 helpstring("AxisForceServo Class")
672]
673 coclass AxisForceServo
674 {
675 [default] interface IAxisForceServo;
676 };
677
678 [
679 uuid(AA03FCF7-FF08-11D2-AAB2-00C04FA375A6),
680 helpstring("AxisHoming Class")
681]
682 coclass AxisHoming
683 {
684 [default] interface IAxisHoming;
685 };
686 [
687 uuid(AA03FCF9-FF08-11D2-AAB2-00C04FA375A6),
688 helpstring("AxisJogging Class")
689]
690 coclass AxisJogging
691 {
692 [default] interface IAxisJogging;
693 };
694 [
695 uuid(AA03FCFB-FF08-11D2-AAB2-00C04FA375A6),
696 helpstring("AxisKinematics Class")
697]
698 coclass AxisKinematics
699 {
700 [default] interface IAxisKinematics;
701 };
702 [
703 uuid(AA03FCFE-FF08-11D2-AAB2-00C04FA375A6),
704 helpstring("AxisLimits Class")
705]
706 coclass AxisLimits
707 {
708 [default] interface IAxisLimits;
709 };
710 [
711 uuid(AA03FD00-FF08-11D2-AAB2-00C04FA375A6),
712 helpstring("AxisMaintenance Class")
713]
714 coclass AxisMaintenance
715 {
716 [default] interface IAxisMaintenance;
717 };
718 [
719 uuid(AA03FD02-FF08-11D2-AAB2-00C04FA375A6),
720 helpstring("AxisPositioningServo Class")
721]
722 coclass AxisPositioningServo
723 {

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 100

724 [default] interface IAxisPositioningServo;
725 };
726 [
727 uuid(AA03FD04-FF08-11D2-AAB2-00C04FA375A6),
728 helpstring("AxisRates Class")
729]
730 coclass AxisRates
731 {
732 [default] interface IAxisRates;
733 };
734 [
735 uuid(AA03FD06-FF08-11D2-AAB2-00C04FA375A6),
736 helpstring("AxisSensedState Class")
737]
738 coclass AxisSensedState
739 {
740 [default] interface IAxisSensedState;
741 };
742 [
743 uuid(AA03FD08-FF08-11D2-AAB2-00C04FA375A6),
744 helpstring("AxisSetup Class")
745]
746 coclass AxisSetup
747 {
748 [default] interface IAxisSetup;
749 };
750 [
751 uuid(AA03FD0A-FF08-11D2-AAB2-00C04FA375A6),
752 helpstring("AxisVelocityServo Class")
753]
754 coclass AxisVelocityServo
755 {
756 [default] interface IAxisVelocityServo;
757 };
758 [
759 uuid(AA03FD0C-FF08-11D2-AAB2-00C04FA375A6),
760 helpstring("AxisAbsolutePos Class")
761]
762 coclass AxisAbsolutePos
763 {
764 [default] interface IAxisAbsolutePos;
765 };
766 [
767 uuid(AA03FD0E-FF08-11D2-AAB2-00C04FA375A6),
768 helpstring("AxisIncrementPos Class")
769]
770 coclass AxisIncrementPos
771 {
772 [default] interface IAxisIncrementPos;
773 };
774 };
775

B.15 CONTROL LAW
1 // ControlLawModule.idl : IDL source for ControlLawModule.dll
2 //
3
4 // This file will be processed by the MIDL tool to
5 // produce the type library (ControlLawModule.tlb) and marshalling code.
6
7 import "oaidl.idl";
8 import "ocidl.idl";
9 import "OmacModule.idl";
10
11 [
12 object,
13 uuid(4B179145-BC3B-11D2-AAAA-00C04FA375A6),
14
15 helpstring("IControlLaw Interface"),

