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EXECUTIVE SUMMARY

Open modular architecture controller technology offers great potential for integration of
process improvements and better satisfaction of application requirements. With an open
architecture, controllers can be built from best value components from best in class services.
The need for open-architecture controllers is high, but vendors are slow to respond. One
reason for the delay in industry action is that no clear open-architecture solution has evolved.
In an effort to promote open architecture control solutions, a workgroup within the Open
Modular Architecture Controller (OMAC) users group is working on defining an OMAC
Application Programming Interface (API). The goal of the OMAC API workgroup is to specify
standard APIs for a set of open architecture controller components. This document contains
background information, design methodology and actual API definitions.
As background, the following material will be presented:

¢ OMAC API definition of open architecture

e advantages and impediments to open architectures

e overview of the OMAC API reference model.
At a high level of conceptual design, the OMAC API reference model will be presented and
includes the following items:

e OMAC API core modules

« application framework

« application design and examples.
The OMAC API reference model does not specify a reference architecture. Instead, modules
can be freely connected. In lieu of a reference architecture, the document includes several
reference examples.

At a detailed level of design, the OMAC API specification methodology will be presented and
subscribes to the following principles:

¢ API programming abstraction is used

« Object Oriented techniques for encapsulation, inheritance, specialization and
object interaction are applied

* Client/Server is the communication model

*  Proxy Agents provide transparency of distributed communication

* Finite State Machine (FSM) is the behavior model

« Finite State Machine (FSM) are passed as data to then provide control

* Reusability of software components is achieved through foundation classes
e System objects are mirrored in human machine interface

« No specification of an infrastructure is attempted instead a commitment to a
PLATFORM + OPERATING SYSTEM + COMPILER + LOADER +
INFRASTRUCTURE SUITE is necessary for it to be possible to swap modules.
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1. BACKGROUND

Most Computer Numerical Control (CNC) motion and discrete control applications incur high cross-
vendor integration costs and vendor-specific training. On the other hand, in a modular, standards-
based, open-architecture controller modules can be added, replaced, reconfigured, or extended based
on the functionality and performance required. Modifications to a module should provide equivalent
or better functionality as well as offer different performance levels. Ideally, the module interfaces
should be vendor-neutral, plug-compatible and platform independent.

However, it is important to note that openness alone does not achieve plug-and-play. One vendor’'s
idea of openness need not be the same as another vendor’s. Openness is but one step towards plug-
and-play. In reality, plug-and-play openness is dependent on a standard. This leads to the following
definition of an open architecture controller:

An open architecture control system is defined and qualified by its ability to satisfy the
following requirements:

Open provides ability to piece together systems from components, provides ability to modify the way

a controller performs certain actions, and provides ability to start small and upgrade as a system
grows.

Modular refers to the ability of controls users and system integrators to purchase and replace
controller modules without unduly affecting the rest of the controller, or requiring extended
integration engineering effort.

Extensible refers to the ability of sophisticated users and third parties to incrementally add
functionality to a module without completely replacing it.

Portable refers to the ease with which a module can run on different platforms.

Scalable allows different performance levels and size based on the platform selection. Scalability
means that a controller may be implemented as easily and efficiently by systems integrators on a
stand-alone PC, or as a distributed multi-processor system to meet specific application needs.

Maintainable supports robust plant floor operation (maximum uptime), expeditious repair (minimal
downtime), and easy maintenance (extensive support from controller suppliers, small spare part
inventory, integrated self-diagnostic and help functions.)

Economical allows the controller of manufacturing equipment and systems to achieve low life cycle
cost.

Standard Interfaces allow the integration of off-the-shelf hardware and software components and
a standard computing environment to build a controller. Standard interfaces are vital to plug-and-
play.

Degree of openness can be evaluated by comparing a claim of openness against the above
requirements. Herein, the concept of an open-architecture control system that supports openness,
and the auxiliary requirements will be identified as “open, openness or open architecture.”

1.1 ADVANTAGES OF OPEN ARCHITECTURE TECHNOLOGY

Based on specific instances of problems encountered by users of proprietary controllers, the following
list of open-architecture requirements was generated. An open architecture should be able to do the
following:

e provide a migration path from existing practices;
« allow an integrator/end user to add, replace, and reconfigure modules;
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e provide the ability to modify spindle speed and feed rate according to some user-
defined process control strategy;

« allow access to the real-time data at a predictable rate up to the servo loop rate;
e allow full 3-D spatial error correction using a user-defined correction strategy;

« decouple user interface software and control software and make control data
available for presentation;

e provide capability to integrate controller with other intelligent devices;

e increase the ability for 3rd party software enhancements. Examples of 3rd party
enhancements include:

O replace a PID control law with a more sophisticated Fuzzy Logic control law

O collect servo response data with a 3rd party tool, and set tuning parameters in
the appropriate control law

O add a force sensor, and modify the feed rate according to a user defined process
model

O perform high resolution straightness correction on any axis

O replace the user interface with a 3rd party user interface that emulates a user
interface familiar to your machine operators.

The initial validation strategy for the OMAC API would be to insure that this list of
capabilities can be addressed.

1.2 IMPEDIMENTS TO OPEN ARCHITECTURE TECHNOLOGY

It is difficult to define a controller specification that is safe, cost-effective, and supports real-time
performance.

A specification cannot be an island of technology. To be successful, a specification must satisfy legacy
needs, factor in current practices, as well as anticipate evolving technologies. Attaining an open
architecture specification that is flexible and isn't biased toward legacy or emerging technology can
be hard.

Of great importance within the controls domain is the requirement for guaranteed, hard-real-time
performance. Without this, safety is at risk. Safety is a major concern voiced within the controller
industry that is especially concerned with the issues of liability and allocation of responsibility
within an open architecture paradigm. Industry would have to adopt new practices for open
architecture controllers. A greater responsibility would be placed on the integrator. Conformance
testing would play a larger role. Conformance could require regression and boot-up testing and
verification procedures to guarantee proper operation.

A further hindrance is the fact that modules are not “self-contained.” Defining an infrastructure
within which the modules can operate is necessary and quite difficult. An infrastructure is defined
as the services that tie the modules together and allow modules to use platform services. The
infrastructure is intended to hide specific hardware and platform dependence; however, this is often
difficult to achieve.

Containing the scope of the specification is also difficult. Openness goes beyond run-time APIs. There
can be “other” APls, including configuration, integration, and initialization. As an example, consider
the simple use of a math library API. Even there, specification of the math library implementation
must be done to select either a floating point processor or software emulation.

Finally, group and industry dynamics can be a problem. From a workgroup perspective, getting
people to agree can be a challenge because there are difficult trade-offs in modularization, scope, life
cycle benefits, costs, time to market, and complexity. It is recognized that industry will find it
difficult to adopt the OMAC paradigm, due to entrenchment in the legacy of prior implementations,
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the “comfort zone” of past practice and culture, the investment hurdle to effect change, and the
shortage of skilled resources. Proper acculturation, training and education of people and an orderly
introduction, demonstration, deployment, and scale-up will be needed to realize the potential
benefits. From an industry perspective, many companies do not perceive any direct benefit from an
open architecture. Overcoming the workgroup inertia and industry skepticism by promoting and
demonstrating the benefits of open architecture remains a fundamental key to open architecture
acceptance.

2 REFERENCE MODEL

The OMAC API requirements were derived from the OMAC or “Open Modular Architecture
Controller” requirements document [OMA94]. The OMAC document describes the problem with the
current state of controller technology and prescribes open modular architectures as a solution to
these problems. OMAC defines an open architecture environment to include Platform,
Infrastructure, and Modules.

In the interest of flexibility, scalability, and reusability, OMAC API does not specify a fixed
architecture. Instead, OMAC API assumes a reference model described by this abstraction hierarchy:

* Foundation Classes

*  Modules

« Architectural Design

e Detailed Design Framework

The Foundation Classes are derived from decomposing a generic controller into classes. These
classes define the controller class hierarchy. Foundation classes are then grouped into Modules that
become plug-and-play components. A controller is generated by selecting from different
implementations of OMAC Modules containing object implementations of the foundation classes. A
system design is divided into two phases. The first phase is Architectural Design and deals with
system decomposition into OMAC Modules. The second phase is called Detailed Design and is
responsible for detailing individual object API, that is, the object attributes and methods. In this
case, the design uses the OMAC API or extends the API to suit the application.
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2.1 FOUNDATION CLASSES

Machining systems/cells; workstations Plans
Simple machines; tool-changers; work changers Processes
Axi Fixtures
Xis groups Other tooling

Machine tool axis or robotic joints
(translational; rotational)

Axis components Control components
(sensors, actuators) (pid; Filters)
Geometry Kinematic structure

(coordinate frame; circle)

Units Measures Containers
(meter) (length) (matrix)

Primitive Data Types (int,double, etc.)

Figure 1: Controller Class Hierarchy

The decomposition of a generic controller into classes spans many levels of abstraction and has
elements for motion control and discrete logic necessary to coordinate and sequence operations.
Figure 1 portrays the class hierarchy derived from a controller decomposition. At the lower levels,
the Foundation Classes are the building blocks that may be found in multiple modules. For example,
the class definition of a Geometry “position” would be found in most modules. Moving up the
hierarchy, the Foundation Classes broaden their scope to define device abstractions for such motion
components as sensors, actuators, and PID control laws. As the scope broadens however, not all
software objects have physical equivalents. Objects such as axis groups are only logical entities. Axis
groups hold the knowledge about the axes whose motion is to be coordinated and how that
coordination is to be performed. Services of the appropriate axis group are invoked by user-supplied
plans.

Within Foundation classes, OMAC API define base classes and add to the base classes using the
Object Oriented concept of inheritance to define derived classes. OMAC API also uses inheritance to
maintain levels of complexity. Level 1 constitutes base functionality seen in current practice. Level 2
constitutes functionality expected of advanced practices. Higher levels constitute advanced capability
seen in emerging technology, but unnecessary for simple applications.

2.2 MODULES
OMAC API defines a module to have the following characteristics:
« significant piece of software used in composing controller
e grouping of similar classes
* well-defined API
* well-defined states and state transitions
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« replaceable by any piece of software that implements the API, states, and state
transitions.

Using the OMAC Specification [OMA94] as a baseline, Figure 2 diagrams the OMAC APl Modules
including a brief description of a module’s general functional requirements. The Modules have the
following general responsibilities:

Axis modules are responsible for servo control of axis motion, transforming incoming motion
setpoints into setpoints for the corresponding actuators.

Axis Group modules are responsible for coordinating the motions of individual axes, transforming
an incoming motion segment specification into a sequence of equi-time-spaced setpoints for the
coordinated axes.

OMAC Base Class provides a uniform API base class for an OMAC module. The OMAC base class
defines a state model and methods for start-up and shutdown. The OMAC Base Class defines a
uniform name and type declaration and provides an error-logging interface. The OMAC Base Class
maintains a global directory service for name lookup and reference binding.

Capability is an object to which the Task Coordinator delegates for specific modes of operation.
Capability corresponds to the traditional CNC modes (AUTO, MANUAL, MDI, etc.) At the Capability
Level, there is no coordination between Capabilities. A Capability is a Control Plan Unit (see Control
Plan module) with the distinction being that a Capability is Control Plan Unit associated with a Task
Coordinator module.

Control Law components are responsible for servo control loop calculations to reach specified
setpoints.

Control Plan consists of a series of related Control Plan Units (CPU) and forms the basis of
control and data flow within the system. A Control Plan Unit is a base class that contains finite state
logic. A Motion Segment is a derived class of Control Plan Unit for motion control. Discrete Logic
Unit is a derived class of Control Plan Unit for discrete logic control. Capability is a derived class of
Control Plan Unit used within a Task Coordinator and because it is such a significant piece of
software, it is also considered an OMAC API module.
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Axis

Control Law

« Controlling one axis of
motion

« uses control law

* servo compensation

« axis properties

« axis state

« trajectory following (loop
closure)
*gain tuning

Human-Machine Interface

Axis Group

Control Plan

« start-up / shutdown
« system snapshot

* mode selection

« configuration

« diagnostics

* maintenance

« setup

« multi-axis coordination

« block look-ahead

« velocity profile generation
« feedhold

« stop

« specialization of finite state
machine

« graph of Control Plan units
or nested control plans

« units are control instructions

10 Points

« read/write data

« data subscription

« data notification

« sensor integration

« domain-independent data
sampling

OMAC Base Module

Control Plan Generator

Kinematics

* naming, version control
« directory and naming
services

« specialization for IEC1131,
RS274D, etc.
« generate control plan

« kinematics calculations

« coordinate system
translations

« kinematics coordinate
transformation

« tool offsets, tool radius
correction

« other kinematic
compensations

Capability

Discrete Logic

Machine-to-Machine

« Coordination control plan
units

« corresponds to NC operating
modes

« operates independently of
other capabilities

« specialization of finite state
machine

« perform 1131-like functions

+ mode switching

* remote access

« transfer file across network

« program invocation and job
control (e.g. start, stop,
pause, etc. program)

« event monitoring

Figure 2: OMAC Modules

Process Model

« feedrate override
« spindle speed override

Task Coordination

« specialization of finite state
machine

« start-up, shut-down
sequencing

« task coordination

« control cycling (i.e. request
next unit from control plan)

« error-logging

Control Plan Generator modules are responsible for translating application programs into Control
Plans. As examples, programs written in the RS274D [RS274] and IEC 1131-3 [IEC93] languages
can be translated into Control Plans.

Discrete Logic modules are responsible for implementing discrete control logic or rules that can be
characterized by a Boolean function from input and internal state variables to output and internal
state variables. More than one discrete logic module is permitted, but not necessary. Multiple
discrete logic modules is similar to having many PLC’s networked together within the same

computing platform.

Human Machine Interface (or HMI) modules are responsible for human interaction with a
controller including presenting data, handling commands, and monitoring events. Defining a
presentation style (e.g., GUI look and feel, or pendant keyboard) is not part of OMAC API effort.
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1/0O Points are responsible for the reading of input devices and writing of output devices through a
generic read/write interface. The goal is to provide an abstraction for the device driver. Logically
related 10 may be clustered within a Discrete Logic module.

Kinematics Models modules are responsible for geometrical properties of motion. Computing
forward and inverse kinematics, mapping and translating between different coordinate systems,
applying geometric correction and tool offsets, and resolving redundant kinematic solutions are
examples of kinematic model functionality.

Machine-to-Machine modules are responsible for connecting and communicating to controllers
across different domains (address spaces). An example of this functionality is the communication
from a Shop Floor controller to an individual machine controller on the floor.

Process Model is a module that contains dynamic data models to be integrated with the control
system. Process control modules (not detailed by this specification) produce adjustments or
corrections to nominal rates and path geometry. Feedrate override and thermal compensation are
examples of process model functionality. The process model is crucial to the concept of extensible
open systems.

Task Coordinator modules are responsible for sequencing operations and coordinating the various
motion, sensing, and event-driven control processes. The task coordinator can be considered the
highest level Finite State Machine in the controller.

Some clarifying observations about modules include:

« Interchangeable modules may differ in their performance levels.

¢ Modules may provide more functionality (added value) than required in the
specification. Specialization of a module interfaces is the mechanism to achieve
additional functionality.

¢ A controller may have more than one instance of a module.

« Modules can be explicitly control-related (e.g., Axis) or be inheritance-related
encapsulating common functionality (e.g., OMAC Base Class.)

« Modules do not need to run as separate threads (or intelligent agents.) Systems can
be built from a single thread of execution.

¢ Modules can contain multiple threads of execution.

¢ Modules may be used to build other components. For example, a discrete mechanism,
such as a tool changer component, can be built using OMAC modules.

e Multiple instances of a module are required to handle different configurations. For
example, assume a system with 3 axes x, y, z andaspi ndl e. Three Axis Group
objects would be created at configuration time, agl, ag2, ag3, with the following

configuration:

agl: x, vy, z
ag2: spindle
ag3: x, y, z, spindle

For most machining where the motion control and the spindle are loosely related, references to agl
and ag2 would be used. However to do a Rigid Tap requiring tight synchronization of the spindle and
motion, a reference to ag3 would be used.

2.3 ARCHITECTURAL DESIGN

Since there is no explicit OMAC reference architecture, composing a system architecture from OMAC
modules is left to the developer. This offers much flexibility, but without guidance, can be confusing.
This section will give some application architecture examples for clarification. This section starts
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with a simple application and then develops a series of examples to illustrate the stages of
development one might encounter when building an application architecture. The examples
highlight the static relationship between OMAC modules (as opposed to the data flow.) However, an
underlying assumption is directives flow from top to bottom.

2.3.1 OPERATOR CONTROL OF ASET OF 10 POINTS EXAMPLE

The simplest case is an operator controlling several 10 points. The OMAC API model allows the
connection of a Human Machine Interface (HMI) object to several 10 points. Figure 3 shows the
simple connection between HMI and 10 points. Within the diagram, an arrow indicates a reference
from one object to another.

The rationale for such a simple example is to show that the OMAC API is not monolithic, and a small
system together can be put together. With this ability, OMAC systems can start small and be pieced

together.

Figure 3: Operator Control of a Set of 10 Points

2.3.2 ONE AXIS BOOTSTRAP

After establishing an HMI and 10 connection, the natural progression in building a CNC machine
tool controller is to add an axis of motion under manual control. This scenario is typical in offline
assembly and testing of an axis that may eventually be assembled in a multi-axis CNC machine tool.
Jogging and Homing are the primary functionality used. At this point, there is no coordination with
any other motion, mechanism, or state in the NC machine tool. During this stage of the assembly of a
machine tool, it is also helpful to perform the calibration, tuning, or health monitoring tests.

The Axis Module coordinates 10 points. Assume that the 10 points will consist of a PWM motor
drive, an amplifier enable control, an amplifier fault status signal, an A-QUAD-B encoder with
marker pulse and switches for home and axis limits. Figure 4 shows a one-axis system that uses two
Control Laws, one for PID control of Position, and another to do PID control of velocity. The Axis will
output accelerations to the actuator and read encoder values through 10 points referenced by the
Axis module. For operator control of the axis, an HMI module mirrors exists for the Axis module as
well as mirrors for each Control Law module. The mirrors provide a snapshot of control system
objects and use proxy agents for communication.
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Control Law
HMI
Control Law
—C D

h 4

PID
Control Law.
(Position)

A 4
PID
Control La

(Velocity)
Figure 4: Simple, Single Axis, Jog/Home Only System

2.3.3 PROGRAMMABLE LOGIC EXAMPLE

Consider a case of work-handling equipment that provides peripheral functions for a CNC machine
tool. The equipment includes two hydraulically actuated, two-position on-off mechanisms, named,
Loader and Unloader. Let their sensing, actuation, and control be under a Discrete Logic module,
named LUNL whose sequence of operations was originally specified in some manner conforming to
IEC 1131-3, and subsequently translated into a Control Plan Unit, named CPI unl .

Control Plan
Generator HM
Discrete Logic Programming
HMI A 4 Phase
Run Time Control Plan
Generator
Phase v (1131-3)

Discrete Logic

Figure 5: Loader/Unloader Discrete Logic Control

Control Plan

Control Plan

Figure 5 illustrates the relationship of different OMAC modules within this LUNL application.
Within the block diagram, two phases, Programming Phase and Run Time Phase, are shown.
However, other phases are to be considered including a Configuration Phase and an Initialization
Phase. The following steps sketch the different phases of system development.

I. In the Programming phase,

a. Develop IEC 1131-3 code that performs logical mapping of 10 functionality
b. Generate a number of Control Plan Units (CPU), possibly one associated with each state.

c. Group Control Plan Units to become a LUNL Control Plan (i.e., CPl unl )
I1. At configuration phase,
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a. Perform physical mapping of 10 functionality

b. Load Control Plan into the Discrete Logic Module
I11. At initialization phase,

a. Resolve external object and module references

b. Register events
IV. At runtime phase,

a. Clients (e.g., HMI or 10 Points) generate events

b. The LUNL Discrete Logic Module executes each ControlPlanUnit at an assigned scan
rate. A ControlPlanUnit executes as a Finite State Machine (FSM).

2.3.4 DRILLING MOTION CONTROL EXAMPLE

An example describing programmed NC for one-axis drilling will be developed. A typical one-axis
drilling workstation would perform holeworking operations, e.g., drilling with a spindle drill-head,
boring a precision bore, counter-boring the bored hole, or probing the (axial) location of the

counterbored shoulder.
ControlPlanUnit
| ControlPlanUnit .
Cg?éao Task Coordinator . Discrete
Generator NS Logic
. Methods =

*ControlPlanUnit

.Memuds‘ emm.
Methods Methods

|
|
Methods |
[}
Motion Process ! Process
Axis Group Model ,»L\ Model
- <
- =~ S
// ~ ~

_-="" Tight Synchronization T~a

_ ~

. . ~
-~ of Motion and Spindle ‘
-
Methods
. Methods

e =

ControlPlanUnit

ControlPlanUnit

Methods Methods=

Spindle
Axis Group

Methods Methods

Figure 6: Drilling Example

Figure 6 illustrates the module and component relationships for a drilling application. Z motion
requires an Axis module for servoing and an AxisGroup module for Cartesian motion. Spindle control
requires another Axis module to interface to drive components assumed to provide a facility for
setting spindle speed and direction and to start and stop spindle rotation. The Spindle requires an
Axis Group for rate and override control. A third Axis Group is necessary for synchronized control of
both the Motion Axis and the Spindle Axis (shown as shaded with dashed line connections).
Generally, the Spindle Axis will not need a Control Law, however, when it is synchronized with
motion it will require servoed control.

In the diagram, a Task Coordinator exists to provide program control. A ControlPlanGenerator
module translates a part program into ControlPlanUnits. The primary command communication
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between modules is reflected in the diagrams by showing the keyword Met hod or

Cont rol Pl anUni t s (which uses a method to pass it) next to an arrow. A Discrete Logic Module,
typical of the previous example, exists as an equivalent for part loading and unloading, as well as
machine state (e.g., temperature, estop). To improve predictability and reduce variation, a Process
Model module will exist to integrate sensing and control to prevent tool breakage by monitoring
spindle torques and thrust forces. A simple Kinematics module exists to model the workspace and
handle different tool offsets and part placements.

2.4 DETAIL DESIGN FRAMEWORK
OMAC MODULE FRAMEWORK FRAMEWORK COMPONENTS

S| © © © @ L
Coordinator Manual AutomaticJogging

Cantral Plan .
S >

chap | @EDOCOCE
Kinematics @ @

mist | ) © @ sErRcos p W @
a2 [@ @ @ soware (®) @ @

10 | |01| ||02 |

Points

Figure 7: Design Framework

The Detailed Design is responsible for detailing individual object API, that is, the object attributes
and methods. At this phase, one determines which objects are available, the extent of object
capabilities, and whether the objects need to be bought or built. This phase corresponds to putting a
system together with the OMAC APl Framework. Frameworks are object-oriented technology
consisting of sets of prefabricated software and building blocks that are extensible and can be
integrated to execute well-defined sets of computing behavior. Frameworks are not simply collections
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of classes. Rather, frameworks come with rich functionality and strong “pre-wired” interconnections
between the object classes.

This contrasts with the procedural approach where there is difficulty extending and specializing
functionality; difficulty in factoring out common functionality; difficulty in reusing functionality that
results in duplication of effort; and difficulty in maintaining the non-encapsulated functionality.
With frameworks, application developers do not have to start over each time. Instead, frameworks
are built from a collection of objects, so both the design and the code of a framework may be reused.
In the OMAC API Framework the prefabricated building blocks are the implementations of 1) OMAC
modules and 2) framework components (e.g., ControlPlanUnits). As a simple example, Figure 7
illustrates a Detailed Design for assembling a controller application. An application developer buys
modules and components as commercial off-the-shelf (COTS) technology. Then, the application
developer configures the modules and “puts the pieces together” by linking the purchased COTS “.0”
object files.

Modules are configured based on their references to other objects. For the Axis modules in the
example, references are needed for position (P), velocity (V) or torque (T) Control Law modules.
These references could be to objects in software, hardware or some combination of hardware and
software. For software P control, a Control Law object from the Software set is selected. For
hardware P control, a Control Law object from the SERCOS[IEC95] set is selected. The applications
developer is also responsible for mapping the logical 10 points onto physical devices (e.g., D/A or
CanBus).

Modules are also configured based on the selection of Control Plan Units (CPU) that define module
responsibilities. Within the example, there is a Task Coordinator module that has containers for
inserting Capability CPU (in the figure represented by a -C- framed by a diamond). The Capabilities
include Manual, Automatic or Jogging. The application developer is free to put one or more of these
Capabilities into the Task Coordinator or develop a unique Capability. For Control Plan Generator
and Axis Group, the application developer is already provided Line and Arc CPU but can plug in
NURB or Weave CPU.

Using the OMAC API Framework, application development involves three groups:

Users define the behavior requirements and the available resources. Resources include such items
as hardware, control and manufacturing devices, and computing platforms. For behavior, the user
defines the performance and functionality expected of the controller. Performance includes such
characteristics as speed or accuracy. Functionality defines the controller capability such as the
ability to handle planar part features versus complex part features.

System Integrators select modules and framework components to match the application
performance and functional requirements. The system integrator configures the modules to match
the application specification. The system integrator uses an integration architecture to connect
modules and verify system operation. The system integrator also checks compliance of modules to
validate the user-specification of performance and timing requirements.

Control Component Vendors provide module and framework component products and support.
For control vendors to conform to an open architecture specification, they would be required to
conform to several specifications including the following:

e customer specifications

« module class specification

* system service specification

The system service describes the platform and infrastructure support (such as communication
mechanisms) and the resources (disks, extra memory, among others) available. Computer boards
have a device profile that includes CPU type, CPU characteristics and the CPU performance
characteristics. Included within the profile is the operating system support for the CPU. A spec sheet
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or computing profile [SOS94] is required to describe the system service specification that would
include such areas as platform capability, control devices, and support software.
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3 SPECIFICATION METHODOLOGY

The primary goal of the OMAC API workgroup is to define standard API for the Modules. This
section will refine the concept of “API” and describe the OMAC API specification methodology. The
API specification methodology applies the following principles:

» Stay at API level of specification. Use IDL or MIDL to define interfaces.
* Use Object Oriented technology.

* Use general Client Server communication model, but use state-graph to model state
behavior.

* Use Proxy Agents to hide distributed communication.
* Do not specify an infrastructure.
* Finite State Machine (FSM) is model for data and control.
*  Mirror system objects in human machine interface.
The following sections will discuss these principles.

3.1 API SPECIFICATION

API stands for Application Programming Interface, and refers to the programming front-end to a
conceptual black box. The API consists of a list of signatures per black box. A signature specifies
the front-end with a function name, calling sequence, and return parameter. For example, “doubl e
cos(x)”  specifies a cosine signature. The API is concerned with the signature, not the
implementation. For the cosine, implementation could be it table-lookup or Taylor series. However,
the API does specify performance, which in turn, affects the implementation. For the cosine API,
performance may dictate speed over accuracy so that computing a cosine should be as fast and not
necessarily as accurate as possible.

A standard API is helpful because programming complexity is reduced when one alternative exists
as opposed to several. For example, the cosine signature is generally accepted as cos(x) , not
cosine(x) . This is a small but significant standardization. At a programmatic level, the importance
of a standard API can be seen within the Next Generation Inspection Project (NGIS) at NIST[NGI].
The NGIS project has integrated three commercial sensors and one generic sensor into the
Coordinate Measuring Machine controller. Each sensor had a different “front-end” - one had a
Dynamically Linked Library (.DLL) interface, one had a memory mapped interface, one had a
combination port and memory mapping. None of the sensors had the same API. Yet, all of the
sensors were “open.”

APIs can be defined in any number of programming languages. This creates a problem when defining
a standard API since the controller industry uses a variety of languages and platforms. OMAC API
chose IDL, (Interface Definition Language) [COR91] or MIDL (Microsoft IDL) [MIDL], as its
specification language since it solves this problem. IDL is a technology-independent syntax for
describing interfaces. In IDL, interfaces have attributes (data) and operation signatures (methods).
IDL supports most object-oriented concepts including inheritance. IDL translates to object-oriented
(such as C++ and JAVA) as well as non-object-oriented languages (such as C). IDL specifications are
compiled into header files and stub programs for direct use by application developers. The mapping
from IDL to any programming language could potentially be supported, with mappings to C, C++,
and JAVA available.

To clarify the problem of unifying the specification, consider the mapping of the OMAC API IDL onto
three different validation testbeds. Figure 8 illustrates mapping IDL to the different implementation
strategies. For ICON, the standard API in IDL has to be mapped into JAVA. At the University of
Michigan, they are using the ROSE CASE tool to design their controller. ROSE accepts C++ header
through a reverse engineering process. At the NIST testbed, the IDL will be translated into C++
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headers and use the Enhanced Machine Controller and its infrastructure[PM93]. For these three
implementations, only the IDL specification can be mapped into all the languages needed to support
the applications.

TESTBEDS
ICON NIST UMICH
g
S pecification
IiIJAl't' API ‘/l\T
z pplication JAVA
O  Specifications C++/CORBA
S I
O
% Implementation| JAVA C++/EMC C++
g
RTOS Kernel| ¢ c c

Figure 8: Specification Language Mapping

3.2 OBJECT ORIENTED TECHNOLOGY

OMAC API uses an object-oriented (OO) approach to specify the modules’ API with class definitions.
The following terms will define key object-oriented concepts. A class is defined as an abstract
description of the data and behavior of a collection of similar objects. Classes aggregate data and
methods. Class definitions offer encapsulation hiding details of a classes implementation. An
object is defined as an instantiation of a class. For example, SERCOS- Dr i ven Axis describes an
instance of an Axis class in the running machine controller. A three-axis mill would have three
instantiations of that class - the three objects implementing that class. An object-oriented
program is considered a collection of objects interacting through a set of published APIs. A by-
product of the object-oriented approach is data abstraction, which is an effective technique for
extending a type to meet programmer needs.

3.2.1 INHERITANCE

Inheritance is useful for developing data abstraction. OO classes can inherit the data and methods
of another class through class derivation. The original class is known as the base or supertype
class and the class derivation is known as a derived or subtype class. The derived class can add to
or customize the features of the class to produce either a specialization or an augmentation of the
base class type, or simply to reuse the implementation of the base class. To achieve a object-oriented
framework strategy[Le95], all OMAC API class signatures (methods) are considered “virtual
functions.” Virtual functions allow derived classes to redefine an inherited base class method.

To illustrate inheritance, consider the case of a simplified Axis module acting as a server. Assume
that the Axis API only allows the functionality to set a variable x. The following sketches a base and

a derived Axis class definition.
class Axis
{
virtual void setX(float x);
private:
doubl e nyx;

application()
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Axi s axl;
ax1. set X(10.0);

To extend the base server class, a class myAXxis is derived to add an offset to its X value before
each set. This could also be achieved on the server side if so desired.

class nyAxis : public Axis

{
virtual void setX(float x){ x= x + offset; Axis::setX(x); }
private:
doubl e nyx;
doubl e offset; // set elsewhere for offset calculation

}
application()

Axi s axl;

nyAxi s ax2;

doubl e val =1. 0;
doubl e of fset =10.0;

ax1l. set X(val +offset); // explicit offset in application code
ax2. set X(val ); /'l offset hidden by configuration

}

3.2.2 SPECIALIZATION

OMAC API leverages the OO concept of inheritance to attain specialization. Specialization is
useful for managing the scope of an API. For example, when defining a control law, many options
exist including PID, Fuzzy Logic, Neural Nets, and Nonlinear. This proliferation of options begs for a
compartmental approach. The OMAC API approach is to define a base class (generally corresponding
to one of the OMAC Modules) and for each option derive a specialized class.

Specialization has many benefits. It helps manage the scope of capabilities, which reduces
complexity. It allows differing terminology based on need (e.g., weights versus gains). Specialization
provides a technique to handle evolving technology by allowing new derived class to be defined when
necessary. To expedite the OMAC API effort, only options considered most important have been
derived.
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—»Output
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TUNING PARAMETERS

CommandedDotDot—P>

CommandedDot—
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JU UL
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Figure 9: General Control Law

The control law module will be used to illustrate specialization. The responsibility of the Control Law
module is conceptually simple - use closed loop control to cause a measured feedback variable to
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track a commanded setpoint value using an actuator. Figure 9 illustrates the definition of a base
control law class. The concept of tuning is encapsulated within the black box and is conceptually

controlled via “knob turning.” The concept of accepting third party signal injection is handled by the

inclusion of pre-and post-offsets (e.g., Fol | owi ngEr r or ). These offsets allow sensors or other

process-related functionality to “tap” and dynamically modify behavior by applying some coordinate

space transformation. The IDL definition of the illustrated control law module follows. The IDL
keyword i nt er f ace signifies the start of a new interface, corresponding to a C++ class.

interface | Control Law

{

}s

/| Paraneters
voi d set Commanded( doubl e set point);
doubl e get Commranded() ;

voi d set CommandedDot (doubl e set poi ntdot);
doubl e get CommandedDot () ;

voi d set CommandedDot Dot (doubl e set poi ntdotdot);
doubl e get CommandedDot Dot () ;

voi d set Qut put (doubl e val ue);
doubl e get Qut put ();

voi d set Feedback(doubl e actual);
doubl e get Feedback();

voi d set Fol | owi ngError (doubl e epsilon);
doubl e get Fol | owi ngError();

/Il Ofsets
voi d set Fol | owi ngError O f set (doubl e preoffset);
doubl e get Fol | owi ngErrorOffset();

voi d set Qut put O f set (doubl e post of fset);
doubl e get Qut put O fset();

voi d set FeedbackO f set (doubl e postoffset);
doubl e get FeedbackOrfset();

voi d set Tunel n(doubl e value); // enable with breakLoop

doubl e get Tunel n();

voi d breakLoop();
voi d makelLoop();
voi d cal cControl Commrand();

Each Cont r ol Lawspecialization is a subtype whereby each subtype inherits the definition of the
supertype. By applying this concept, an evolutionary process evolves to adapt to changes in the
technology. At first, only highly-demanded subtypes, such as PID, were handled. Figure 10
conceptually illustrates the PID specialization of the control law. The IDL definition of the PID
control law follows.

interface |PIDTuning: |Control Law

{

/1 Attributes

doubl e getKp();
doubl e getKi();
doubl e getKd();

voi d setKp(double val);
voi d setKi (double val);
voi d setKd(double val);

doubl e get Kcomranded() ;

doubl e get KcommandedDot () ;
doubl e get KcommandedDot Dot () ;
doubl e get Kf eedback();

17
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voi d set Kcommranded(doubl e val);

voi d set KcomrandedDot (doubl e val);

voi d set KcomrandedDot Dot (doubl e val);

voi d set Kf eedback(doubl e val);

h

OMAC API also uses inheritance to maintain levels of complexity. Level 0 would constitute base
functionality seen in current practice. Level 2 would constitute functionality expected of advanced
practices. Level 3, 4,..., n would constitute advanced capability seen in emerging technology, but
unnecessary for simple applications.
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Figure 10: PID Control Law

3.3 CLIENT SERVER BEHAVIOR MODEL

OMAC API adopts a client server model for inter-object communication. In the client/server model,
an object is a server and a user of an object is called a client. Objects can act as both a client and a
server. Objects cooperate by having clients issue requests to the servers. The server responds to
client requests. For OMAC API, a client invokes class methods to achieve the described cooperative
behavior. A client uses accessor methods to manipulate data. Accessor methods hide the data’s
physical representation from the abstract data representation.

Standard client-server requests result in a synchronous execution of operation. The synchronous
execution has a client-server roundtrip where the client issues a request, server receives a method
invocation, performs the corresponding method implementation, and sends a reply back to the client.
OMAC API defines three types of client-server requests: (1) parametric requests, (2) directive
requests and (3) monitor requests. State space logic may be required to manage client-server
interaction.

Parametric requests are the get/set methods that are, in theory, satisfied in one roundtrip.
Parametric requests do not require state space logic.

Directive requests are events which cause a change in the server’s state space (or state transition)
and results in a new server state. These directive requests may run one or many cycles - such as, for
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an Axis module completing a horme() operation. Coordination between the client and server requires
state space logic and is based on the server’s Finite State Machine model

Monitor requests coordinate the execution of a module, for example, pr ocessSer voLoop() or

i sDone() for Axis module. Monitor requests are coordinated by the state space logic. The

pr ocessSer voLoop method sends an event to Axis module execution to be interpreted by its state
space logic. Invoking processServolLoop every servo loop period attains cyclic execution of the Axis
module. In this cyclic mode, the Axis Module would be running as a software servomechanism: at
every period, it accesses data (e.g., commanded position, actual feedback) and executes a transform
function to derive a new setpoint. Status methods are necessary to monitor the progress of a directive
request.

Client Directive and Monitoring requests may come from separate threads of control. Figure 11
illustrates a server with multiple clients running in two separate processes: an Axis Group process
for issuing setpoints and a Periodic Updater process to coordinate execution. (These processes may be
running in one or more threads.) Generally, the Directive service requests would come from an Axis
Group module that is issuing setpoints to multiple axes. A Scheduling Updater module running in
another thread of execution provides timing, synchronization and sequencing service for the Axis
module. This Scheduling Updater module may be tied to some hardware device (such as a timer) to
guarantee periodic execution behavior.

. Commanded
Client 1 Methods
e.g. home(), tune()

Server

Axis Module
Client 2

Updater
Process

Figure 11: Multiple Threads of Control

Timing, Synchronization and Sequence Methods
e.g. processServolLoop()

3.3.1 DIRECTIVE REQUESTS DISCUSSION

Client directive requests are serviced as client-push events. (Server-push is a more difficult
problem and is discussed in Section 5.2.) In a client-push request, events are “pushed” to the server
via method calls. Client-push events may be queued and ultimately cause state transitions. Below is
a code sketch of the client-push event model for an Axi s class that defines two methods
processServoLoop and hone. An Axi sFSMclass is defined to handle the events caused by
processSer voLoop and horre. Whenever the hone method is invoked, it inserts a HOVE_EVENT
event into the Axi s FSM. The FSM has an internal queue (i.e., evq) for handling events. The FSM
may optionally spawn a separate thread of control (i.e., FSMrhr ead( ) ) for event handling. The

i sDone() monitor request is used to determine when the hone event has completed.

/1 This is the public interface
class Axis : QOracMdul e

-

public:
processServolLoop();
home() ;
bool ean i sDone();

private:
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Axi sSFSM f sm
bool ean myDone;

}s

/1 This is hidden in the inplenenters code

Axi s::processServoLoop() { Axi sFSM handl eEvent (Axi sSFSM : PROCESS_SERVO _LOOP_EVENT); }
Axi s::home() { Axi sFSM handl eEvent ( Axi sFSM : HOVE_EVENT) ; }

Axi s::isbone() { return nyDone; }

class Axi sFSM : FSM {
enum { PROCESS _SERVO LOOP_EVENT, HOVE _EVENT};
MsgQueue evq;
int curState;
voi d handl eEvent (EV_nun)

evq. send( EV_NO) ;

void * FSMrhread() // optional thread, this could be done in handl eEvent

{
int evNum

evq. recei ve(&vNum ;
cal | Action(evNum curState);

voi d honeUpdat eAction() { /* performhomng */ }
voi d processServoLoopAction() { /* evaluate state */ }

b

A key to the event model is to support local or remote method invocation identically. The next section
on proxy agents explains how this event model provides a transparent interface.

Server request actions should be as short as possible. In the example, the simple enqueuing of events
provides an efficient interface model. The rationale for short request cycles is to reduce the amount
of time the client will wait while the server services the request. Evaluating system timing and
performance is difficult unless the client-server round-trip time is bounded.

3.4 PROXY AGENT TECHNOLOGY

Client/server interaction can be local or distributed. In local interaction, the client uses a class
definition to declare an object. When a client accesses data or invokes object methods, interaction is
via a direct function call to the corresponding server class member. At its simplest, local interaction
can be achieved with the server implemented as a class object file or library. Interaction is achieved
by binding the client object to a newly created server object implementation. Such a binding could be
done by static linking, with a dynamic linked library (DLL), or through a register and bind process
that does not use the linker symbol table.
When distributed service is needed a proxy agent is used. A proxy agent is a set of objects that are
used to allow the crossing of address-space or communication domain boundaries[M.S86]. The class
describing a proxy agent uses the API of some other class (for which it is a proxy) but provides a
transparent mechanism that implements that API while crossing a domain boundary. The proxy
agent could use any number of lower level communication mechanisms including a network, shared
memory, message queues, or serial lines.
Below is a code example to illustrate the concept of proxy agents. We will assume that we have
defined an axis module by the class Axis that has but one method set X() ; . The following code
would be found in the axis module header file (or API specification):

class Axis : Environnent

E)ubl ic:

void setX();

private:
doubl e nyX;

A user would then develop code to connect or bind to the axis module server, which in this case has
the name “Axisl.” The _bi nd service is similar to a constructor method, but returns a server
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reference pointer rather than an address reference pointer. The _bi nd keeps track of the number of
client pointer references to the server. The bind establishes a client/server relationship with the axis
module. The application code is the client, and when Axis methods are invoked, a message is sent to
the server. In the following code, the application sets the x variable to 10.0:

application(){
Axis * al;
al = Axis::_bind(“Axis1");
al->setX(10.0);
}

If the server is co-located with the application, it is trivial to implement the object server. The
Axi s: : set Ximplements the value store.
Axis::setX(double _x){ myX=_x;}

However, for distributed communication, Axi s: : set X is defined twice - once on the client side and
once on the server side. On the client side we set up the remote communication, which in this case, is
an overview of a remote procedure call.