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 101

16 pointer_default(unique)
17]
18 interface IControlLaw : IOmac
19 {
20 HRESULT _stdcall getActualOffset([out,retval] double * val);
21 HRESULT _stdcall getActualPosition([out,retval] double * val);
22 HRESULT _stdcall getCmdOffset([out,retval] double * val);
23 HRESULT _stdcall getFollowingError([out,retval] double * val);
24 HRESULT _stdcall getOutputCommand([out,retval] double * val);
25 HRESULT _stdcall getOutputOffset([out,retval] double * val);
26 HRESULT _stdcall getScaleOffset([out,retval] double * val);
27 HRESULT _stdcall getSetpoint([out,retval] double * val);
28 HRESULT _stdcall getSetpointDot([out,retval] double * val);
29 HRESULT _stdcall getSetpointDotDot([out,retval] double * val);
30 HRESULT _stdcall getSetpointPrime([out,retval] double * val);
31
32 HRESULT _stdcall setActualOffset([in] double k);
33 HRESULT _stdcall setActualPosition([in] double x);
34 HRESULT _stdcall setCmdOffset([in] double off) ;
35 HRESULT _stdcall setOutputCommand([in] double value);
36 HRESULT _stdcall setOutputOffset([in] double k);
37 HRESULT _stdcall setScaleOffset([in] double k) ;
38 HRESULT _stdcall setSetpoint([in] double X);
39 HRESULT _stdcall setSetpointDot([in] double Xdot);
40 HRESULT _stdcall setSetpointDotDot([in] double Xdotdot);
41 HRESULT _stdcall setSetpointPrime([in] double Xprime);
42
43 // This defines an abstract interface class definition
44 HRESULT _stdcall calculateOutputCommand();
45 };
46
47 [
48 object,
49
50 uuid(4B179148-BC3B-11D2-AAAA-00C04FA375A6),
51
52 helpstring("IPIDControlLaw Interface"),
53 pointer_default(unique)
54]
55
56
57 interface IPIDControlLaw : IControlLaw
58 {
59
60 HRESULT _stdcall getCycleTime([out,retval] double * val);
61 HRESULT _stdcall getKaf([out,retval] double * val);
62 HRESULT _stdcall getKcf([out,retval] double * val);
63 HRESULT _stdcall getKd([out,retval] double * val);
64 HRESULT _stdcall getKi([out,retval] double * val);
65 HRESULT _stdcall getKp([out,retval] double * val);
66 HRESULT _stdcall getKvf([out,retval] double * val);
67 HRESULT _stdcall getKxprime([out,retval] double * val);
68 HRESULT _stdcall getintegrationLimit([out,retval] double * val);
69
70 HRESULT _stdcall setKaf([in] double k) ;
71 HRESULT _stdcall setKcf([in] double k);
72 HRESULT _stdcall setKd([in] double k);
73 HRESULT _stdcall setKi([in] double k);
74 HRESULT _stdcall setKp([in] double k);
75 HRESULT _stdcall setKvf([in] double k);
76 HRESULT _stdcall setKxprime([in] double k);
77 HRESULT _stdcall setIntegrationLimit([in] double integrationLimit);
78 HRESULT _stdcall setCycleTime([in] double time);
79 HRESULT _stdcall init();
80 HRESULT _stdcall reset();
81 HRESULT _stdcall calculateOutputCommand();
82 HRESULT _stdcall isConfigured([out,retval] BSTR * str);
83 HRESULT _stdcall debug();
84 HRESULT _stdcall toString([out,retval] BSTR * str);
85 HRESULT _stdcall configToString([out,retval] BSTR * str);
86 HRESULT _stdcall configure(BSTR filename, BSTR section);
87 };
88

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 102

89
90 // Now add ControlLawClassFactory so that multiple factories
91 // can exist to create PID, or other control laws. Clients
92 // look up available control law servers under CATID_ControlLawModule
93 // category. Then, the client does a CLSID_IOmacClassFactory query interface on one of the
94 // ControlLaw module servers.
95
96 cpp_quote("const CATID CATID_ControlLawModule =

{0xE1D6F9F1,0xB1FE,0x11D2,{0xAA,0xA8,0x00,0xC0,0x4F,0xA3,0x75,0xA6}};")
97
98 // Example: This CLSID is specific for one vendor, (i.e., NIST) Control Law Server
99 cpp_quote("const CLSID CLSID_NISTControlLawServer = { 0x24F48688, 0xE842, 0x11D2, {0xAA, 0xB1,