Axis::setX(double _x){
callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)

On the server side, a server waits for service events (such as the bi nd, and the set X method). A
corresponding Axi s: : set X is defined to handle the x variable store. The server technology could
handle events in the background or use explicit event handling. In either case, the actions of the
server are transparent to the client.

Axis::setX(double _x){ myX=_x;}

server(){

[* register rpc server name */
while(1) { /* service events */ }

3.5 INFRASTRUCTURE

The infrastructure deals primarily with the computing environment including platform services,
operating system, and programming tools. Platform services include such items as timers, interrupt
handlers, and inter-process communications. The operating system (OS) includes the collection of
software and hardware services that control the execution of computer programs and provide such
services as resource allocation, job control, device input/output, and file management. Real Time
Operating System Extensions can be considered platform services since these extensions are
required for semaphoring, and pre-emptive priority scheduling, as well as local, distributed, and
networked interprocess communication. Programming tools include compilers, linkers, and
debuggers.

The OMAC API does not specify an infrastructure because many of the infrastructural issues are
outside the controller domain, and it would be better handled by the domain experts. Further, it is
more cost-effective to leverage industry efforts rather than to reinvent these technologies. For
example, commercial implementations of proxy agent technology are available. Microsoft has
developed and released DCOM (Distributed Common Object Model) [DCO] for Windows 95 and
Windows NT. Many implementations of CORBA (Common Object Request Broker Architecture)
[COR91] are available and Netscape incorporates an Internet Interoperable ORB Protocol (110P)
inside its browser. The question concerning the hard-real-time capability of such products remains.
But, industry is acting to solve this problem. In the interim, control standards that could provide a
real-time infrastructure are available [OSA96].
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Because there are so many competing infrastructure technologies, OMAC API has chosen to let the
market decide the course of the infrastructure definition. As such, to achieve plug-and-play module
interchangeability, a commitment to a Platform + Operating System + Compiler + Loader +
Infrastructure suite is necessary for it to be possible to swap OMAC object modules.

3.6 BEHAVIOR MODEL

For the OMAC API, behavior in the controller is embodied in Finite State Machines (FSM). OMAC
API uses state terminology from IEC1131[IEC93]. An FSM step represents a situation in which the
behavior, with respect to inputs and outputs, follows a set of rules defined by the associated actions
of the step. A step is either active or inactive. Action is a step a user takes to complete a task that
may invoke one or more functions, but need not invoke any. A transition represents the condition
whereby control passes from one or more steps preceding the transition to one or more successor
steps.

For the OMAC API, the following concepts apply. The receipt of a message causes an event that is
evaluated with the FSM and may cause a state transition. An object method invocation is the
mechanism in which messages are sent to cause an event. For distributed communication, OMAC
API makes the assumption that the proxy agent does the encoding of methods into messages and the
decoding of the transmitted message into the corresponding method calls.

3.6.1 LEVELS OF FINITE STATE MACHINES

For an OMAC API module, there can be nesting of FSMs. OMAC API does not dictate the number of
levels of FSM. In general, an outer administrative FSM exists to handle activities that include
initialization, startup, shutdown, and, if relevant, power enabling. The administrative FSM must
follow established safety standards. When the administrative FSM is in the READY state, it is
possible to descend into a lower level FSM.

22 OCTOBER 12, 1999



THE OMAC API SET WORKING DOCUMENT

VERSION 0.16

powerup

configured startup() (second pass)

CONFIGURING

configure

DISABLED

disable() * enable()
resetException 0
| EXCEPTION ] ENABLED/ shutdown
i > READY
l “command”()
EXECUTING O
throw_exception()
done()
abort()
stop()
| STOPPING || ABORTED
terminated resolve_abort

Figure 12: Generalized State Diagram

OMAC API defines the OMAC Base Class module to provide a uniform administrative state model
across modules. The OMAC Base Class state model is illustrated in Figure 12. The administrative
state model describes the start-up, shutdown, enabled/ready, configured, aborted, and initialization
operations that form the baseline of a module state space. States have methods (e.g.,i nit (),
startup()) to cause state transitions.

To enter into a lower FSM, the module enters into the “executing” state as shown Figure 12. In the
“executing” state, client/server coordination uses a lower FSM for coordination. This lower FSM is
module- and application-dependent. This lower FSM, in turn, can have an FSM embedded within it

so that further nesting of embedded FSMs is possible.
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Figure 13: Levels of FSM

Figure 13 shows the nesting of FSM levels. Within the figure, the FSM icon is represented by a
rectangle inside a diamond. The dotted FSM icon represents an optional FSM. The nesting of one or
more lower level operation FSMs is possible depending on system complexity. Within the nesting of
the FSM shown in Figure 13, an “operational” FSM may handle different NC modes corresponding to
“auto,” “manual,” or “MDI”. For example, at the operation level for part programming, there may be
another level of FSM to handle a family of parts. The designer of a particular control system
determines the number of nested FSM levels, depending upon the complexity and organization of the
controlled system. The lowest level FSM or dominion FSM monitors the current focus of control.
The dominion FSM “rule” over lower level objects. There may be one or more dominion FSM at the
lowest level within an OMAC module.
For OMAC API, method invocations result in events to be propagated from the client to the server
that may cause server state transitions. Events are evaluated within the highest level FSM and then
recursively propagated through each lower level FSM. For example, in Figure 13 a pause event is
received at the highest Administration level and is evaluated. If the Operation FSM supports a
pause method then this method is invoked and the event evaluated. This event evaluation and
recursive cascading of the event may cross module boundaries and propagate all the way to the
“bottom” FSM in the application controller.
A major assumption concerning event propagation is the availability of the event method in a lower
FSM. In the previous example, there was an underlying assumption that all lower-level FSM
supported the pause method. This underlying assumption may or may not hold. For the interim, the
following rules characterize the FSM behavior with regard to specifying an event space:
¢« an OMAC module Administrative FSM supports all the events within the OMAC API Base
FSM
e any lower level FSM within an OMAC module supports both the OMAC Base FSM event
space as well any event specializations that an OMAC module supports. For example, the
Axis Group module defines events for hol d, pause, resune and these would have to be
supported by lower level FSM contained within the Axis Group.
e Control Plan Units may have their own event model. It is unclear if they must support the
complete OMAC Base Class set of events.
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- optionally, an introspective query of an FSM could be specified to see if an event is supported
(e.g., canPause() ). This mechanism is similar to that of reusable component functionality of
JavaBeans that provides for run-time and design-time methods. In addition to handling
event space matching, introspection could be useful as a safety feature to insure that
cooperating FSM understand each other.

3.6.2 COMPUTATIONAL MODEL

A general computational model exists for characterizing all OMAC control modules. Figure 14
illustrates the general computational model. Each OMAC module can support levels of nesting FSM
as part of general computational model. The OMAC API module may also have one or more FSM
simultaneously executing on a dominion FSM list. Each FSM on the dominion list is conceptually
equivalent to a concurrent thread of state logic. FSM on the dominion list can operate independently

or have dependencies between them.
.

MODULE

ADMINISTRATION

< FSM

—»» FSM

NESTING

DOMINION
< FSM P L
T :
I I
I i 1
v v |
FSM  STATE FSM  STATE

Figure 14: Module Computational Paradigm

Within the FSM paradigm, different OMAC API modules have different FSM dominion list sizes. In
general, the OMAC modules exhibit the following computational model characteristics. The Discrete
Logic module generally has a multi-item dominion FSM list analogous to a scan list, (some active,
some not active), to coordinate 10 points. The Axis Group has a multi-item dominion list, one or more
motion FSM and none, one, or more Process FSM. The Axis module has one FSM derived from the
OMAC Base Class and an embedded FSM to support Axis functionality.

In the general computational model, FSM are used for controlling behavior and also serve as
data. When events are sent from the client to the server and contain FSM as data, the FSM data is
called a ControlPlanUnit (CPU). A ControlPlanUnit is an FSM, but the internal representation is
not important to the OMAC API. Instead, a CPU is defined with a simple state management API

hiding messy FSM details. The following is a sketch of the ControlPlanUnit API.
i nterface Control Pl anUnit

{ /]l Option 1:
Control Pl anUnit executeUnit(); /1 return next Control Pl anUnit
/] Option 2:
/1 bool ean i sDone(); /1 state query
/1 Control PlanUnit getNextUnit(); // actually fetch next CPU when done
void setActive(); /I set when “executing”
void setlnactive();
boolean isActive(); /I for HMI to determine when active
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/1 ... nethods for persistence data in binary or neutral fornat
/1 ... methods for graph representation for navigation purposes,
11 such as when perform ng | ookahead

b

The general computational model supports a mechanism to queue client requests - either events or
CPU. A CPU received by a server is queued and is eventually inserted into the dominion list. Three
types of CPU can exist on the dominion list:

Transient CPUs perform a fixed amount of work within a certain period. Transient CPUs execute
cyclically and are removed from the dominion list when an internal condition is satisfied. An
example of a transient CPUs is a motion segment CPU that has a beginning and an end. When the
CPU i sDone() returns true, the CPU is removed from the dominion list.

Resident Cyclic CPUs execute “forever” and perform a function periodically. Resident cyclic CPUs
execute repeatedly with no internal completion condition. One example of a resident cyclic CPU is a
PLC operation to turn the oil/slides pump on/off every five minutes.

Resident Event-driven CPUs execute once when an event triggers their execution. An example of
a Resident Event-driven CPU is turning an 10 point on or off.

The ability to have multiple CPU executing concurrently can be especially useful for Process Model
enhancement. Within the Axis Group for example, one can have a transient CPU for motion as well
as a resident cyclic CPU to handle data logging.

Equivalent application functionality can be achieved with different distributions of CPU within a
controller. Depending on the circumstances, tight coupling or loose coupling can be used to
coordinate logic and motion. Tight coupling is achieved by placing RESIDENT FSM on the dominion
list. Loose coupling is achieved by placing RESIDENT FSM in a separate thread under same
scheduler for all the other OMAC modules (which are resident FSM.)

Loose Coupling

Axis Group O Kinem atics
Compensation CPU

— write |
Motion 1 CcPU
cpPU forward/reverse __ update |

Figure 15: Example Loose Coupling Probe Architecture

As an example, consider the integration of a Probe with an Axis Group to modify motion control.
Several ways exist for incorporating the Probe CPU into the system.
 The Probe CPU is placed in the Discrete Logic module to be run at a given period. The probe
could running at the same period as the Axis Group or be oversampled. This is an example of
loose coupling.
e The probe could run as standalone resident CPU scheduled like any other OMAC module.
The probe CPU could run at a slower, faster or the same frequency as the Axis Group. This is
an example of loose coupling and is illustrated in Figure 15.
e The Probe could be a Process Model resident CPU that runs inside of the Axis Group at the
same frequency as the Axis Group. This is an example of tight coupling and is illustrated in
Figure 16.
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Figure 16: Example Tight Coupling Probe Architecture

3.6.2 Control Plan Unit Abstractions
The CPU is the base class, but the OMAC API defines several uses and specializations. Figure 17
illustrates the ControlPlanUnits hierarchy of possible ControlPlanUnit specializations. CPU
specialization is the mechanism to add extensions. For example, the NURB MotionSegment is
derived from the MotionSegment CPU. Specialization of CPU include:
Capabilities
correspond to different machine modes (manual, auto). When the Capability FSM is in the READY
state, the Capability can descend into a lower FSM or ControlPlanUnit. For example, once in the
auto Capability FSM, a lower level FSM for the “cycle” ControlPlanUnit can be used to sequence
through a series of ControlPlanUnits.

MotionSegments
corresponds to the FSM input for an Axis Group module. In addition to the FSM directive and
parameter methods, a MotionSegment includes such information as rate, geometry, and a
reference to a velocity profile generator that are necessary for trajectory planning.

DiscretelLogicUnits
corresponds to the FSM input for a Discrete Logic module. DiscreteLogicUnits coordinate and
control an aggregation of 10 points. In addition to the FSM directive and parameter methods, a
DiscreteLogicUnit contains the information necessary to either define asynchronous logic - the
event or condition trigger, or to define synchronous logic - the scan rate and FSM.

ProgramLogic
CPU for decision making, (e.g., statement, loops, end program and if/then/else).
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Figure 15: Examples of Different Types of Control Plan Units

A Cont rol Pl anUni t is responsible for its own branching. For this reason, the method

execut eUni t () returns a reference to the next ControlPlanUnit. A Contr ol Pl anUni t may embed
other Contr ol Pl anUni t s. A series of Cont rol Pl anUni t (s) isa Control Pl an. A Control Pl an
can be a simple list to represent sequential behavior or a complex tree. Figure 18 illustrates some
possible connections of ControlPlanUnits. Through the use of ProgramLogic CPU, one can achieve a
mapping from computer programming control constructs into a list representation.

To coordinate the ControlPlan (which is a graph of ControlPlanUnits) for outside observers (such as
the Human Machine Interface), there is a central ControlPlan header. The ControlPlan header
monitors navigation through the graph as ControlPlanUnit are activated and deactivated. As activity
in the ControlPlan occurs, the ControlPlan header points to active ControlPlanUnits. Traversal
methods are defined within a ControlPlanUnit so that external modules, such as the HMI, can
monitor progress of ControlPlan via the i sActi ve() method.

A=B if t hen endi f whi | e

Control Control Control
Plan Unit Plan Unit Plan Unit

Control
Plan Unit

Control Control
» »
. | Plan Unit | . | Plan Unit | > > 000

el se

Control
Plan Unit

Control
Plan Unit

St epA stepB St epC

Control q Control g Control
<| Plan Unit | > > <| Plan Unit | » | Plan Unit |> > . . .

Figure 18: Control Plan built from Series of Control Plan Units
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3.6.3 CONTROL PLAN UNIT NESTING

A Cont r ol Pl anUni t can contain other ControlPlanUnits. When activated, a CPU can send
embedded CPU to lower level servers. Thus, CPUs contain “intelligence” and understand how to
coordinate and sequence the lower level logic and motion modules.

initialize(ControlPlanGenerator)

U

execute(Task Coordinator)

loaded

{t)

start(AxisGroup)

{1}

update(Axis Group) update(AxisGroup

[

done(self)

U

Figure 19: Example Control Plan State Transitions

Figure 19 illustrates an example of the relationship between a CPU, its states, and its travel through
a control system. In this example, a ControlPlanGenerator, such as one for RS247D or IEC1131,
initially generates Control Plans from part programs most likely using a CPU constructor. During
execution of a Control Plan, the CPU is becomes the next active CPU in the Task Coordinator. The
Task Coordinator does an execut eUni t on this CPU. The CPU determines if it can append an
embedded Motion Segment CPU onto the Axis Group motion queue. If for example, a tool change is
desired, then assume the CPU should wait until all current motion must be completed first. This
requires the CPU do synchronize with lower level modules. The synchronization would occur inside
the CPU and could be done with or without blocking. The code for a blocking CPU would look like
this:

CPU execute_unit()

{ axgrp->wait_for_motion_idle(); // blocks until this is true

axgr p- >set Next Mot i onSegnent (noveToTool Changer MS) ;
/1 pass change tool CPU to discrete |logic
return next CPY;

}
The code for a non-blocking CPU would look like this and assumes that the Task Coordinator
periodically performs an execut eUni t on the CPU.

CPU execut eUnit ()
{ if(laxgrp->isldle()) return this;
axgr p- >set Next Mot i onSegnent (noveToTool Changer MS) ;
/1 pass change tool CPU to discrete |ogic
return next CPU;
}
Once the CPU is free to continue, embedded CPU(s) are passed to subordinate modules and loaded

onto their event queues. That is, the CPU running in the Task Coordinator passes the next Motion
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Segment CPU to the Axis Group module and passes a Tool Change Discrete Logic Unit to the
Discrete Logic module.

Once the Motion Segment CPU is loaded onto the Axis Group queue, it waits for activation.
Activation can occur if the CPU is first on the queue and no CPU are on the dominion list running, or
the previous CPU already running on the dominion list returns a true to st art Next CPU() .

If ready for activation, the Axis Group moves the MotionSegment method from the motion queue to
the dominion list and calls st ar t , which places the CPU in the st art ed state. Herein, the
MotionSegment is in the execut i ng state and the Axis Group periodically calls the Motion Segment
CPU updat e() method until the i sDone() condition is true.

The transition from execut i ng to done does not result from an externally-generated event, but
rather is achieved by the CPU satisfying an internal termination condition (hence the reference to
sel f).

Figure 20 illustrates the propagation of CPU through a controller. The Control Plan Generator
generates a top-level ControlPlanUnit CPU; for the Task Coordinator. CPU; contains embedded
MotionSegment CPU Mt i onSegnent , and DiscreteLogicUnit CPU Di scr et eLogi cUni t CPU,.
Consider the coordination required for a tool change. The top-level CPU,; forwards CPU,, or

Di scret eLogi cUni t CPU, to the DiscreteLogic module to be placed on its scanning list. For
simplicity, assume the top-level CPU waits until the Discretelogic reports that it is done with the
tool change. Once the tool change motion is completed, the top-level CPU; can then forward CPU,, or
Mot i onSegnent , to the AxisGroup.

It is important to understand the nesting of CPU and subsequent propagation of CPU. It
is the fundamental mechanism for passing data through an OMAC API controller.
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Figure 17: Intelligent CPU Spawning Lower Level CPU

Figure 18 is an Object Interaction Diagram for the following propagation scenario. Assume a Human
Machine Interface will set the current Capability to Aut o mode. Then, the HMI interacts with the

Auto Capability to load a program name and then start the cycle. This will cause the Task

Coordinator to request the Control Plan Generator to translate the part program into a Control Plan.
Once translated, CPU; will be executed via the execut eUni t method. While CPU; is executing, it
will forward two new Control Plan Units - first a Discrete Logic Unit dl u,, to perform a tool change
and afterwards a Motion Segment ns;. When it's time, the scheduler or updater will cause the
DiscretelLogic module to execute. The DiscreteLogic module will then process its scan list and in turn
execute dl u,. When the dl uy tool change i sDone, CPU; will forward Motion Segment ns,. At the

appropriate time, the scheduler or updater will cause the AxisGroup to execute and it will start

processing s ,.
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Figure 18: Embedded CPU Forwarding Object Interaction Diagram

The OMAC API specifies that Cont r ol Pl anUni t objects can embed module references and direct
method calls. On the surface, this approach appears implausible. However, because of proxy agent
technology, it is not hard to create a “forward reference” assuming one can dynamically bind to an
object. This dynamic binding is beneficial since it eliminates static encoding of methods (e.g., with id
numbers) necessary for methods to execute across domains (i.e., address spaces). To enable forward
references, the requirement does exist for the infrastructure to support some “l ookup() ” method to
map object names to addresses. Consider the following C++ code to handle generic Axis Group
control within the Task Coordinator.

class GOCPU : Control Pl anUni t

voi d set Moti onSegment (Moti onSegnment _nsA); // paranmeters set by the CPG

set Axi sG-oup(char * axgroupnane) { ag=l ookup(axgroupnane); }
set Axi sG oup(Axi sGroup * axgrp) { ag=axgrp; }

CPU execut eUnit ()

if(!firstTi me+t)

ag- >set Next Mot i onSegnent ( nsA) ; /1 nessage passing!
i f(!ag->isbDone()) return this; /1 not done
el se return NULL; // return NULL or done CPU
}
private:

Mot i onSegnent nsA;
long firstTine;

}s

In the example, a ControlPlanGenerator will create a GOCPU that contains a MotionSegment (i.e.,
nsA). When the TaskCoordi nator i s executing the G CPU, the execut eUni t method uses
explicit calls to an Axis Group object, (i.e. ag). In early binding, a “forward reference” must be
fulfilled by the ControlPlanGenerator to the Axis Group object is required. In late binding, the
TaskCoordinator could do the lookup of the AxisGroup reference. However, late binding can
unnecessarily slow down the “block throughput” of CPU, hence only early binding will be considered.
To achieve early binding, suppose the Control Plan Generator (CPG) constructor receives the name
“axisgroupl” for an Axis Group object. The CPG can lookup the object “axisgroupl” to retrieve a
reference address. Upon receiving a reference address to “axisgroupl,” the CPG passes this
reference address to a CPU, in this example, with the method set Axi sG oup.

The degree of difficulty to do a reference address lookup depends on the execution environment. For
modules running as one or more threads in a process, the reference address is trivial. For reference
addresses that cross domain boundaries, proxy agent technology is required. Proxy agents must
encode reference addresses with a more sophisticated scheme to capture the domain (e.g., machine,
process) and encode the object reference and the methods. Proxy agent technology should hide the
reference address encoding from the programmer.

3.7 DATA REPRESENTATION

Exchange of information between modules relies on standard information representation. Such
control domain information includes units, measures, data structures, geometry, kinematics, as well
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as the framework component technology. OMAC API has chosen two levels of compliance for data
definitions.

The first level defines named data types to allow type-checking. The OMAC API uses the IDL
primitive data types and builds on these data types to develop the foundation classes and framework
components. For control domain data modeling, the OMAC API used data representations found in
STEP Part Models for geometry and kinematics [Inta, Intb]. Internally, any desired representation
could be used. The STEP data representations were translated from EXPRESS[EXP] into IDL.
Representation units are assumed to be in International System of Units, universally abbreviated Sl.
Below is the basic set of data types, which use STEP terminology for data names but reference other
terms for clarification.

Primitive Data

« IDL data types include constants, basic data types (float, double, unsigned long,
short, char, boolean, octet, any), constructed types (struct, union and enum),
arrays and template types bounded or unbounded sequence and string.

* IEC 1131 types - 64 bit numbers
*  bounded string

Time
Length

e Plane angle
e Translation commonly referred to as position
* Roll Pitch Yaw (RPY) commonly referred to as orientation

e STEP notion of a Transform which is composed of a translation + rpy, also commonly
referred to as a “pose.”

e Coordinate Frame which is defined as a Homogeneous Matrix
Dynamics

» Linear Velocity, Acceleration, Jerk
* Angular Velocity, Acceleration, Jerk

* Force
e Mass
«  Moment

*  Moment of Inertia
* Voltage, Current, Resistance

The second level provides for more data semantics. The OMAC API adopted the following strategy to
handle data typing, measurement units, and permissible value ranges. Distinct data representations
were defined for specific data types. For example, the following types were defined in IDL to handle

linear velocity.
/1 Information Mddel - for illustrative purposes
typedef Magnitude doubl e;

/1 Declaration
interface LinearVelocity : Units {

Magni tude value; // should this value be used?
/1 Upper bound and Lower bound, both zero ignore
Magni tude ub, Ib; // which may be ignored

di sabl ed();
enabl ed();
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/1 Application
Li near Vel ocity vel;

In this case, linear velocity is a special class. Unit representation is inherited from a general unit's
model. Permissible values are defined as a range from lowerbound to upperbound. The units and
range information are optional and may not be used by the application.

Another data typing problem that must be resolved concerns the use of a parameter. Not all
parameters are required or set by every algorithm. For example, setting the jerk limit may not be
necessary for many control algorithms. It was decided to use a special value to flag a parameter as
“not-in-use”. This approach seems simpler than having a use XXX type method for each parameter.
For now, OMAC API has decided that setting a parameter to an unrealistic “Not in use Number” (but
not actually “Not a Number”) value - such as MAXDOUBLE or 1.79769313486231570e+308 - renders a
doubl e parameter to be ignored or not-in-use. A similar number would be required for an integer.
This works for level 1 and level 2. Within level 2, the methods enabl e and di sabl e were added to

explicitly indicate use of a parameter.
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4 MODULE OVERVIEW

4.1 TASK COORDINATOR

The general characteristics of the Task Coordinator module include:
e act as central point for coordination

e initiate startup and shutdown since it understands the controller configuration -
what modules are in the system and how to start up the modules

e act as the highest level Finite State Machine within the controller.

e change frequently. The leaf nodes in the OMAC API architecture will be most stable.
As such, each system change should not require an entire rewrite of the TC. Instead,
TC should be flexible to accommodate change.

ADMINISTRATION @

“Executing”
CAPABILITY Home o Tool Change > Auto
LIST Capability| ’\ Capability = Capability,
Capability
Control Plan
»- Auto
DOMINION
> CPU Blockl *1111:‘ CPU Block2 :Z‘.‘.?:- """
/ I v
FSM STATE FSM STATE FSM STATE
Axis Group Discrete Logic Unit

Figure 19: Task Coordinator Computational Model

The Task Coordinator module is an FSM. The Task Coordinator FSM functionality is defined by
ControlPlanUnits, called a Capabi | i t y, that are received from clients. The Task Coordinator has a
one-element FSM dominion list to manage these Capabilities. The Capabi | i t y class supports st op,
start, execute, and i sDone methods.
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For an application controller, there is list of capabilities that a Task Coordinator can use. Figure 19
illustrates a CNC application with Capabi | i t y instances. When a Capabi | i ty is executing, it
coordinates the servicing of requests from the HMI. When the Aut o Capabi | i t y FSM is executing,
it interacts with the Control Plan Generator.

Operator HMI Task Manual Auto
Coordinator Capability Capability
CPU :CPU
POWERUP =
" setCurrentCapbility(m
start()
PUSH AUTO
setCurrentCapability(
auto) >
stop()
start()
LOAD o
PROGRAM setProgramName(file) R
execute() |
"... nothing to do
yet
PUSH CYCLE
" startCycle()
execute()
Translate
part program
into
Control Plan
execute() -
" Run
Control Plan

Figure 20: Task Coordinator and Capability Object Interaction Diagram

Figure 20 illustrates a sequence of operations that takes a milling CNC from manual mode to
automatic mode. The diagram shows the use of Capabil ity start, stop, and execute FSM
methods. In the scenario, the controller comes up in the manual mode as loaded by the HMI at
startup. Then, the operator pushes the aut o button that causes the HMI to execute the Manual
Capabi l ity stop method, and load the Aut o Capabi | i t y onto the Task Coordinator queue. That
cycle, the Task Coordinator will see that the Manual Capabi |l ity booleani sDone is True and will
swap the Aut o Capabi | i ty FSM into the dominion FSM list. The operator action to Load Program
will result in a program name loaded into the Control Plan Generator. When the operator pushes the
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cycle start button, it will cause the Auto Capabi | i t y FSM to translate a part program and then
start sequencing a ControlPlan generated by the Control Plan Generator.

4.2 DISCRETE LOGIC

@ 10 POINTS
10
SOFTW ARE
() e

Ladder
Rung

ADMINISTRATION

“Executing”
(e.g., enable Mist On)
—>
Thermal Mist On I[e]
Overheat Ladder Rung Scanner

\

HAY?DWARE
Figure 21: Discrete Logic Computational Model

The Discrete Logic module is similar to the Task Coordinator module in that it sequences and
coordinates actions through dominion FSM. However, instead of a one-element dominion FSM, the
Discrete Logic module has a multi-item dominion FSM list that is analogous to a scan list. In
general, a Discrete Logic FSM could be coded in any of IEC-1131 languages and translated into
ControlPlanUnits. Figure 21 illustrates the types of FSM that may be found on the Discrete Logic
dominion list for a typical CNC milling application. An FSM to handle 10 scanning would be
expected. An FSM implemented as a Ladder Rung could be expected to handle a relay for turning a
Mist pump on. Below is a sketch of the activity for turning the 10 mist pump on.

m st PunpOnRung()

execut e()

{ logic: trigger relay to turn punp on
wait till 1O pt says punp is on
| Omi st<- on;

}

At a higher level, a hardware-independent Mist FSM would be required to coordinate turning Mist
on and of f . Below is a sketch of pseudo code to sequence the Mist on operation. For coordination
between FSM logic, polling or event-drive alternatives exist to wait for the 10 Mist on activity to
complete.

m st OnFsn()
{“MistOn LR 10 <- on” to turn LR=ladder rung on
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“subscribe to event that 10 Mist On ==on”
“wait for event or poll for 10 point for Mist On == on “
“done - deactivate FSM for scanning”

4.3 AXIS

Axis module contains classes encapsulating the features pertaining to a single axis in a multi-axis
control system. Figure 22a diagrams the relationship of the various classes. Classes are defined to
provide a variety of setpoint control (e.g., following Axi sPosi ti onServo, AxisVel ocityServo,
Axi sAccel erationServo, AxisForceServo), actions (e.g., Axi sHom ng, Axi sJoggi ng) and
data (e.g., Axi sConmandedQut put, Axi sRates, AxisLinits, AxisSensedState).Figure22b
diagrams the finite state model of execution.

AbsolutePos

Commanded

Output ! ;
1 .
OMAC Module Jogging

SensedState |y A /
1

1
| 1y » i
\ 1 L 1 Homing
AN . / -
< 1 P2 1
Rates T 1 - i 1
AXis ~ ot — 1 1
A N 1 » . »
1 | AccelerationServo ”1 Control Law
7T NN :
A 1 | 1 1
Limits / 1 1 1 A
1 v ForceServo |1 -1 % Control Law
K Error and 1
Kinematics Enable \4

PositioningServol- 1 — 1 p| Control Law

Dynamics \

VelocityServo 1 — 1 »  Control Law

Figure 22a: Axis Class Diagram

The following list itemizes some basic open architecture requirements the axis module must support:

* nested control loops (e.g. position and velocity) using either derived feedback or
additional sensors (e.g. encoders and tachometers)

« perform backlash compensation
< ability to incorporate any appropriate sensors and actuators available in the system
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e provide settable error limits and “clamping” of various quantities in the loop. If error
limits are exceeded, the loop will “safe” itself, and inform of an error condition.
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Within the Axis module definition, several issues exist.

One issue that occurs is mapping a single axis to multiple actuators. At this time, actuators are not
an OMAC API module. The current resolution to the single axis-multiple actuator problem is to
define specializations of the Axis base class to handle the multiple actuators.

Another issue is exposing the FSM methods. The reason for exposing the FSM methods is so that
such FSM classes (such as AxisAccelerationServo) can be a replaceable component within the
system. Different implementations of the class definition would adhere to the interface.

Another issue is what happens when a method is invoked in the wrong state? For example, suppose
an ACCEL_EVENT occurs when in the HOMING state and there is no defined transition? The first
possible action is to ignore the event, but this is poor system design. The preferable option is to throw
an exception, but OMAC API has not enumerated exceptions yet.

Another issue is how is a Control Law attached to a servo class such as Position, Velocity,
Acceleration, or Force? The answer is to use class specialization to extend the base class to contain
Control Law component. For example, Axi sAccel er ati onSer vo may not need a control law
component if connected to SERCOS drive so that it uses the specified Base Class:

Figure 22b: Axis Module State Diagram
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interface AxisAccel erationServo(){}

For software servoing, an Axis class specialization would be defined that incorporates a control law
component using a Derived Class:

interface CLAxi sAccel erationServo() : AxisAccel erationServo
{ Control Law control | aw;

4.4 AXIS GROUP

The Axis Group module is responsible for transforming an incoming MotionSegment into a sequence

of equi-time-spaced setpoints, incorporating mechanism and process knowledge, and coordinating the
motions of individual axes.

MotionSegment ControlPlan Unit

ADMINISTRATION

“Executing” QUEUE

DOMINION W

< Motion < Process 4-.-,','."" Process

%&f \ R A '
\ A\ ! '
4 Il
¥ [ ey o ¥ v oo
FSM STATE
FSM STATE FSM  STATE FSM  STATE
Axis 1 Axis n

Figure 23: Axis Group Module

Figure 24 shows the class diagram for the Axis Group module. The Axis Group module consists of the
following classes:

AXisGroup
is the coordination module that has the following responsibilities:
» kinematics coordination transformation
e dynamic offset (e.g. sensing inputs) and overrides
» multi-axis coordination
e blending and block look-ahead
» feedhold
e operation stop
e execution on compensation look-up tables
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e path or rate-control modification based on sensor-feedback (including operator
overrides)

PathElement is the class definition to define the motion geometry.
Rate is the class definition to define the motion rates and limits along a path.

VelocityProfileGenerator is generates time-based steps along a path. Time-scaling of motions is
performed along a path based on rate-control (desired velocities, accelerations) or time-duration.
Includes control of acceleration/deceleration.

MotionSegment is derived from ControlPlanUnit to define a motion-control FSM. Contains
references to VelocityProfileGenerator, PathElement and Rate classes.

Figure 23 illustrates AxisGroup computational model. The AxisGroup receives MotionSegment CPUs
that define the motion. MotionSegments are queued to allow blending or lookahead. Process CPUs
are required for integrating sensing and mechanism knowledge. Process CPUs have tightly-coupled
associations with the Kinematics Module (for mechanism knowledge) and the Process Model (for
sensing and application specific knowledge).

The Kinematics module describes the relationship of the machine and part to a world coordinate
system. Such information could include a relative offset to the machining bed and another offset to a
part origin. Obstacles such as fixtures would also be included within this description. The Process
Model integrates operator and sensor feedback into the trajectory motion. This feedback can be used
to modify the rate-control.

OMAC Module ControlPlanUnit

) )

A A\

Motion Segment

KinMechanism queue

Process Model
(CPU)

Rates VelocityProfile Path Element
Generator

m

v

AccDec
Profile

Figure 24: Axis Group Class Diagram

Discussion on some issues and procedures common to Axis Group operation follows.

Concerning the issue of power management, it is assumed to be user-specifiable by the
ControlPlanUnit within some timing constraint. For example, a sequence to set a bit, wait 3 seconds
and then check brakes can be embodied with a ControlPlanUnit.

A common Axis Group procedure is to stop running, change a broken tool and then resume operation.
For this Axis Group module has API to save motion queue context and then restore it. An underlying
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assumption is that if there are other queues internal to the Axis Group (e.g., lookahead, blending)
that these too will be saved and restored.

The issue of standard stopping procedures is fundamental to a standard Axis Group API. OMAC API
proposes three modes to stop:

hard stop is a stop with max deceleration rate. Also called abort.
pause is a stop on the path as defined by the KinematicPath in the MotionSegment.

hold is a stop at end of segment as defined as the next increment provided by the Velocity
Profile Generator.

There are four recovery modes from stop:
resume start motion from the current point

skip skips to the next segment
flush flushes all segments on the motion queue

restore after a motion queue save after stopping, with possible intervening motions (such as
to change a broken tool or backing out), the motion queue can have its previous context
restored.

A standard Axis Group est op is not addressed because of the many different interpretations of
estop. For most purposes, a hard stop and estop are identical.
An issue of axis grouping and creating higher level objects can be resolved by defining a higher level
AxisGroup module. Some grouping issues include:
e error grouping - the AxisGroup has an i nhi bi t () API for error recovery (e.g., 2 live
axis with 3 dead axis)
e power sequencing - TBD

*  power chain grouping - TBD
» kinematic grouping is done with the Kinematics module.

4.5 PROCESS MODEL

The Process Model is responsible for dynamic control modifications. The Process Model exists to
encapsulate the application- or domain-dependent knowledge. For example, the Process Model for
machining would incorporate feedrate override, but the Process Model for a pick-and-place robot
would probably not. Some typical Process Model dynamic modifications associated with machining
include:

» feedrate override

e spindle speed override

e path offset (normal adjustment for cutter compensation)

e tool length offset (dynamically modified based on tool wear, not just tool change)
e data logging flag

e cycle interruptions (e.g., estop, hard stop, feed hold)

The Process Model is generally associated with the Axis Group in order to modify the current motion.
The relationship between the Process Model, Axis Group and MotionSegment modules can vary. This
variation greatly affects the openness flexibility.

In the dependent relationship, the Axis Group and the Process Model know each other’'s API a priori.
For example, suppose the Axis Group understands that the Process Model supports feedrate override
via a get Feedr at eOverri de() API. Then, the Axis Group can retrieve the current feedrate
override value in order to modify the current MotionSegment’s feedrate.
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The dependent relationship is flexible if all the required shared variables between the Axis Group
and the Process Model exist. For example, if the feedrate override had been under operator-control, a
user may replace the Process Model with a custom module to change the feedrate override based on
some force/torque sensing. However, problems arise if the user wants to add a cutter compensation
normal to a MotionSegment and a pre-defined API does not exist. Now, the Axis Group or each
MotionSegment must be rewritten to incorporate this modification.
In an independent relationship, the Axis Group and Process Model coexist without a priori
knowledge of each other. For this case, OMAC API is proposing to allow the Process Model to send
CPU to Axes Group so that these CPU can modify the current motion CPU (i.e., MotionSegment).
Consider the following alternatives where the user wants to integrate a new probe into the control
system and coordinate when the motion controller to start recording points.

1. For the dependent relationship, a solution is to rewrite the Axis Group to accept a

“log data” flag and then record data.

2. Another possibility is to mandate that every control plan be rewritten to contain a
“log flag.”

3. Inthe proposed independent relationship, the Process Model would generate a CPU
that is sent to the Axes Group which is executed every cycle to actually log data
based on an external reference to a “log flag.”

In the independent relationship, countless other real-time modifications could be applied by
ControlPlanUnits within the AxisGroup (as well as the Kinematics Module). The ability to extend
the controller based on evolving sensor-based applications was a primary OMAC requirement.
Hence, the necessity to support the Process Model independent relationship.

4.6 KINEMATICS

Kinematics refers to all the geometrical and time-based properties of motion[Cra86]. The OMAC API
uses a graph representation to model the geometrical aspect of kinematics. The model is flexible
enough to handle kinematic chains and kinematic hierarchies. Figure 25 illustrates the terminology
used to model the geometric kinematics. A KinStructure describes the geometry of an axis link. A
KinStructure has a Base Frame (generally used to model compensation) and a Placement Frame
to model the axis link transformation. The BaseFrame is useful as an offset to model spindle growth
or other compensation variables. When no compensation is planned, the BaseFrame location equals
the placement frame location. A Connection models the relationship between two KinStructures
using a from KinStructure and a to KinStructure. A KinMechanism models a kinematic chain as a
series of connections. The OMAC API kinematic model allows recursive kinematic definition. A
KinStructure can itself be a kinematic chain modeled as a KinMechanism. This recursive definition
allows a static kinematic chain to collapse into a single pre-computation.
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Figure 25: Kinematics Model

A KinMechanism is responsible for computing the forward and inverse kinematics. A KinStructure
contains the following information necessary for these calculations:

e transform

e static or dynamic link

* home state

« link model - translational, prismatic, rotational

World

Table \axl
» ‘axgg
Part a3

spindle

ont”
\

tool

Figure 26: Kinematics Example

As an example, consider the case of a three axis machine with tool to mill parts on a table given a
part offset. The machine tool kinematic chain contains a spindle KinMechanism to model spindle
growth. Figure 26 illustrates the chain of KinStructures Wr 1 d, Table, Part, Coal Pt, al,
a2, a3, spindle, and tool tomodel this example. We will assume the table is motionless.
The following code sketches an OMAC API kinematic model for this example.
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/| Declarations

Ki nMechani sm wor | dKM axKM 3], spi ndl eKM t ool KM

Ki nMechani sm overal | KM /1 collection w al-a2-a3-spindle-tool kinematic chain
KinStructure * worl dKS, * axKS[3], * spindleKS, * toolKS;

Transformldentity = new Transform(1, 0, 0, 0, O, 1, 0, O, O, O, O, 1, O, O, O, O, 1);

/1 Define KinStructures and enbed in Ki nMechani sm
wor | dKS= new Ki nStructure();
wor | dKS- >set BaseFr ane( & dentity);
wor | dKS- >set Pl acenent Frane( & dentity);
wor | dKM set Connections(NULL); // trivial case, does not contain Ki nMechani sns
wor | dKM set Ki nMechani sms(NULL); // trivial case
wor | dKM set Ki nSt ruct ur e(wor | dKS) ;

axKS[ 0] = new Ki nStructure();

axKS[ 0] - >set BaseFrane( & dentity);

axKS[ 0] - >set Pl acenent (/ *sonme transfornt/);
axKM 0] . set Connecti ons(NULL);

axKM 0] . set Ki nMechani s NULL) ;

axKM 0] . set Ki nStruct ure(axKs[ 1] );

/1 Set connections
Connection c[ 5]
Connecti ons connections;

c[0] = setFromw);

c[0] = setTo(axKM0]);

c[1] = setFrom(axKM 0]);

c[1] = setTo(axKM 1]);

c[2] = setFrom(axKM 1]);

c[2] = setTo(axKM 2]);

for(int i=0; i< 5; i++) connections.add(c[i]);

/1 Define overall KinMechanism
overal | KM set Connecti ons(connecti ons);

/1 Modification of axis val ues
axKM 0] - >get Ki nStruct ure() - >set Pl acenent Fr anme( &ewFr anel) ;
axKM 1] - >get Ki nSt ruct ur e() - >set Pl acenent Fr ane( &ewFr ane2) ;
axKM 2] - >get Ki nStruct ure() - >set Pl acenent Fr anme( &ewFr ane3) ;

The importance of the Kinematics module is not only calculating the forward and inverse solutions,
but also providing a mechanism to perform offsets and compensation. A few examples will be
considered.