0x00, 0xC0, 0x4F, 0xA3, 0x75, 0xA6}};")
100
101 [
102 object,
103 // Replace this uuid with vendor-specific uuid
104 uuid(0A70EBAC-06D9-11D3-AAB2-00C04FA375A6),
105
106 helpstring("IControlLawModuleClassFactory Interface"),
107 pointer_default(unique)
108]
109 interface IControlLawModuleClassFactory : IOmacModuleClassFactory
110 {
111 extern const IID IID_IDL_IPIDControlLaw;
112 HRESULT _stdcall CreateModule([in] BSTR name, [in] REFIID riid, [out, retval, iid_is(riid)]

void ** ppvObj);
113 // HRESULT _stdcall CreatePIDObject([in] BSTR name, [out, iid_is(&IID_IDL_IPIDControlLaw)] void

** ppvObj);
114
115 };
116
117 [
118 uuid(4B179138-BC3B-11D2-AAAA-00C04FA375A6),
119 version(1.0),
120 helpstring("ControlLawModule 1.0 Type Library")
121]
122 library CONTROLLAWMODULELib
123 {
124 importlib("stdole32.tlb");
125 importlib("stdole2.tlb");
126
127 // extern const GUID CATID_ControlLawModule;
128 // extern const GUID CLSID_NISTControlLawServer;
129
130 [
131 uuid(E1D6F9ED-B1FE-11D2-AAA8-00C04FA375A6),
132 helpstring("ControlLaw Class")
133]
134 coclass ControlLaw
135 {
136 [default] interface IControlLaw;
137 interface IOmac;
138 };
139 /* [
140 uuid(4B179147-BC3B-11D2-AAAA-00C04FA375A6),
141 helpstring("Omac Class")
142]
143
144 coclass Omac
145 {
146 [default] interface IOmac;
147 };
148 */
149 [
150 uuid(E1D6F9F1-B1FE-11D2-AAA8-00C04FA375A6),
151 helpstring("PIDControlLaw Class")
152]
153 coclass PIDControlLaw
154 {
155 [default] interface IPIDControlLaw;
156 };
157

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 103

158 [
159 uuid(0A70EBAD-06D9-11D3-AAB2-00C04FA375A6),
160 helpstring("ControlLawModuleClassFactory Class")
161]
162 coclass ControlLawModuleClassFactory
163 {
164 //[default] interface IControlLawModuleClassFactory;
165 [default] interface IOmacModuleClassFactory;
166 interface IClassFactory;
167 };
168 };
169
170

B.16 HUMAN MACHINE INTERFACE
1 // HMIModule.idl : IDL source for HMI dll
2
3 #ifndef __HMIModule__IDL
4 #define __HMIModule__IDL
5 import "oaidl.idl";
6 import "ocidl.idl";
7 import "OmacModule.idl";
8
9 [
10
11 object,
12 uuid(134A02A1-E101-11d2-B512-AEC041D2957B),
13
14 helpstring("HMI Interface"),
15 pointer_default(unique)
16]
17
18 interface IHMI : IOmac
19 {
20 // Presentation Methods
21 HRESULT _stdcall presentErrorView();
22 HRESULT _stdcall presentOperationalView();
23 HRESULT _stdcall presentSetupView();
24 HRESULT _stdcall presentMaintenanceView();
25
26 // Events - to alert HMI that something has happened
27 HRESULT _stdcall updateCurrentView();
28 };
29
30
31 #endif
32

B.17 PROCESS MODEL
33 //
34 // ProcessModel.idl
35 //
36
37
38 #ifndef ProcessModel__idl
39 #define ProcessModel__idl
40 import "oaidl.idl";
41 import "ocidl.idl";
42 import "DataRepresentation.idl";
43 // Level 1
44
45 [
46
47 object,
48 uuid(134A02A0-E101-11d2-B512-AEC041D2957B),
49

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 104

50 helpstring("Process Model Interface"),
51 pointer_default(unique)
52]
53 interface IProcessModel : IUnknown
54 {
55 HRESULT _stdcall getUserCoordinateOffsets([out,retval] OacVector ** offsets);
56 HRESULT _stdcall setUserCoordinateOffsets([in] OacVector offsets);
57
58 HRESULT _stdcall getAxesCoordinateOffsets([out,retval] OacVector ** axoff); // used by