Relative Positioning The equivalent to the RS274D Absolute and Relative positioning cases are
handled by two separate KinMechanisms.

Change Tool Suppose a tool table is to be maintained. A KinMechanism for each tool in the table
will need to be defined. For a tool change, a new reference to the new tool is substituted for the t ool
KinMechanism in the over al | kinematic chain.

Ki nMechani sns t ool [ 100] ;
tool KM = &t ool [ 2] ;

Tool Length Offset Consider the case in which tool length offset is changed to compensate for tool
wear, reconditioning, depth of cut (rough, finish), or dry run. In this case, the tool KinStructure
PlacementFrame is modified to reflect the change. For example, changing column 4 row 3 (i.e., the z
value) of Tool displacement frame will change the offset.

t ool KM >get Ki nstruct ur e- >set Pl acenment Fr ame( newFr ane) ;

Spindle Growth A majority of variation during machining is attributable to spindle growth. The
example kinematic chain contained a Spindle KinMechanism to model spindle growth. Modifying the
spindle BaseTransform based on spindle growth achieves good correction at a modest cost.

spi ndl eKM >get Ki nst ruct ur e- >set Pl acenent Fr ame( newFr ane) ;
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Axial Growth Consider the case in which an axis is growing in length as the leadscrew mounting
bearings heat up during machining. In this case, the axial member is growing in length. Next to the
spindle, axis growth is the most common and cost-effective compensation technique. In this case, an
axis KinStructure baseFrame is changed.

axKM 0] - >get Ki nStruct ure() - >set BaseFrane();

Cutter Radius Compensation Consider the scenario in which path modification is based on cutter
radius compensation. Assume the need to apply a normal offset to the pre-defined curvilinear
kinematic path from point A to point B.

In the static case, the entire kinematic path can be recomputed as specified based on a flag. In this
case, responsibility is delegated to the CPU to handle the change from the nominal path to the
compensated path.

In a quasi-static case, suppose the cutter radius is computed on-line by some process controller or
sensor to do radial compensation to adjust the path. In this case, a radial compensation value is
input to the Kinematic Path class and it returns a corrected value.

In the dynamic case, the modification is to the next increment of the interpolated path of the current
MotionSegment. This would be achieved by calling the KinematicPath (i.e., KP) with the normal
offset.

KP- >appl yNor nal O f set (&nor mal O f set) ;

Configuration Solution rules for configuration such as up/down elbow or redundant links are
handled by class specializations.

Update Unresolved is the responsible module and mechanism used to update dynamic (e.g., axis)
values.

4.7 10 SYSTEM

The purpose of the 10 system is to provide a uniform interface to Physical or Virtual input or
output points in the system. The | OPoi nt class defines the uniform interface and hides the details of
the underlying hardware interactions. An example of an 10 Point is a DAC on a multiple DAC digital
to analog output card. The | OPoi nt base class manages a single value, and provides an interface for
reading and writing that value. The 10 Point base class contains r eadVal ue() and wri t eVal ue()
methods.

Each | OPoi nt may be accessed individually but | OPoi nt s are controlled by an 10 System. An 10
System is a module consisting of one or more 10 Points, grouped together because they share some
resource (either hardware or software). There can be many 10 systems in a controller (e.g., Sercos,
D/A board, etc.)

4.7.1 10 NOTIFICATION

Each 10 System may optionally contain Callback Notification and Callback Handlers.

Callback Notification object(s) provide a mechanism for other modules to be informed when some
internal activity has taken place in the 10 System. Each Callback Notification object contains a list of
Callback Handlers to be activated on the desired event. This allows multiple modules to be
informed on an 10 System state change. The Callback Handlers are entered into the Callback
Notification object’s list at system integration time. For example, a Callback Notification might exist
to inform other modules when the values associated with an 10 System’s 10 Points have changed.
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The 10 System may also by notified by Callback Handlers. A callback by other modules would inform
the 10 System that some event has occurred. For example, the 10 System may contain a Callback
Handler to be activated when it is time to sample all of its 10 Points’ inputs.

4.7.2 10 CONFIGURATION

OMAC API uses a Presentation 10 model in which each 10 system (as one of many in the system)
creates a series of | OPoi nt s that other objects in the system access via references (or handles). This
differs from an Attachment 10 model, where each object in the system creates an | OPoi nt and
attempts to attach the | OPoi nt to some hardware.

As an analogy to differentiate between the Presentation and Attachment models, consider an 10
Point filled with bytes from a file. In the Attachment model one opens a file, and uses a copy of a
device driver to read bytes from the file. To read bytes within the Presentation Model, the
assumption exists that a separately running 10 System module has already opened the file and has
presented a byte IOPoint for system-wide access. In IOPoint presentation, any number of objects in
the system can access the byte 10Point buffer, which is updated by its 10 System.

The Presentation 10 model assumes that an object uses an ASCII naming and lookup service to
connect to an | OPoi nt . This IOPoint connection is performed at configuration time. However, at this
time the OMAC API does specify a configuration API for 10 Point connection.

4.7.3 10 CUSTOMIZATION

Clients of 1/0 modules may wish to customize their interaction. OMAC API has defined | OPoi nt
classes for the major types (e.g., short, long, float, doubl e). THE FOLLOWING SECTION

DISCUSSES ISSUES OF 10 CUSTOMIZATION, HOWEVER, 10 CUSTOMIZATION IS NOT WITHIN THE
SCOPE OF THE OMAC API SPECIFICATION EFFORT.

Customized I0Point classes can be derived based on specializations (such as a read-only 10Point) as
well as methods to manipulate the value’s units, name, type, and other properties. These methods
may be further supplemented with additional 10 system-specific methods to configure 10 waiting,
synchronization, as well as low-level communication protocols.
10 mechanism Since 10 Systems will probably represent a particular piece of hardware
plugged into the system, customization of the io mechanism is also desirable to provide non-
generic, hardware specific interfaces. These interfaces are referred to as Control
Interfaces, and are somewhat analogous to the Unix i oct | () function calls. Unlike the
other interfaces provided by the 10 System, there is no fixed form for these interfaces. They
exist to provide access, by knowledgeable software modules, to low level hardware functions
that cannot be put into the generic forms used by the other interfaces. They would probably
be used primarily by diagnostic software. Use of these interfaces by other modules, which are
intended to be generic, is not recommended, since their use would prevent the module from
using any other 10 System that did not provide an identical interface.
10 Data Handling Customization of data handling requires some special characteristics.
For example, the 10 module tailors the service to offer different sampling strategies, transfer
protocol and data age. The following is a list of customized 10 data and protocol
characteristics:
Sampling Event 1O system characteristic

+ ON-DEMAND,
* ON-TRANSITION,

« ON CLOCK
Data Age

e« Sample Num
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e« Sample Num + N
e Current Reading

e Current Reading + N
Transfer Type

e Synchronous : wait until complete

¢ Synchronous : wait up to specific time

e Asynchronous : initiate and specify complete event handler
¢ Asynchronous : continuous with completion event handler

4.7.4 10 META DATA

A major issue with handling 10 is the aspect of IO Meta data. IO Meta data correlates the 10 to the
device, for example, “what board is this 10 Pt associated?” 10 meta data incorporates knowledge
useful for maintenance and diagnostics. In many ways, 10 Meta data is the bigger part of 10. OMAC
API has not specified a formal 10 Meta data. OMAC supports the notion of an 10 registry that
would include such 10 Meta knowledge as:

e 10 as shared across the system

e 10 as used by different clients

e 10 as defined from a physical aggregation

e 10 grouping for efficiency (e.g., an 10 group is clustered on one board)

» physical device to logical 10 mapping (e.g., a device has 4 analog inputs, 4 analog outputs, 16

discrete 10).

Overall, 10 registry would consist of a container of devices as well as a container of IOPoints. Each
10 point keeps a reference to a device as well as a device specific set of data which is needed to access
that 10 point (e.g. which bit, how wide, what type). This format information is retrieved at start-up
and is returned in the form of a reference handle. This could allow a configuration utility to build a
GUI and supply the data, which is then stored in the registry.
Interaction with an 10 registry is as follows. At configuration-time, 10 registry functions include
service to bind a device to 10 name (i.e., device maps into a board, point, type) and this builds the
internal tables. At initialization, the 10 registry return handles for names for efficient access during
execution. At runtime, 10 has facilities for the r ead and wr i t e of grouped outputs and single
outputs; as well as the r ead of grouped inputs and single inputs.

4.7.5 10 ISSUES

The OMAC API has not specified a solution to the issue of whether an 10Point tells whether it is
input or output. A simple resolution would have an 10 derived type from 10_PT used by
configuration for mode differentiation and type checking.

The OMAC API has not specified a solution to the issue of forcing 10 and machine simulations
through 10 points.

4.8 CONTROL PLAN GENERATOR

The Control Plan Generator is responsible for reading and translating programs, which represent
machine operation and tooling. The Control Plan Generator can either translate the entire file or
provide instructions a statement at a time. The Application Programming Interface to the Control
Plan Generator is not concerned with the format of the part program itself, but with syntax and
translating program elements into Control Plan Units. Functionality of the Control Plan Generator
includes:
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e reading existing program files, which contain statements in the format understood by
the translator but not standardized by the OMAC API

e translating part program statements into ControlPlanUnits

« correlating source knowledge about a program, (e.g., current line number, active
statement) with a ControlPlanUnit.

Control Plan Control Plan

Generator

syntax check

valid?

lookup(1..n)

CPU Table

generate(1..m)

Figure 27: Control Plan Generator

Figure 27 presents an overview of the Control Plan Generator. The Control Plan Generator is
responsible for syntax checking of the part program. If the syntax is valid, the Control Plan
Generator generates one or more Control Plan Units for each line of the part program. The Control
Plan Generator is responsible for correlating part program source information (such as line numbers)
with each ControlPlanUnits. Multiple source lines may be active with one ControlPlanUnit.

Table lookup to translate a part program statement into a ControlPlanUnit can be done in a number
of ways. OMAC API does not specify a standard lookup technique. One option to perform this lookup
would be to associate each part program statement with a separate translation object that queries or
is given the knowledge it requires. Each translation object would support an identical t r ansl at e()
interface. Another possibility is to use “flat” canonical functions instead of “object-oriented”
translation classes. Any number of indexing or bidding schemes is also possible.

It would be desirable for Control Plan Generators to generate generic machine-independent Control
Plans. Then, translation from generic ControlPlan Unit to a machine specific ControlPlanUnit could
be done based on the specific objects in the system. For Control Plan machine-independence, adding
a machine profile (e.g., 3-axis versus 5-axis) and a Control Plan should produce identical results.
Concerning the issue of part program portability, OMAC API does not expect the
ControlPlanGenerator to produce a machine-independent ControlPlan. This flexibility is difficult to
attain and the OMAC API determined that defining a Neutral Language Definition was outside the
scope of the current effort.

4.9 HUMAN MACHINE INTERFACE
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Figure 31: MVC Design Pattern
The Human Machine Interface is responsible for the connection between the controller and a human-
monitoring subsystem. The object-oriented design pattern called the model-view-controller (MVC)
will be used as the HMI reference model [GHJV94]. Figure 31 shows the relationship of the different
control and human aspects within the MVC pattern. The MVC model “M” defines the state of the
HMI objects. The MVC View “V” corresponds to the front-end or visual presentation with which the
user interacts. The MVC controller “C” is not the same as the motion controller, but refers to an
object that controls a View object in such a way that it responds to user input and delivers output.
Some clarifying objectives concerning the OMAC APl HMI are in order. The goal of the OMAC API is
to define an HMI specification that is independent of the visualization medium (i.e., V), the data
entry mechanism, the operating system, or the programming language. The primary OMAC API
objective is to specify a technology-neutral data and event model (i.e., M) for exchange of information
between the Human subsystem and the Application Controller. The OMAC API would like to
encourage the bundling of a control component with an HMI viewing component (i.e., supply
component plus V & C). The OMAC API is not concerned with the “look and feel” of a HMI. The “look
and feel” of an HMI is generally application-specific.
To understand the HMI for OMAC API, the elements M,V, and C will each be reviewed.
Model

The primary emphasis of the OMAC API is to define a model “M” API that allows the exchange of
data and events. The traditional standardization effort for “M” relates to the data collection or
back end that would be defined as a Dynamically (or Shared) Linked Library.

The desired HMI “M” functionality is best understood in the context of simple problems. Three
canonical “M” problems exist that an HMI module must be able to handle. First, the HMI must
have the capability for solicited information reports about the state of the controller, such as
current axes position. Second, the user must have command capabilities such as the ability to
set manual mode, select an axis, and then jog an axis. Third, the user must be alerted when an
exception arises, in other words, handle unsolicited information reports.

HMI Subsystem Machine Controller
\

View — Control T

(Presentation
Specific)

OUCTUBER 1IZ, 1997
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Figure 32: HMI “M” Mirrors Controller

For “M” functionality, OMAC API specifies that every controller object has a corresponding HMI
object “mirror”. Figure 32 illustrates an “M” that mirrors an application controller where each
mirror object in the HMI has a reference to its companion object in the controller. The mirror
object can then use the reference to get/set data, or to invoke methods to initiate events. In other
words, these HMI and controller objects have identical interfaces for data manipulation and
event-initiation. For event-notification (unsolicited reports), this is a special problem that really
has to deal with the infrastructure. (See section on event-handling.) Compared to a conventional
“M”, the use of get data mimics a data base copying the desired viewable values from the
controller.

The major mirror assumption is that HMI objects communicate to control objects via proxy
agents. An analysis of how the HMI mirror works will be developed.

1
|
|
present_view () |
|
|

handle_event,- alerts, errors, exception

e B
RT OBJECT
()
U
|
|
1

HMIMIRROR

get/set methods
O - proxy agent

Figure 33: Close-up of HMI Proxy Interaction

1. To handle the information report functionality, an HMI mirror acts as a remote data base
that replicates the state and functionality of the controller object and then adds different
presentation views of the object. These HMI mirrors are not exact mirrors of the
controller state, but rather contain a “snapshot” of the controller state. Figure 33
illustrates the interaction of the HMI mirror and the control object. In the basic scenario
of interaction, the control object is the server and the HMI mirror object is the client.
Each HMI mirror uses the accessor functions of “get” and “set” to interact with the
control object. Notice that each host controller object and its corresponding HMI mirror
have a proxy agent to mediate communication.

2. To handle command functionality, the HMI mirror contains the same methods as the
controller object so that a command is issued by invoking a method remotely.

3. To handle abnormal events when not polling, an HMI mirror must serve as a client to the
control object so that it can post alert events. For such unsolicited information reports,
the control object uses an event notification function, updat eCur r ent Vi ew, in which to
notify the HMI mirror that an event has occurred. This notification in turn may be
propagated to a higher-authority object.

View

The MVC view “V” deals with the presentation medium, for example, whether it is a “V” for a
GUI or a teach pendant. As previously stated, the OMAC API is not concerned with the “v”
aspect pertaining to “look or feel” of a HMI.
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Of importance to the OMAC API specification pertaining to the MVC control “V” is the aspect
that deals with data views. Different data views correspond to different modes of presentation.
For example, there can be a view for configuration, calibration, error handling - as well as normal
operation. In addition, the view “V” can be used to offer different screens to different levels of
authority, such as for operator, maintenance, or systems engineer.

Given this emphasis on data views, the OMAC API defines the following “V” methods to handle
the different expected data views.

interface HM

voi d presentErrorView);

voi d present Operational View();

voi d present SetupView();
. voi d present Mai nt enanceVi ew() ;
The association of data views along with a control component offers a strong potential for
“complete” off-the-shelf integration. Instead of buying a control component with a standalone
calibration program, a control component would come with a control view component. Then, just
as the control component can be integrated into the application controller, so too can its
corresponding control view component be automatically integrated into the controller
presentation. As an example of this technology, a tuning package can provide a Windows-based
GUI to do some knob turning. Another example, is a tuning package that offers this capability to
be plugged inside a Web browser. With this development, unlimited component-based
opportunities are available.

The MVC controller “C” discussion will further explore the coupling of a control component with
a view component for automated system development.

Controller

The MVC controller “C” is responsible for controlling the views presented to the user. In

Figure 33 the control object is represented by the Client which changes views based upon the use
of different MVC “V” methods (i.e., the different types of pr esent Vi ewmethods - see above).
However, the Client is not bound to use the mirror “V” methods when constructing presentation
views. There exists a range of approaches that the MVC “C” Client can use when controlling the
user presentation - from least to most customized.

In Figure 33, the Client is using the HMI mirrors to present the view. Exclusive use of the HMI
mirrors presentation views could be considered the least customized option. The Client is
bound to the view that the control vendor supplies. However, the benefit is that Client-builder
has the least amount of work to do. In the least-customized, the following concepts apply.

« each object contains methods which can display the object in one of several views
« each of these methods can be given display real-estate by the caller

e each object may recursively use its real-estate to display objects which it uses

e users may override these methods, if desired, for minor customizations

At the other extreme, a more monolithic, all-powerful Client could ignore the HMI mirror
presentation views altogether. This approach could be considered the most customized option.
In this case, the monolithic Client uses the HMI mirrors for data manipulation purpose only and
the Client presents its own view of the data. The Client can develop any view it wishes. However,
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the Client-builder has the greatest amount of work in doing so. In the most-customized, the
following concepts apply.

« a‘“super-object”, which is aware of all of the other objects (and their types) is created
« the “super-object” contains all code needed to create displays

« the “super-object” may use the default methods if desired

« the “super-object” may implement exactly the screens desired

Today, the MOST CUSTOMIZED approach with its monolithic, all-encompassing, micro-
management of the controller presentation is most prevalent. This monolithic approach is most
common mostly out of default because few, if any, control components provide HMI views. It is
hoped that OMAC APl MVC “V” methods will help change this situation.

4.10 MACHINE TO MACHINE INTERFACE

MMS (Manufacturing Message Specification) is an OSI application layer protocol designed for
the remote control and monitoring of industrial devices such as PLCs, NCs or RCs. It provides
remote manipulation of a controller that includes the following services:

Variables can be simple (booleans, integers, strings...) or structured (arrays or records). MMS
variables can be read or written individually, in lists (predefined or explicitly defined).
Programs can be remotely started, stopped, resumed, Killed.

Transfer allows for the download or upload of areas called domains, which can contain code,
data or both.

Semaphores define two classes of semaphores, which can be used to ensure mutual exclusion
or synchronization of processes.

Events provide services for attachment of an action to an event and enrollment of calling or
another process to receive the event notifications.

The goal of the OMAC API is to provide an object oriented programming interface for remote
functionality. It is expected that the baseline functionality would be the primary MMS capabilities.
The following MMS functionality was determined to be mandatory:

e initiate
+ conclude
e cancel

* unsolicited status
¢ solicited status
* getnamelist

e identify
e read
e write

e information report

e getvariable access attribute

e initiate download sequence

¢ download segment

* terminate download sequence
e initiate upload sequence
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e terminate upload sequence

e delete domain

e get domain attributes
It is expected that the implementation of an OMAC APl MMI interface would offer a convenient
programming interface that is not restricted to use MMS for its underlying communication
technology. As envisioned, the internal controller infrastructure could be an ORB, while the external
communication could be ORB or MMS based.

5 DISCUSSION

OMAC API has developed an API specification that is scaleable for the system design, integration
and programming for systems ranging from a single-axis device to a multi-arm robot. The OMAC
API working group’s initial focus was to establish programming requirements for precision
machining. Applicability to other control environments may be possible but is not guaranteed. The
OMAC API primary focus has been to define Application Programming Interfaces for certain
modules that the ICLP community routinely wants to upgrade. In addition, the workgroup has
defined an assembly framework with which to connect these modules.
OMAC API has posted other papers to describe related information on life cycle, general computation
models, and control models. For more information, see the Wide World Web at the Universal
Resource Locator address:

http://isd.cne.nist.gov/info/ onacapi

Within the OMAC API home page, there are hyperlinks to send comments, and to review comments
and responses.

The OMAC API effort is not finished. The focus of effort has been to develop module APIs and to
create a methodology for assembling and reconfiguring modules. Areas outside the OMAC API initial
thrust areas or areas of disagreement include:

e performance evaluation
« validation and verification
« resource profiling
e configuration construction
e error handling and error propagation
¢ scheduling
¢ module timing profile
« event handling
« machine-to-machine interface (MMI) is outlined but incomplete.
The remaining sections will discuss some of the issues in dispute or issues that remain unresolved.

5.1 SCHEDULING AND UPDATING

Hard real-time is fundamental to a controller operation and falls under the auspices of the Real-Time
Operating System. Often, commercial RTOS only support priorities to manage task scheduling. This
technique is flawed. It would be preferable if one could perform periodic updating by assigning
periods and a time quantum to tasks. However, the OMAC API could not agree on a single solution
to this problem. This section will discuss one of many solutions.

OMAC modules can run as asynchronous or synchronous tasks. Asynchronous tasks are event-driven
which is discussed in the next section. Synchronous tasks are expected to run periodically at a fixed
frequency and bounded duration. Execution of a synchronous task can be either handled externally
by a scheduling updater or internally by self-clocking. The remainder of this section will develop the
concept of a Scheduling Updater module.
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OMAC API has defined an Updater API for task execution. It is an optional API that can be useful as
a reference. The Update API contains Updat abl e, AsynchUpdat er, and Peri odi cUpdat er
classes. If an OMAC module is periodic, it may derive the method updat e() by inheriting it from the
Scheduling Updater class Updat abl e. For the Axis Module, the method updat e() is a wrapper that
calls processSer voLoop() . The updat e() method simplifies invocation, since the updat er can go
down a list of modules and invoke one signature.

An example to illustrate the multi-client/server interaction will be developed. First, the object
naming and constructor definition that is done at configuration time will be sketched. The
integration creates object references (i.e., i 01, i 02, ax1, axgr pl) and then binds addresses to the
created objects through some name registration. Since ax1 and axgr p1 are periodic updating OMAC
modules, they have inherited a method updat e() and register with the PeriodicUpdater updat er
using itsr egi st er Updat abl e() method. The second parameter field in r egi st er Updat abl e()
method is the clock divisor.

i ntegrationProcesslnit(){
/1 initialize paraneters
Peri odi cUpdat er updater;

I0Point io1= new IOPoint(“encoderl”);
IOPoint i02= new IOPoint(“actuatorl”);}
Axis ax1= Axis(“Axisl”, iol, i02);
AxisGroup axgrpl= AxisGroup(“AxisGroupl”, ax1);

updater.setTiminglnterval(.01); // 10 millisecond period
updater.registerUpdatable((Updatable *) axgrp, 2);
updater.registerUpdatable((Updatable *) ax1, 1);

}
Next, a sequence of operations will highlight the connection between the Scheduling Updater
(Updat er), the Axis Group module (AxGr p), the Axis module (Axi s) and the actuator and encoder 10
points. Within the Axi s module, references to the component classes Axi sVel oci t yServo,
Axi sConmandCQut put and Control Lawmodule will be made. (Readers are referred to Section 4.0
to further review Axis components.)
Figure 30 presents an Object Interaction Diagram to track the sequence of axis operation as
triggered by a Scheduling Updater. The Updater calls the AxisGroup, which sets followingVelocity
servo control and sends a commanded velocity setpoint. The Updater then triggers the Axis which in
turn causes a pr ocessSer voLoop() to perform a servo cycle. Since velocity servoing is enabled, the
AxisVelocityServo is responsible to get the velocity command, read the axis actual velocity (as
retrieved from iol), computes the next acceleration setpoint using a Control Law and then output a
commanded acceleration to io2.
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Figure 30: Schedule Updating Axis Object Interaction Diagram

As seen, the Axis module method pr ocessSer voLoop performs the basic inputs, computes and
outputs expected of a cyclic process. This functionality includes state interpretation so that an Axis
module typically has a reference to an Axis FSM. Within the Axis FSM, the calls to

Axi sVel oci t ySer vo are made.

As stated earlier, one assumption within the object interaction is that a state transition, such as

fol | owi ngVel oci ty, is permissible. If not, either the method invocation is ignored or an exception
is thrown.

Overall, the Scheduling Updater method updat e() is really a wrapper that calls
processServoLoop. Hence, it isn't necessary to use an Updater. However, the updat e() wrapper
does provide a generic interface to simplify scheduling of a variety of modules.
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5.2 EVENT HANDLING

Standard client object requests to a server object result in synchronous execution of operation. In this
case, the client sends the request and awaits a server response. This synchronous model includes the
standard client-push model that sends an event through a method invocation. Section 3.3.1 has
more on the client-push model.

Many times client-server interaction requires a more decoupled communication model. Of interest is
the client-server interaction, called the server-push model, in which the server can spontaneously
(asynchronously) issue an event to the client. For example, it is desirable to send an asynchronous

i nf or rDone() event to the Task Coordinator when a CPU finished execution in the Axes Group.
The question arises, “How is the Task Coordinator informed that the Axis Group is finished?” There
are several options:

e The Task Coordinator polls the Axis Group with the i sDone() method. This is the
client-pull event method.

» Use cross-reference pointers between the communicating objects. In this case, the
AxisGroup has a reference pointer back to the Task Coordinator, and it invokes a
method (e.g., i nf or mDone() ) to alert the Task Coordinator. There still must be some
programming mechanism to tell the AxisGroup that it needs to call the Task
Coordinator. Most likely, i nf or rDone() is mirrored in the TaskCoordinator and the
AxisGroup to achieve this programming. The TaskCoordinator calls the AxisGroup
i nf or rDone() to set the event, and the AxisGroup calls the TaskCoordinator
i nf or mDone() when the event occurs. A simple event model is to add to all
i sXst at e() query methods ani nf or nXst at e() corollary.

« Another approach is to have the Task Coordinator call an AxisGroup method
wai t Unti | Done() that blocks until the AxesGroup is done.

No agreement has been reached at this time regarding any standard server-push event model(s) or
any server-push events.
The following general-purpose sequence has been proposed as the server-push event model:

« clients register what events it cares about with the server capable of detecting the
event

e server send unique event id to client as part of registration

« when server detects an event it looks in a table (linked list) of clients which care
about that event and sends the event id to each client (id will be unique for each
client)

e clients use and unregister events using the id not the name.

5.3 CONFIGURATION

As a part of the open architecture life cycle, configuration and integration are important
elements. Configuration is defined as module specification that maps it into a specific solution.
Integration is defined as the capability to allow the connection and cooperation of two or more
modules within a system. Readers are urged to review an OMAC APl document concerning the open
architecture Life Cycle that can be found at URL
http://isd.cme.nist.gov/info/omacapi/Bibliography/oalifecycle.pdf. Briefly summarizing, the following
steps outline the major configuration and integration steps.

1. distribution of modules to processes

2. distribution of processes to CPU

3. assignment of interprocess communication via proxy manager to processes

4. module/object construction and connection
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This section will review the module construction phase because of the crucial role of global naming
within the open architecture paradigm.

The construction phase is responsible for building the name data base and registering names with
the appropriate lookup-information (e.g., address pointer or server information such as host id and
server name). Within the Object Oriented paradigm there is a constructor phase wherein all the
static application objects (in this case modules) must be constructed.

At this time, no agreement has been reached regarding configuration for module constructors.
Herein a couple of alternatives for module constructors will be discussed.

Advertisement Model - The constructor is an advertisement for what a module needs. As an
example, an OMAC API Configurator would construct a directed graph of modules in the system.
The Task Coordinator would use the directed graph to construct the system. In a pure approach
only the constructor would contain configuration information, as in the following example.

X AXI'S = new Axi s(new PID CL());

Y_AXI'S = new Axi s(new PI D Control Lawm));

AGL = new AXi sGoup(X_AXIS, Y_AXIS);
One problem with the pure constructor approach is resolving circular references. For example,
suppose the Axis and Axis Group modules’ constructor need a reference to each other.

Another problem with pure constructors for configuration is handling combinatorial explosion of
constructor possibilities. For example, if the system is not doing force control, does one need a set
of special constructors to allow AxisForceServo control law references? To handle the
combinatorial explosion, one could either define a monolithic constructor that accepts null
references, or define constructors for each potential configuration.

The use of SETPARAMETERREFERENCE (e.g., set Cont r ol Law below) helps reduce the
combinatorial constructor possibilities. However, in this case, configuration is now based on
selectively configuring parameters. The following example illustrates configuring the Xand Y
positioning servo control law.

X AXI'S = new Axis();

Y_AXI'S = new Axis();

X_AXI S- >Axi sPosi ti oni ngServo- >set Control Lawm new Pl D Control Law));
Y_AXI S- >Axi sPosi ti oni ngSer vo- >set Cont r ol Law( new PI D_Control Law());

AGL = new Axi SG oup(X_AXI'S, Y _AXIS);

i f((s=AGL->i sSati sfied)!=NULL) cout << “Missing Parameter’<< s << endl;
Although flexible, selectively configuring parameters is vague so that it can be unclear what
parameters must be specified. The potential for chaos can arise without some formalism. Does
the AxisForceServo control law need to be configured? How does one determine when the
AxisForceServo control law needs to be configured? To avoid confusion, a configuration method
such asi sSati sfied() that returns a string array of missing parameter definitions is
essential.

Registry Model — In this case, the constructor plays a small role and system generation is name-
driven. It is expected that names would be maintained in a globally accessible registry either a
simple table or data base. Resolving object references would use a setParameterReference - although
this time the method signature would be string-oriented.

Naming is divided into two categories - local naming and global naming.

Local naming is responsible for the names associated with a particular module. A vendor would
be responsible for distributing a local naming table associated with each module. For example,
the following table sketches a local naming table for an Axis module.
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Local Name Type Configured
“ENCODER” “IO_FLOAT” Y
“ACTUATOR” “l1O_FLOAT” Y
“POSITION_CONTROL_LAW” | “OMAC_CONTROL_LAW” Yy
“VELOCITY_CONTROL_LAW” | “OMAC_CONTROL_LAW” y

Global naming is responsible for mapping local names to global hames. Global naming serves two
purposes. First, the global naming allows system access to local address references. Second,
global naming enables familiar naming conventions. For example, a three axis mill would have
three instances of the parameter ENCODER that could be resolved into corresponding global
names of X- ENCODER, Y- ENCODER, and Z- ENCODER.

Global Name Module Local Name
“X-AXIS-ENCODER” “X_AXIS” “ENCODER”
“X-POSITION- “X_AXIS” “POSITION_CONTROL_LAW”

CONTROL_LAW”

“Y-AXIS-ENCODER” “Y_AXIS” “ENCODER”

“Y-POSITION- “Y_AXIS” “POSITION_CONTROL_LAW”

CONTROL_LAW”

There would be several steps in configuring a global naming scheme, including:

1.

Create with “new” and construct or (stri ng NAME). In this case, the constructor takes
a unigque name, registers the name and module type in the global registry, and uses
recursion to back through the object's parents to add type/name for registry (or self-
discovery).

Axis X_AXIS = new Axis(“X-AXIS");
Axis Y_AXIS = new Axis(“Y-AXIS");
ControlLaw CL1 = new PID_ControlLaw(“CL1");
ControlLaw CL2 = new PID_ControlLaw(“CL2");

Recursion is necessary because modules (i.e., objects) may be specialized and other
modules may need a less specialized object. For example, a “SercosAxis” module is also a
derived type of “Axis” and “OMAC Module”. Self-discovery of an object such as
“SercosAxis” would recursively descend its parents until it reached some base class, in
this case “OMAC Module”. To provide a flexible naming service, lists for types and objects
should exist to provide object references. Figure 35 illustrates the relationship between
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each module base and derived types which have a pointer to a list of object names, which
in turn, contains the actual object reference. This table could preexist in some data base.

RYycusive

Axis Group R4ferencing
Active
|
AN CONTROL
PLAN
UNIT

Figure 35: Type and Object Reference Lists from Recursive

Initialize objects. This initialization scope is directed at objects’ local variables such as
zeroing private variables. No external references should be used as these references may not
have been resolved yet.

3. Connect objects by assigning names to different internal references. The general method

signature would be:
set Ref erence(string | ocal Name, string gl obal Nane);

The following illustrates the registering some Axis and Axis Group names.

AGL- >setReference(“AXIS1", “X-AXIS");
AG1->setReference(*AXIS2”, “Y-AXIS");
X_AXIS->setReference(“PositioningServoControlLaw”, “CL1");
Y_AXIS->setReference(“PositioningServoControlLaw”, “CL2");
if((s=AG1->isSatisfied)!=NULL) cout << “Missing Parameter’<< s << endl;

Within a module, the set Ref er ence method would do a symbolic lookup of the type
based on the local name, and then use the type to retrieve the actual reference. The
following code sketches this approach.

class Axis {

ibFIoat Encoder;
string itemType;

void setReference(LocalName localName, GlobalName globalName){
itemType=typelookup(localName);
switch(localName){
case “encoder”:
encoder= (IOFLoat) lookup(globalName, itemType);
break;

=
}
}
As an alternative to hard coding the connections, a module could read a file or data base
to derive the references it needs. The table could contain other performance parameters

as well. Below is a sketch of the information that could be expected using a file registry.
#
# Global Name  Type Period Timing Local Names

#
AxGrpl AxisGroup .01 .002 Ax1="X"
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Ax2="Y"
Ax3="Z"
X Axis .001 .0002 Output= “actl”
Feedback= “encl”
Position= “PIDControlLaw”
Velocity= “Sercos1”
Acceleration= NULL

Y Axis .001 .0002 Output= “act2”
Feedback= “enc2”
Position= “PIDControlLaw”
Velocity= “Sercos2”
Acceleration= NULL

z Axis .001 .0002 Output= “act3”
Feedback= “enc3”
Position= “PIDControlLaw”
Velocity= “Sercos3”
Acceleration= NULL

Sercosl SERCOSControlLaw

Sercos2 SERCOSControlLaw

Sercos3 SERCOSControlLaw

# This is sketch of an Abstract to Physical IO Map
#I0PTs Type Board Address Bytes
actl 10-W D/Al OXFFFFFFOO 8

encl 10-R
act2  10-w
enc2 10-R
act3  10-W
enc3 10-R

4. Reinitialization of objects. The second pass assumes that all external references are
resolved, so that an object can access external objects as part of its initialization
sequence.

5.4 ERROR HANDLING, ERROR PROPAGATION

“Exception and error handling is 90% of the aggravation on the shop floor.” Attempting to resolve
errors/exceptions as they propagate through the system is difficult. Errors can be hard to anticipate
and/or resolve. However, errors and exceptions are really just server-push events (clients don't push
errors on the servers). Infrastructure support for server-push event handling is weak.

As an intermediary solution, a simple error propagation technique is to allow object cross-references
so that for every pair of objects, each one has a reference to the other object. In this case, each
invokes methods in the other to propagate and event.

Within OMAC API, a proposal for handling errors is for each OMAC module to support an error CPU
with a set Err or CPU( cpu) method. In the event an error occurs, an er r or (er r code) method could
be invoked. For example, in the case that a Task Coordinator received an error event, it could then
dispatch the ERROR Capability. The ERROR Capability could be passed an error code or be smart
enough to analyze the system and determine the error.

As another example, consider the handling of thermal overload on a drive. How does it trickle up? A
straightforward solution is to add a CPU to the Discrete Logic to monitor this event. If the overload
occurs and the Discrete Logic can not rectify the error it could then notify the Task Coordinator of an
error which will then initiate the ERROR Capability.
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APPENDIX A - UML INTERFACE DEFINITIONS

Unified Modeling Language (UML) is a standard notation for the modeling of application objects in
developing an object-oriented program. UML contains notation to model the class (of objects), object,
association, responsibility, activity, interface, use case, package, sequence, collaboration, and state.
The advantage of UML is that it is vendor and language neutral. However, at this time, a UML
OMAC API specification has not been attempted.

APPENDIX B - MIDL API DEFINITIONS

Technical Note: These API are for review and comment only. There is no guarantee of correctness.
This specification approximates the intended direction of the final API.

B.1 DISCLAIMER

This software was produced in part by agencies of the U.S. government, and by statute is not subject
to copyright in the United States. Recipients of this software assume all responsibility associated
with its operation, modification, maintenance, and subsequent redistribution.

B.2 NAMING CONVENTIONS

The naming convention for the IDL specification uses the Hungarian notation of separating words
with CapitalLetters. (This release removed all the “_” and used concatenation of Capital letters to
distinguish words.) The following conventions are being followed.

Fil e Name . sane as nmmjor class nane (JAVA convention)
#def i ne for constants : entire name in UPPER CASE
class name & declaration . CapStyle with beginning C
cl ass/variabl e instance : snal | CapStyl eAgai n
net hod argunents : smal | CapStyl eAgai n
general nmethod signature : naneCapStyl e
query paraneter : get Par anmet er Nanme
assi gnment . set Par anet er Name
state query : i sStateName

There is consideration for adding a classifying prefix to class instances, global and static variable
declarations and method arguments. In this case, d_VariableName would indicate a double variable.
Note, C++ function declarations need parameter types but not parameter names, however, IDL
requires both.

The use of get and set methods on these attributes, since IDL does not produce a get/set prefix to the
methods. This will not work for non-IDL-like systems.

B.3 MICROSOFT COM

B.3 MICROSOFT STATUS CODES

Except in special circumstances, nearly every COM API interface member function returns a value of
the type HRESULT. HRESULT is also called a "handle to a result.” COM follows a naming
convention for different HRESULT success and error codes. Any name with E_ in it, which may be at
the beginning as in E_FAIL or RPC_E_NOTCONNECTED means that the function failed. Any name
with S ,asin S_TRUE, S_FALSE, or STG_S CONVERTED, means that the function succeeded. The
most common codes are listed in the following table.
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Value Meaning

S_OK Function succeeded. Also used for functions that semantically return
a Boolean TRUE result to indicate that the function succeeded.

S_FALSE Used for functions that semantically return a Boolean FALSE result to

indicate that the function succeeded.

E_NOINTERFACE

Querylnterface did not recognize the requested interface.

E_NOTIMPL

Member function contains no implementation.

E_FAIL

Unspecified failure.

E_OUTOFMEMORY

Function failed to allocate necessary memory.

I
/linterface test

O©CO~NOORWNE

typedef |ong
typedef doubl e
typedef struct

//typedef struct
t ypedef double
typedef doubl e
t ypedef doubl e
typedef doubl e
t ypedef doubl e
t ypedef doubl e

NRRRRERRRRRRRE
QOVWoO~NOOUITRARWNEO

B.4 BASIC TYPES

#i f ndef Dat aRepresentation

#defi ne Dat aRepresentation

i nport "oaidl.id";

import "ocidl.idl";

/1l Level 1 - these will be backed out fromthe other APl definitions

{

API ;
Angul ar Vel oci ty;
__Coor di nat eFr anme{

double c[4][4];
} Coordi nat eFr aneg;

_FILE {int fixne; } FILE
For ce;
Lengt h;
Li near Vel oci ty;
Li near Accel erati on;
Li near Jerk;
Li near Sti f f ness;

21 typedef struct _LowerKi nenatichMdel {int fixne; } LowerKinenaticMdel;
22 typedef double Magni t ude;

23 typedef double Mass;

24 /] WMatrix???

25 typedef double Measur e;

26 typedef struct _OacVector{

27 short size;

28 doubl e axi s[10];

29 } CQacVector;

30 typedef double Pl aneAngl e;

31 typedef struct _RESOURCE {int fixnme; } RESOURCE ;
32 typedef struct _RPY {int fixne;} RPY,

33 typedef |ong St at us;

34 typedef struct _Time { int fixme; } Tine;

35 typedef struct _Transform{ int fixme; } Transform
36 typedef struct _UNITS {int fixme; } UNITS;

typedef struct
typedef double

typedef struct

/*

AADMDMDMDIAIADMDOOW
ONOUTRWNRFRPOO®ON

_UpperKinemati cModel {int fixme; } UpperKi nemati chbdel ;
Vel oci ty;

_Translation {int fixne; } Translation;

typedef Translation CartesianPoi nt;

/1?2 O you can assunme nunbers are flagged not active at
//?? construction tine.