axes group
59 HRESULT _stdcall setAxesCoordinateOffsets([in] OacVector offsets); // set by sensor process
60
61 HRESULT _stdcall getFeedrateOverrideValue([out,retval] Measure ** m); // used by axisgroup
62 HRESULT _stdcall setFeedrateOverrideValue([in] Measure feed); // used by hmi
63 HRESULT _stdcall getSpindleOverrideValue([out,retval] Measure ** m); // used by axisgroup
64 HRESULT _stdcall setSpinldeOverrideValue([in] Measure feed); // used by hmi
65 };
66
67 [
68 uuid(134A028A-E101-11d2-B512-AEC041D2957B),
69 version(1.0),
70 helpstring("Process Model Module 1.0 Type Library")
71]
72 library PROCESS_MODEL_MODULE_Lib
73 {
74 importlib("stdole32.tlb");
75 importlib("stdole2.tlb");
76
77 [
78 uuid(134A028B-E101-11d2-B512-AEC041D2957B),
79 helpstring("Process Model Class")
80]
81 coclass ProcessModel
82 {
83 [default] interface IProcessModel;
84 };
85 };
86 #endif
87

B.18 KINEMATICS
1 #ifndef _KINEMATICS__IDL
2 #define _KINEMATICS__IDL
3 import "DataRepresentation.idl";
4 // General Agreement: 18-Jun-1997 Sushil Birla, Steve Sorensen
5
6
7 [
8 object,
9 uuid(134A02A5-E101-11d2-B512-AEC041D2957B),
10
11
12 helpstring("Kinematics Interface"),
13 pointer_default(unique)
14]
15 interface IKinStructure :IUnknown
16 {
17 HRESULT _stdcall getPlacementFrame([out,retval] CoordinateFrame ** cf);
18 HRESULT _stdcall setPlacementFrame([in] CoordinateFrame value);
19
20 HRESULT _stdcall getBaseframe([out,retval] CoordinateFrame ** cf);
21 HRESULT _stdcall setBaseframe([in] CoordinateFrame value);
22 };
23
24 [
25 object,
26 uuid(134A02A6-E101-11d2-B512-AEC041D2957B),
27
28
29 helpstring("Kinematic Connection Interface"),

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 105

30 pointer_default(unique)
31]
32 interface IKinConnection :IUnknown
33 {
34 HRESULT _stdcall getFrom([out,retval] IKinStructure ** value);
35 HRESULT _stdcall setFrom([in] IKinStructure * value);
36
37 HRESULT _stdcall getTo([out,retval] IKinStructure **value);
38 HRESULT _stdcall setTo([in] IKinStructure * value);
39
40 HRESULT _stdcall getPlacement([out,retval] CoordinateFrame ** frame);
41 HRESULT _stdcall setPlacement([in] CoordinateFrame value);
42 };
43
44
45 [
46 object,
47 uuid(6735BEA5-EDA7-11d2-AAB1-00C04FA375A6),
48
49 helpstring("Kinematic Connections Interface"),
50 pointer_default(unique)
51]
52 interface IEnumKinConnections : IUnknown
53 {
54
55 typedef [unique] IKinConnection *LPENUMCONNECTION;
56
57 [local]
58 HRESULT Next(
59 [in] ULONG celt,
60 [out] IKinConnection **rgelt,
61 [out] ULONG *pceltFetched);
62
63 [call_as(Next)]
64 HRESULT RemoteNext(
65 [in] ULONG celt,
66 [out, size_is(celt), length_is(*pceltFetched)]
67 IKinConnection **rgelt,
68 [out] ULONG *pceltFetched);
69
70 HRESULT Skip(
71 [in] ULONG celt);
72
73 HRESULT Reset();
74
75 HRESULT Clone(
76 [out] IKinConnection **ppenum);
77 };
78
79 interface IEnumKinMechanisms;
80
81 [
82 object,
83 uuid(134A02A7-E101-11d2-B512-AEC041D2957B),
84
85
86 helpstring("KinMechanism Interface"),
87 pointer_default(unique)
88]
89 interface IKinMechanism :IUnknown
90 {
91 HRESULT _stdcall forwardKinematicTransform([in] IEnumKinConnections * cn);
92
93 HRESULT _stdcall inverseKinematicTransform([in] CoordinateFrame cf,
94 DWORD size_vector,
95 [out,retval,size_is(,size_vector)] double ** vector);
96
97 HRESULT _stdcall getConnections([out,retval] IEnumKinConnections ** c);
98 HRESULT _stdcall setConnections([in] IEnumKinConnections * value);
99
100 HRESULT _stdcall getKinmechanisms([out,retval] IEnumKinMechanisms ** mechs);
101 HRESULT _stdcall setKinmechanisms([in] IEnumKinMechanisms * value);
102 };