/1 Bel ow nost control paraneters would be typed as double
#defi ne doubl eNot Active 1.79769313486231570e+308

#defi ne | ongNot Acti ve 0x80000000
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49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

#defi ne short Not Acti ve 0x8000

/1 Level 2 Exanple - not defined here

interface LinearVelocity : Units {
Magni tude value; // should this value be used?
/1 Upperbound and Lower bound, both zero ignore
Magni tude ub, I'b; // which nmay be ignored

di sabl ed();

enabl ed();
b
interface Units
{ Il FIXMVE
)
*/
#endi f

B.5 CONNECTION TABLE FOR NAMING SERVICES

/1 Connectionlnfo.idl : IDL source for Connectionlnfo.dll
11

/1 This file will be processed by the MDL tool to
/1 produce the type library (Connectionlnfo.tlb) and nmarshalling code.

import "oaidl.idl";
inport "ocidl.idl";

cpp_quot e("#defi ne Publ i shl nfoMaxNaneSi ze 1028")
#defi ne Publ i shl nf oMaxNaneSi ze 1028
typedef struct _Publishlnfo {
wchar _t nane[ Publ i shl nfoMaxNaneSi ze ];
wchar _t type[ PublishlnfoMaxNanmeSi ze ];
| Unknown *addr ess;
} Publishlnfo;

typedef enum t agBl NDSTATES { Mandatory=1,

Bl NDSTATES;
typedef struct _Bindlnfo {

wchar _t | ocal nane[ Publ i shl nf oMaxNaneSi ze] ;
wchar _t type[ Publishl nfoMaxNaneSi ze] ;

wchar _t gl obal nanme[ Publ i shl nf oMaxNaneSi ze] ;
wchar _t descri ption[ Publishl nfoMaxNaneSi ze] ;
unsi gned | ong state;

I Unknown ** ref; // store into pointer variable

} Bindlnfo;
/*
[
uui d(6511417A- 391B- 11D3- AAB7- 00C04FA375A6) ,
hel pstring("!Publishlinfo Interface"),
poi nt er _def aul t (uni que)
]
interface |Publishinfo : | Unknown
{
/1 HRESULT get Publishlnfo([out,retval] Publishlnfo * info);
/1 HRESULT set Publishlnfo([in] Publishinfo info);
H
*/

obj ect,
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118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141

142
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177
178

179
180

181
182
183
184

uui d(65114180- 391B- 11D3- AAB7- 00C04FA375A6) ,

hel pstring("! EnunPublishlinfo Interface"),
poi nt er _def aul t (uni que)

interface | EnunPublishlinfo : | Unknown
{
[l ocal]
HRESULT Next ([in] ULONG celt,
[out] Publishlnfo* rgelt,
[out] ULONG *pcel t Fet ched);
/*
[call _as(Next)] // Later...
HRESULT Renot eNext ([in] ULONG celt,
[out,
size_is(celt),
I ength_i s(*pcel t Fetched)] Publishlnfo* rgelt,
[out] ULONG
*pcel t Fet ched) ;
*/
HRESULT Ski p([in] ULONG celt);
HRESULT Reset ();

HRESULT C one([out] | EnunPublishlnfo **ppenunj;

obj ect,
uui d( 7C045B5D- 451C- 11d3- AABB- 00C04FA375A6) ,

hel pstring("! EnunBi ndl nfo Interface"),
poi nt er _def aul t (uni que)

]

interface | EnunBi ndinfo : | Unknown

[l ocal]
HRESULT Next ([in] ULONG celt,
[out] Bindlnfo* rgelt,
[out] ULONG *pcel t Fet ched);
[call _as(Next)] // Later...
HRESULT Renot eNext ([in] ULONG celt,
[out,
size_is(celt),
I engt h_i s(*pcel t Fetched)] Bi ndl nfo* rgelt,

[out] ULONG
*pcel t Fet ched);
*/

HRESULT Skip([in] ULONG celt);
HRESULT Reset ();
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185

186 HRESULT C one([out] | EnunBi ndlnfo **ppenun;

187

188 1

189

190

191

192 [

193

194 uui d(6511417E- 391B- 11D3- AAB7- 00C04FA375A6) ,

195

196 hel pstring("I ConnectionTabl e Interface"),

197 poi nt er _def aul t (uni que)

198 ]

199 interface | ConnectionTable : |Unknown

200 {

201 HRESULT get Bi ndCount ([out,retval] long * pnCount);
202 HRESULT get Publ i shCount ([out,retval] long * pnCount);
203

204 HRESULT get Al | Publ i sh(

205 [retval][out] |EnunPublishlinfo **ppAll Connections);
206

207 HRESULT get Al | Bi ndi ngs(

208 [retval][out] |EnunBindlnfo **ppAllConnections);
209

210 HRESULT i sFul | yl nt egr at ed(

211 [retval][out] boolean *b);

212

213

214 HRESULT get Al | Connecti ons(

215 [retval][out] [IEnunString **ppAllConnections);
216

217 HRESULT get Al | Requi r edConnect i ons(

218 [retval][out] [IEnunString **ppRequiredConnections);
219

220 HRESULT get Al | Unconnect ed(

221 [retval][out] [IEnunString **ppUnconnectedLocal Nanes);
222

223 HRESULT get Al | Requi r edConnect ed(

224 [retval][out] |Enunftring **ppConnections);
225

226 HRESULT i sConnect ed(

227 [in] BSTR | ocal Nane,

228 [retval][out] boolean *b);

229

230 HRESULT i sConnect i onRequi r ed(

231 [in] BSTR | ocal Nane,

232 [retval][out] boolean *b);

233

234 HRESULT get Connecti onType(

235 [in] BSTR | ocal Nane,

236 [retval][out] BSTR *type);

237

238 HRESULT get Connecti onDescri pti on(

239 [in] BSTR | ocal Nane,

240 [retval][out] BSTR *description);

241

242 HRESULT get Connect edToNane(

243 [in] BSTR | ocal Nane,

244 [retval][out] BSTR *connection);

245

246 /* HRESULT set Connecti onTo(

247 [in] BSTR | ocal Nane,

248 [in] BSTR *registeredNane);

249 */

250 HRESULT set Connect i onTo(

251 [in] BSTR | ocal Nane,

252 [in] 1Unknown *connection);

253 };

254

255 [

256

257 uui d(6511417C- 391B- 11D3- AAB7- 00C04FA375A6) ,
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258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

285 ]
286 1ibrary CONNECTI ONI NFCLi b

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

{

/*

*/

hel pstring("l Test Enum nterface"),
poi nt er _def aul t (uni que)

]
interface | TestEnumi nterface : | ConnectionTabl e
{
}.

1

[
uui d( COBASF57- 3BB0- 11d3- AAB7- 00C04FA375A6) ,

hel pstring("| Test EnumAggr egat edl nterface"),
poi nt er _def aul t (uni que)

interface | Test EnumAggr egat edl nterface : | Unknown

{
b

uui d(6511416D- 391B- 11D3- AAB7- 00C04FA375A6) ,
version(1l.0),
hel pstring("Omac Connectionlnfo 1.0 Type Library")

i mportlib("stdole32.t1b");
importlib("stdole2.tlb");

uui d(6511417B- 391B- 11D3- AAB7- 00C04FA375A6) ,
hel pstring("Publishlnfo O ass")
]

cocl ass Publishlnfo

[default] interface |Publishlnfo;

uui d(65114181- 391B- 11D3- AAB7- 00C04FA375A6) ,
hel pstring("EnunPubl i shinfo O ass")

cocl ass EnunPubli shlnfo

[default] interface | EnunPubli shlnfo;

uui d( DEB592DF- 451C- 11d3- AABB- 00C04FA375A6) ,
hel pstring("EnunBi ndl nfo C ass")
]

cocl ass EnunBi ndl nfo

[default] interface |EnunBindlnfo;

uui d(6511417F- 391B- 11D3- AAB7- 00C04FA375A6) ,
hel pstring("ConnectionTabl e O ass")

cocl ass Connecti onTabl e

[default] interface | ConnectionTabl e;

uui d(6511417D- 391B- 11D3- AAB7- 00C04FA375A6) ,

69

OCTOBER 12, 1999



THE OMAC API SET WORKING DOCUMENT

VERSION 0.16

331 hel pstring("Test Enum nterface C ass")

332 ]

333 cocl ass Test Enunl nterface

334

335 [default] interface |Test Enum nterface;

336 };

337

338 [

339 uui d( ECD6C0OBB- 3BB0- 11d3- AAB7- 00C04FA375A6) ,
340 hel pstring(" Test EnunAggr egat edl nterface C ass")
341

342 cocl ass Test EnumAggr egat edl nterface

343

344 [default] interface | ConnectionTabl e;

345 interface | Test EnumAggr egat edl nt er f ace;

346 };

347 };

348

B.5 OMAC MODULE BASE CLASSES TYPES

/1 Control Lawvbdul e.idl : IDL source for Control Lawivbdul e. dl |
I

/1 This file will be processed by the MDL tool to

/1 produce the type library (Control Lawivbdul e.tl b) and nmarshal li ng code.
import "oaidl.idl";

inport "ocidl.idl";

i mport "Connectionlnfo.idl";

[

O©CO~NOOTOAWNE

obj ect,
uui d( 8CBFD25C- C72F- 11d2- AAAB- 00C04FA375A6) ,

hel pstring("1Omac Interface"),
poi nt er _def aul t (uni que)

]

interface 1 Omac : | Unknown

NRRRRRRRRRRE
QOVWoO~NOOUITRARWNEO

21

22 HRESULT _stdcall update();

23 HRESULT _stdcall configToString([out,retval] BSTR * str);

24 HRESULT _stdcall configure([in] BSTR inifile, [in] BSTR keynane);
25 HRESULT _stdcall isConfigured([out,retval] BSTR * b);

26 HRESULT _stdcall isFullyConfigured([out,retval] boolean * b);
27 HRESULT _stdcall init();

28 HRESULT _stdcall toString([out,retval] BSTR * str);

29 HRESULT _stdcall integrate();

30 HRESULT _stdcall setName([in] BSTR nane);

31 HRESULT _stdcall getName([out,retval] BSTR * str);

32

33 /1 Event Triggersing State Transition Methods

34 HRESULT _stdcall execute();

35 HRESULT _stdcall startup();

36 HRESULT _stdcall begin();

HRESULT _stdcall done();
HRESULT _stdcall stop();
HRESULT _stdcall termnate();
HRESULT _stdcal |l abort();
HRESULT _stdcal |l Enable();
HRESULT _stdcal |l Disable();

obj ect,
uui d( AC04B49D- E6CA- 11d2- AABO- 00C04FA375A6) ,

ABALAMDMDIMDMDIAIADRMDNOOW
OCO~NONRARWNRFROOOWON
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50 hel pstring("Omac Naned Factory Interface"),

51 poi nt er _def aul t (uni que)

52 ]

53 interface | OmacModul eC assFactory : | d assFactory

54

55 HRESULT _stdcall CreateMdul e(BSTR nane, REFIID riid, [out, iid_is(riid)] void ** ppvQbj);

g? /* R R R R Sk Sk Sk S S S S S S S */

58 /* Registration services */

59 /* R R R Sk Sk Sk S S S S S S */

60

61

62 /1 get a reference to an
obj ect of type

63 HRESULT _stdcal |l | ookupOracObject ([in] BSTR regi stryNane, [out, retval] |Unknown ** address
)

64

65 /Il get a reference to an
obj ect of a specific type

66 HRESULT _stdcall | ookupTypedOracObject( [in] BSTR regi stryNane,

67 [in] BSTR
obj ect Type, [out, retval] |Unknown ** address );

68

69 // return an enunuration of
Strings of all the

70 /'l registered object types in
the system

71 HRESULT _stdcall getd assDirectory([out, retval] |EnunString ** ppEnunObjects);

72

73 // return an enuneration of
Strings of all the

74 /'l registered object
i nstances of the specified

75 Il type

76 HRESULT _stdcall getObjectDirectory([in] BSTR objectType, [out, retval] |Enunftring **
ppEnunthj ects );

77

78

79 };

80

81 // Create OVAC type library

82 |

83 uui d( FF53F62B- E379- 11d2- AAAF- 00C04FA375A6) ,

84 version(1.0),

85 hel pstring("Orac Mdule 1.0 Type Library")

86 ]

87 library OVACMODULELI b

88 {

89 importlib("stdole32.t1b");

90 inportlib("stdole2.tlb");

91

92 [

93 uui d( FF53F62C- E379- 11d2- AAAF- 00C04FA375A6) ,

94 hel pstring("Omac C ass")

95 1

96 cocl ass Omac

97 {

98 [default] interface |Onac;

99 interface
| OracMbdul ed assFact ory;

100 [optional] interface |ConnectionTabl e;

101 };

102

103 };

104

105
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B.7 CONTROL PLAN

1 #ifndef _CONTROL_PLAN
2 #define _CONTROL_PLAN
3 inport "oaidl.idl";
4 inport "ocidl.idl";
5
6 interface | Control Pl anUnit;
7 interface | EnunControl Pl ans;
8
9
10 obj ect ,
11 uui d(134A0282- E101- 11d2- B512- AEC041D2957B) ,
12
13 hel pstring("Control Plan Unit Interface"),
14 poi nt er _def aul t (uni que)
15 ]
16
17 interface | Control PlanUnit : | Unknown
18 { /'l approximate a graph structure
19 HRESULT _stdcall executeUnit([out,retval] |Control PlanUnit ** cpu); // return next
Cont rol Pl anUni t
20 /1 HRESULT _stdcall getNextUnit([out,retval] Control PlanUnit ** cpu);
21
22 HRESULT _stdcall setActive(); /1 set when "executing"
23 HRESULT _stdcall setlnactive();
24 HRESULT _stdcall isActive([out, retval] boolean **flag); /1l for HM to determ ne when
active
25
26 /'l persistence data a |la binary inage
27 HRESULT _stdcall save([in] BSTR file);
28 HRESULT _stdcall restore([in] BSTR file);
29
30 /'l persistence data in neutral format (pre-configuration)
31 HRESULT _stdcall saveNeutral ([in] BSTR file);
32 HRESULT _stdcall restoreNeutral ([in] BSTR file);
33}
34
35 [
36 uui d(68B85C49- ESGE- 11d2- AAB1- 00C04FA375A6) ,
version(1.0),
hel pstring("Enunerated Control Plan Interface")
interface | EnunControl Pl ans : | Unknown
{

typedef [unique] | Control Pl anUnit *LPENUMCONTROLPLANUNI T;

[l ocal]

HRESULT Next (
[in] ULONG celt,
[out] IControl PlanUnit **rgelt,
[out] ULONG *pcel t Fet ched);

ABALAMDMDAMDMDIAIADRMDNOOW
OCO~NONRAWNRFROOOWON

50 [call _as(Next)]

51 HRESULT Renot eNext (

52 [in] ULONG celt,

53 [out, size_is(celt), length_is(*pceltFetched)]
54 I Control PlanUnit **rgelt,

55 [out] ULONG *pcel t Fet ched);

56

57 HRESULT Ski p(

58 [in] ULONG celt);

59

60 HRESULT Reset ();

61

62 HRESULT d one(

63 [out] IControl Pl anUnit **ppenun);
64 };

65

66

67

68 const unsigned | ong E_SEQUENCERUNNI NG = 0x8004F001;

(2]
©
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70 const unsigned | ong E_RERUN = 0x8004F002;

71 const unsigned |ong E_RESET = 0x8004F003;

72

73 const | ong EF_ABORT_PLAN = 0x000000FO0;
74 const | ong EF_PRODUCT_PLAN = 0x000000F1;
75 const | ong EF_STEP_UNASSI GNABLE = 0x000000F2;
76 const |ong EF_STEP_EXECUTI NG = 0x000000F3;
77

78 typedef enum _StepStatus

79 {

80 step_waiting = 0x00,

81 st ep_r eady = 0x01,

82 st ep_executing = 0x02

83 } StepStatus;

84

85

86 typedef enum _Sequencer State

87

88 uninitialized,

89 dyi ng,

90 idle,

91 runni ng,

92 hal ti ng,

93 hal t ed

94 }Sequencer St ate;

95

96 // | Operation interface

97

98 [

99 uui d(eab695e0- 88af - 11d2- a281- 006097839e22),
100 hel pstring("lOperation Interface"),

101 poi nt er _def aul t (uni que),

102 dual

103 ]

104 interface | Operation : |Dispatch

105 {

106 [ hel pstring("nethod Execute")]

107 HRESULT Execute( [in, out] VAR ANT *vabData);
108 }

109

110

111 [

112 obj ect,

113 uui d( C59C4BAD- EDBB- 11d2- AAB1- 00C04FA375A6) ,
114 dual ,

115 hel pstring("! Sequence |Interface"),
116 poi nt er _def aul t (uni que)

117 ]

118 interface | Sequence : |Dispatch

119 {

120 [ hel pstring("nethod InsertStep")]
121 HRESULT | nsert St ep(

122 [in] |Operation* pOperation,
123 [in] BSTR strSteplD,

124 [in] VARI ANT *vaDat a

125 );

126

127 [ hel pstring("nethod AddFol | ower")]
128 HRESULT AddFol | ower (

129 [in] BSTR strSteplD,

130 [in] HRESULT retVal,

131 [in] BSTR strFol | owerl D,

132 [in] |Operation* pFoll owerOp,
133 [in] VARI ANT *vaFol | ower Dat a
134 )

135

136 [ hel pstring("nmethod SetFol | ower")]
137 HRESULT Set Fol | ower (

138 [in] BSTR strSteplD,

139 [in] HRESULT retVal,

140 [in] BSTR strFollowerlD

141 )

142 [hel pstring("method C earSteps")]
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143 HRESULT O ear St eps();

144

145 [ hel pstring("nethod Get StepCount")]

146 HRESULT Get St epCount (

147 [out] ULONG* pnCount

148 );

149

150 [ hel pstring("nethod EnunerateSteps")]

151 HRESULT Enuner at eSt eps(

152 [out] VARIANT *pSteps,

153 [out] ULONG* pnRet ur nedCount

154 )

155 [ hel pstring("nethod Get StepStatus")]

156 HRESULT Get St epSt at us(

157 [in] BSTR strSteplD,

158 [out] StepStatus* pStatus

159 );

160

161 [ hel pstring("nethod GetPredecessor Count")]

162 HRESULT Get Predecessor Count (

163 [in] BSTR strSteplD,

164 [out] ULONG* pnCount

165 ;

166 [ hel pstring("method EnunPredecessors")]

167 HRESULT EnunPredecessor s(

168 [in] BSTR strSteplD,

169 [out] VARIANT *pPredecessors,

170 [out] ULONG* pnRet ur nedCount

171 )

172

173 [ hel pstring("method Get Successor Count")]

174 HRESULT Get Successor Count (

175 [in] BSTR strSteplD,

176 [out] ULONG* pnCount

177 )

178

179 [ hel pstring("method EnunBuccessors")]

180 HRESULT Enunfuccessor s(

181 [in] BSTR strStepl D,

182 [out] VARI ANT *pSuccessors,

183 [out] VARIANT *pResults,

184 [out] ULONG* pnRet ur nedCount

185 )

186

187 [id(1), helpstring("method EnumitingSteps")]
188 HRESULT EnumAi tingSt eps([out] VARI ANT *steps,
189 [out] ULONG *pnRet urnedCount);

190

191 [id(2), helpstring("method AddPrecondition")]
192 HRESULT AddPrecondition(BSTR step, BSTR preStep, HRESULT condition);
193

194 [id(3), helpstring("nethod GetPreconditionCount")]
195 HRESULT Get PreconditionCount ([in] BSTR stepl D, [out] ULONG *pnCount);
196

197 [id(4), helpstring("nethod EnunPreconditions")]
198 HRESULT EnunPreconditions([in] BSTR strStepl D,
199 [out] VARI ANT *pPreconditions,

200 [out] VARI ANT *pConditi ons,

201 [out] ULONG *pnRet urnedCount);

202 };

203

204

205 [

206 obj ect,

207 uui d( ea6695e3- 88af - 11d2- a281- 006097839e22) ,
208 dual ,

209 hel pstring("! Sequencer Interface"),

210 poi nt er _def aul t (uni que)

211 ]

212 interface |Sequencer : |Dispatch

213

214 [ hel pstring("method SetProduct Sequence")]
215 HRESULT Set Product Sequence( [in] |Sequence* pProductPl an);
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216