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 106

103
104
105 // FIXME: A template would map into IDL sequence
106 //typedef RWTPtrSlist<KinMechanism> KinMechanisms;
107 // FIXME: add graph/tree traversal functions
108
109
110 // Notes:
111 // 1. For various specilizations of inverseKinematicTransform()
112 // Specialize KinMechanism and extend as needed.
113 [
114 object,
115 uuid(949F889D-EDA8-11d2-AAB1-00C04FA375A6),
116
117 helpstring("Enum Kinematic Mechanisms Interface"),
118 pointer_default(unique)
119]
120 interface IEnumKinMechanisms : IUnknown
121 {
122
123 typedef [unique] IKinMechanism *LPENUMKINMECHANISM;
124
125 [local]
126 HRESULT Next(
127 [in] ULONG celt,
128 [out] IKinMechanism **rgelt,
129 [out] ULONG *pceltFetched);
130
131 [call_as(Next)]
132 HRESULT RemoteNext(
133 [in] ULONG celt,
134 [out, size_is(celt), length_is(*pceltFetched)]
135 IKinMechanism **rgelt,
136 [out] ULONG *pceltFetched);
137
138 HRESULT Skip(
139 [in] ULONG celt);
140
141 HRESULT Reset();
142
143 HRESULT Clone(
144 [out] IKinMechanism **ppenum);
145 };
146 [
147 uuid(134A02A8-E101-11d2-B512-AEC041D2957B),
148 version(1.0),
149 helpstring("Kinematics Module 1.0 Type Library")
150]
151 library KINEMATICS_MODULE_Lib
152 {
153 importlib("stdole32.tlb");
154 importlib("stdole2.tlb");
155
156 [
157 uuid(134A02A9-E101-11d2-B512-AEC041D2957B),
158 helpstring("Kinematics Class")
159]
160 coclass KinStructure
161 {
162 [default] interface IKinStructure;
163 };
164
165 [
166 uuid(134A02AA-E101-11d2-B512-AEC041D2957B),
167 helpstring("Connection Class")
168]
169 coclass EnumKinConnection
170 {
171 [default] interface IEnumKinConnections;
172 };
173
174 [
175 uuid(134A02AB-E101-11d2-B512-AEC041D2957B),

THE OMAC API SET WORKING DOCUMENT

 VERSION 0.16

 OCTOBER 12, 1999 107

176 helpstring("KinMechanism Class")
177]
178 coclass KinMechanism
179 {
180 [default] interface IKinMechanism;
181 };
182
183 [
184 uuid(EBD7EEBF-EDA9-11d2-AAB1-00C04FA375A6),
185 helpstring("Kin Mechanisms Collection Class")
186]
187 coclass EnumKinMechanisms
188 {
189 [default] interface IEnumKinMechanisms;
190 };
191
192 };
193
194
195 #endif
196
197

B.19 SCHEDULING UPDATER
1 import "oaidl.idl";
2 import "ocidl.idl";
3
4
5 [
6 object,
7 uuid(B64988A7-EDC3-11d2-AAB1-00C04FA375A6),
8
9 helpstring("TaskCoordinator Interface"),
10 pointer_default(unique)
11]
12 interface IUpdatable : IUnknown
13 {
14 HRESULT _stdcall getPeriod([out,retval] double ** value);
15 HRESULT _stdcall setPeriod([in] double aPeriod);
16 HRESULT _stdcall update();
17 };
18
19 [
20 object,
21 uuid(E05FAB5D-EDC3-11d2-AAB1-00C04FA375A6),
22
23 helpstring("TaskCoordinator Interface"),
24 pointer_default(unique)
25]
26 interface IAsynchUpdater : IUnknown
27 {
28 HRESULT _stdcall registerUpdatable([in] IUpdatable * upd);
29 HRESULT _stdcall update();
30 };
31
32 [
33 object,
34 uuid(134A0280-E101-11d2-B512-AEC041D2957B),
35
36 helpstring("TaskCoordinator Interface"),
37 pointer_default(unique)
38]
39 interface IPeriodicUpdater : IAsynchUpdater
40 {
41 HRESULT _stdcall getTimingInterval([out, retval] double ** value);
42 // /*no virtual*/ void update();
43 };
44
45