217 [ hel pstring("nethod GetProduct Sequence")]
218 HRESULT Get Product Sequence( [out] | Sequence** ppProduct Pl an);
219

220 [ hel pstring("nethod Set Abort Sequence")]

221 HRESULT Set Abort Sequence( [in] |Sequence* pAbortPlan);
222

223 [ hel pstring("method Get Abort Sequence")]

224 HRESULT Get Abort Sequence( [out] | Sequence** ppAbort Pl an);
225

226 [ hel pstring("nethod Go")]

227 HRESULT Go() ;

228

229 [ hel pstring("nmethod Step")]

230 HRESULT Step( [in] BSTR step);

231

232 [ hel pstring("nethod Stop")]

233 HRESULT Stop();

234

235 [ hel pstring("method Abort")]

236 HRESULT Abort ();

237

238 [id(1), helpstring("method RunThruStep")]
239 HRESULT RunThruStep([in] BSTR step);

240

241 [id(2), helpstring("nethod StartAt")]

242 HRESULT StartAt([in] BSTR step);

243

244 [id(3), helpstring("method Reset")]

245 HRESULT Reset ();

246

247 [id(4), helpstring("method Rerun")]

248 HRESULT Rerun();

249

250 [id(5), helpstring("method Set Nanme")]

251 HRESULT Set Nane([in] BSTR nane);

252

253 [id(6), helpstring("nethod GetState")]

254 HRESULT Get State([out] SequencerState *pState);
255 }s

256

257

258

259 [

260 uui d( 134A0283- E101- 11d2- B512- AEC041D2957B) ,

261 version(1.0),

262 hel pstring("Control Pl anMbdul e 1.0 Type Library")
263 ]

264 library CONTROL_PLAN MODULE_Li b

265 {

266 inportlib("stdole32.tlb");

267 inportlib("stdole2.tlb");

268

269 [

270 uui d(134A0284- E101- 11d2- B512- AEC041D2957B) ,
271 hel pstring("Control PlanUnit O ass")

272 ]

273 cocl ass Control Pl anUni t

274 {

275 [default] interface |Control Pl anUnit;

276 };

277 [

278 uui d( 134A0285- E101- 11d2- B512- AEC041D2957B) ,
279 hel pstring("Enunerated Control Plans C ass")
280

281 cocl ass EnunControl Pl ans

282 {

283 [default] interface |EnunControl Pl ans;

284 };

285

286 interface | Qperation;

287

288 [
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289 uui d(ea6695e7- 88af - 11d2- a281- 006097839e22),
290 hel pstring(" Sequence conponent")
291

292 cocl ass Sequence

293

294 [default] interface |Sequence;
295 };

296

297

298 [

299 uui d(ea6695e9- 88af - 11d2- a281- 006097839e22),
300 hel pstring(" Sequencer conponent")
301 ]

302 cocl ass Sequencer

303

304 [default] interface |Sequencer;
305 };

306

307 };

308

309

310 #endi f

311

312

313

314

B.8 CAPABILITY

[/ CapabilityMdule.idl : IDL source for CapabilityMdule.dll
#i fndef _Capability
#define _Capability

import "oaidl.idl";
i nport "ocidl.idl";
i mport "QOmacMdul e.idl";

OCoOoO~NOUTAWNE

/] Each capablity is an FSM and types of capabilities include: manual, auto, estop, etc.
/1 FIXME: What is the relationship of nanual to auto and any to estop?
/1 Internally the capbility is a FSM
[
obj ect,
uui d(134A0281- E101- 11d2- B512- AEC041D2957B) ,

hel pstring("Capability Control Plan Interface"),
poi nt er _def aul t (uni que)

]
interface | Capability : | Unknown

NRRRRRRRRERR
QUOWOONOOUIDWNEO

21 HRESULT _stdcall start();

22 HRESULT _stdcall execute();

23 HRESULT _stdcall wupdateCap(); //update() can call updateCap()
24 HRESULT _stdcall stop();

25 HRESULT _stdcall abort();

26 HRESULT _stdcall throwkxecption();

27 HRESULT _stdcall resol veExecption();

28 HRESULT _stdcall isDone();

29 HRESULT _stdcall isActive();

30 };

31

32 [

33 obj ect,

34 uui d( FDEC2BF7- E3AE- 11d2- AABO- 00C04FA375A6) ,
35

36 hel pstring("Capability Control Plan Interface"),
37 poi nt er _def aul t (uni que)

38

39 interface | EnunCapabilities : |Unknown

40

41
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42 typedef [unique] |Capability *LPENUMCAPABILITY;
43
44 [l ocal]
45 HRESULT Next (
46 [in] ULONG celt,
47 [out] I|Capability **rgelt,
48 [out] ULONG *pcel t Fet ched);
49
50 [call _as(Next)]
51 HRESULT Renot eNext (
52 [in] ULONG celt,
53 [out, size_is(celt), length_is(*pceltFetched)]
54 | Capability **rgelt,
55 [out] ULONG *pcel t Fetched);
56
57 HRESULT Ski p(
58 [in] ULONG celt);
59
60 HRESULT Reset ();
61
62 HRESULT d one(
63 [out] ICapability **ppenunj;
64 };
65
66 [
67 uui d(134A0286- E101- 11d2- B512- AEC041D2957B) ,
68 version(1l.0),
69 hel pstring("Capability CPU Mddule 1.0 Type Library")
70 ]
71 library CAPABI LI TY_MODULE_Lib
72 {
73 importlib("stdole32.t1b");
74 importlib("stdole2.tlb");
75
76 [
77 uui d(134A0287- E101- 11d2- B512- AEC041D2957B) ,
78 hel pstring("Capability CPU O ass")
79 ]
80 cocl ass Capability
81 {
82 [default] interface |Capability;
83 }
84 1};
85 #endif
86
B.9 10O

1 // IOvwdule.idl : IDL source for 10O Points.dll
2
3 #ifndef __|Ovbdule__IDL
4  #define __ | Ovbdule_ I DL
5 inport "oaidl.idl";
6 inport "ocidl.idl";
7 i mport "QOmacMdul e.idl";
8 inport "DataRepresentation.idl";
9

//typedef unsigned char byte;

/1 Level 1

[

obj ect,

uui d( 252BDOE9- EDB6- 11d2- AAB1- 00C04FA375A6) ,

hel pstring("10 Base C ass Interface"),
poi nt er _def aul t (uni que)

]
interface I10OPt : |1 Qmac

NRRRRRRRRERR
QUOWOONOOUIDMWNEO

21 {

22 /1 Met adat a

23 typedef [v1_enun] enumtag_TYPE {
24 DONTCARE,

25 R ONLY,
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26 W ONLY,

27 RW

28 } TYPE;

29

30 HRESULT _stdcall setType([in] TYPE val ue);

31 HRESULT _stdcal |l getType([out, retval] TYPE ** val ue);

32 HRESULT _stdcall setUnits([in] UNITS val ue);

33 HRESULT _stdcall getUnits([out, retval] UNITS ** val ue);
34 HRESULT _stdcall set([in] VAR ANT val ue);

35 HRESULT _stdcall get([out, retval] VAR ANT ** val ue);

36 HRESULT _stdcal | set Upper Bound([i n] VARI ANT val ue);

37 HRESULT _stdcal |l get Upper Bound([out, retval] VAR ANT ** val ue);
38 HRESULT _stdcal |l setLowerBound([in] VARI ANT val ue);

39 HRESULT _stdcal |l get Lower Bound([out, retval] VAR ANT ** val ue);
40 HRESULT _stdcal | enabl eBoundsChecki ng([in] bool ean val ue);
41

42 1

43

44 |

45 obj ect,

46 uui d( 2CD39DE5- EDB6- 11d2- AAB1- 00C04FA375A6) ,

47 hel pstring("1OPtlong Interface"),

48 poi nt er _def aul t (uni que)

49 ]

50 interface I10Ptlong : I10Pt

51

{
52 HRESULT _stdcal |l getValue([out, retval] long ** val ue);
53 HRESULT _stdcall setValue([in] long value);

54

55 };

56

57 [

58 obj ect,

59 uui d( 37B6BADF- EDB6- 11d2- AAB1- 00C04FA375A6) ,
60 hel pstring("lOPtshort Interface"),
61 poi nt er _def aul t (uni que)

62 ]

63 interface |IOPtshort : 110Pt

64

{
65 HRESULT _stdcal |l getValue([out, retval] short ** val ue);
66 HRESULT _stdcall setValue([in] short value);

67

68 };

69

70 [

71 obj ect,

72 uui d( 42EAE7CD- EDB6- 11d2- AAB1- 00C04FA375A6) ,
73 hel pstring("1OPtbyte Interface"),
74 poi nt er _def aul t (uni que)

75 ]

76 interface 10Ptbyte : 110Pt

77

{
78 HRESULT _stdcall getValue([out,retval] byte ** val ue);
79 HRESULT _stdcall setValue([in] byte val ue);

80

8l };

82

83 |

84 obj ect,

85 uui d(4D9BF365- EDB6- 11d2- AAB1- 00C04FA375A6) ,
86 hel pstring("|OPtbool ean Interface"),
87 poi nt er _def aul t (uni que)

88 ]

89 interface | OPtboolean : 11OPt

90

{
91 HRESULT _stdcal |l getVal ue([out,retval] bool ean ** val ue);
92 HRESULT _stdcall setValue([in] bool ean val ue);
93
94 };
95
96 [
97 obj ect,
98 uui d( 644BD3CD- EDB6- 11d2- AAB1- 00C04FA375A6) ,
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99

100 hel pstring("!1OPtdouble Interface"),
101 poi nt er _def aul t (uni que)

102 ]

103 interface | OPtdouble : |1 OPt

104 {

105 HRESULT _stdcall getValue([out,retval] double ** val ue);
106 HRESULT _stdcall setValue([in] double value);

107

108 };

109

110 |

111 obj ect,

112 uui d( 6D8B52E7- EDB6- 11d2- AAB1- 00C04FA375A6) ,

113

114 hel pstring("1OPtfloat Interface"),

115 poi nt er _def aul t (uni que)

116 ]

117 interface | OPtfloat : |1OPt

118 {

119 HRESULT _stdcall getValue([out,retval] float ** value);
120 HRESULT _stdcall setValue([in] float value);

121

122 };

123

124 |

125 uui d( 770B317F- EDB6- 11d2- AAB1- 00C04FA375A6), // New GUI D
126 hel pstring("| Subj ect Cbserver Interface"),
127 poi nt er _def aul t (uni que)

128 ]

129 interface | Subject Cbserver : | Unknown

130 {

131 [ hel pstring("nmethod SubscribeByl D")]

132 HRESULT Subscri beByl D([in] DWORD dwSubj ect | D,
133 [in] long |IFlags,

134 [in] Tong I NotificationFilter);

135

136 [ hel pstring("nethod SubscribeByNane")]

137 HRESULT Subscri beByNanme([in] BSTR strnane,
138 [in] long |IFlags,

139 [in] Tong I NotificationFilter,

140 [in, out] long *pl Subscri ptions);

141 [ hel pstring("nmethod Unsubscribe")]

142 HRESULT Unsubscri be([in] DWORD dwSubj ect | D, [i n] BOOL bAI | Subj ects);
143

144 [ hel pstring("nethod |sSubscribed")]

145 HRESULT | sSubscri bed( DAWORD dwSubj ect | D) ;

146

147 [ hel pstring("method Get Count Subscriptions")]

148 HRESULT Get Count Subscri ptions([out] |ong *I Count);

149

150 [ hel pstring("nethod Get Count Subscri bers")]

151 HRESULT Get Count Subscribers([out] |ong *I Count);

152

153 [ hel pstring("nethod Notify")]

154 HRESULT Notify([in] long | SizeNotification,

155 [in, size_is(lSizeNotification)] [ptr] byte* pNotification,
156 [in] long | DataType, [in] long | NotificationType,

157 [in] Tong | Extra);

158

159 [ hel pstring("nethod Getl DFromNane")]

160 HRESULT Get | DFr onNane([in] BSTR strnane, [ out] DWORD * dwObj ect | D);
161

162 [ hel pstring("nethod Get ObjectlD")]

163 HRESULT Get Obj ect | D([ out] DWORD * dwi D) ;

164

165 [ hel pstring("nethod Get Nane")]

166 HRESULT Get Nane([out, retval]BSTR *strNane);

167

168 [ hel pstring("nethod Get NaneFrom D')]

169 HRESULT Get NaneFrom D([in] DWORD dwli D, [out, retval ]BSTR *pbstrNane);
170

171 [ hel pstring("nethod SetNane")]
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172
173
174
175
176 };
177 |
178
179
180
181
182 ]

HRESULT Set Nane([in, string] BSTR bstrNane);

[ hel pstring("nethod GetError")]

HRESULT Get Error([out, retval] BSTR *pbstrError);
uui d(17A90B20- 8221- 11d2- 9AD6- 00COD15709A3) ,

hel pstring("1 CbserverNotification Interface"),
poi nt er _def aul t (uni que)

183 interface | QbserverNotification: |Unknown

184 {
185
186
187
188
189
190
191
192
193
194
195 };
196
197
198

[ hel pstring("method OnNotify")]
HRESULT OnNoti fy([in] VARI ANT *pQbj);

/1 [hel pstring("nmethod OnNotify")] HRESULT OnNotify([in]

/1 dwSubj ect Sender, [in] |ong

/1 nSizeNotification,[in,size_is(nSizeNotification)]

/1 pNotification);
[ hel pstring("method OnNoti fySubj ect Broken")]

HRESULT OnNot i f ySubj ect Broken([in] DWORD dwSubj ect| D);

199 #ifdef | GNORE_TH S

200

OPC has defined this sort of interface

201 typedef sequence<| OPt> | Oval ues;
202 typedef sequence<string> | Onanes;
203 typedef sequence<string> | Oretadat a;

204

205 // O should this just be an array of |OPts?
206 interface | Qgroup

207 {
208
209
210
211
212
213
214
215
216
217
218 };
219

| Oval ues get Val ues();
voi d setVal ues(in | Oval ues val ues);

voi d addl oPtlong(in ICPtlong io);

voi d addl oPtshort(in |IOPtshort io0);

voi d addl oPt bool ean(in | OPtbool ean io0);
voi d addl oPt doubl e(in |1 OPtdoubl e io);
voi d addloPtfloat(in ICPtfloat io);

| Onanes get Nanes();

| Onet adat a get Met adat a();

220 interface | Csystem

221 {
222

223 1 Ogroup getloGoup(in string nane);

224 // FIXME: how do you do this in IDL?

225 // 10Pt getloPt(char * nane);

226 };

227 #endi f

228

229 [

230 uui d( 134A02A3- E101- 11d2- B512- AEC041D2957B) ,
231 version(1.0),

232 hel pstring("Control Pl anGenerator Mdule 1.0 Type Library")
233 ]

234 library | O MODULE_Lib

235 {

236 importlib("stdole32.t1b");

237 inportlib("stdole2.tlb");

238

239 [

240 uui d( 903B079F- EDB8- 11d2- AAB1- 00C04FA375A6) ,
241 hel pstring("10 Point C ass")

242

243 cocl ass | OPt

244 {

voi d addl oG oup(in |Ogroup al Ogroup);
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245 [default] interface |10OPt;

246 };

247

248

249

250 [

251 uui d( 71CB82B7- EDB8- 11d2- AAB1- 00C04FA375A6) ,

252 hel pstring(" Subj ect Cbserver C ass")

253

254 cocl ass Subj ect Cbserver

255

256 [default] interface | Subjectserver;

257 [defaul t, source] interface | CbserverNotification;
258 };

259

260 };

261

262 // Level 2: Hierarchy of Common IO Points - for type checking
263 // See 10 APl Docunent for further details

264 #endi f
265
B.10 TASK COORDINATOR
1 // TaskCoordinatorMdule.idl : IDL source for TaskCoordi nator.dll
2
3  #ifndef TaskCoordinator__|IDL
4  #define TaskCoordi nator__ | DL
5 inport "oaidl.idl";
6 inport "ocidl.idl";
7 i mport "QOmacMdul e.idl";
8 inport "CapabilityMdule.idl";
9

[
obj ect,
uui d( 134A0280- E101- 11d2- B512- AEC041D2957B) ,

hel pstring("TaskCoordi nator Interface"),
poi nt er _def aul t (uni que)

]

/1 Task Coordi nator accepts one capability froma list of capabilities.
interface | TaskCoordinator : |QOrac /*UPDATABLE*/

NRRRRRRRRERR
QUOWOONOOUDAWNEO

{
21
22 HRESULT _stdcall wupdate(); //can be inherited from UPDATER
23
24 /1 Capability List Managenent
25 HRESULT _stdcall addToList([in] |ICapability * cap);
26 HRESULT _stdcall renoveFronlist([in] |Capability * cap);
27 HRESULT _stdcall getList([out, retval] |EnunmCapabilities **cap);
28
29 /1 Current Capability Managenent
30 HRESULT _stdcall getCurrentCapability([out, retval] |Capability **cap);
31 HRESULT _stdcall setCurrentCapability([in] |Capability * cap);
32}
33
34
35 uui d(134A0288- E101- 11d2- B512- AEC041D2957B) ,
36 version(1l.0),
37 hel pstring("Task Coordi nator Mddule 1.0 Type Library")
38 ]
39 library TASK_COORDI NATOR_MODULE_Li b
40
41 inportlib("stdol e32.tlb");
42 importlib("stdole2.tlb");
43
44 [
45 uui d(134A0289- E101- 11d2- B512- AEC041D2957B) ,
46 hel pstring("Task Coordi nator C ass")
47
48 cocl ass TaskCoordi nat or
49 {
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50 [default] interface |TaskCoordi nator;
51 ;

52 };

53 #endif

54

B.11 DISCRETE LOGIC

/1

/'l DiscretelLogic.idl

/1

#i fndef DiscretelLogic__idl
#define DiscretelLogic__idl

i nport "oaidl.id";
import "ocidl.idl";

O©CoO~NOOAWNE

i mport "QOmacMdul e.idl";
i nport "Control Pl anMbdul e.idl";

interface |DiscretelLogicUnit;

Di screte Logic Mdule contains a list of logic units. A PLC |like scan
goes down the list and executes each logic unit if it is on. Logic units
wi Il be executed as often as its posted scan rate indicates.

Internally each discrete logic unit is an FSM

Di screte Logic Units (DLUs) are grouped by scan rates.

~————

NRRRRERRRRRRRE
QCQOVWoO~NOUITRARWNEO
—_—————

21 |

22 obj ect,

23 uui d( 134A028C- E101- 11d2- B512- AEC041D2957B) ,

24

25 hel pstring("Di screte Logic Interface"),

26 poi nt er _def aul t (uni que)

27

28 interface ID screteLogic : | Omc

29 {

30

31 /1 Logic Units Managenent

32 HRESULT _stdcall createDi scretelLogicUnit([out, retval] IDi screteLogicUnit ** d);
33 HRESULT _stdcall addLogicUnit([in] |IDiscreteLogicUnit * dlu);

34 HRESULT _stdcall renpveLogicUnit([in] IDi screteLogicUnit * dlu);
35 HRESULT _stdcal |l enabl eLogicUnit([in] IDiscreteLogicUnit * dlu);
36 HRESULT _stdcal |l disabl eLogicUnit([in] ID screteLogicUnit * dlu);

}s

// Derived from Control Pl anUnit, see: part programtranslator

[
obj ect,
uui d(134A028D- E101- 11d2- B512- AEC041D2957B) ,

hel pstring("Discrete Logic Interface"),
poi nt er _def aul t (uni que)

interface IDiscreteLogicUnit: |ControlPlanUnit

{
HRESULT _stdcall setlnterval ([in] long alnterval);

EBALAMDMDAMDMDIAADRMDNOOW
OCO~NONRARWNRFROWOOWON

50 HRESULT _stdcall getlnterval ([out,retval] long ** val);
51

52 HRESULT _stdcall start();

53 HRESULT _stdcall scanUpdate();

54 HRESULT _stdcall stop();

55 HRESULT _stdcall isOn([out,retval] boolean ** flag);

56 HRESULT _stdcall turnOn([out,retval] bool ean ** flag);
57 HRESULT _stdcall turnOff([out,retval] boolean ** flag);
58 };

59

60 |

61 uui d( 134A028E- E101- 11d2- B512- AEC041D2957B) ,

62 version(1.0),

63 hel pstring("Di scretelLogi cMbdul e 1.0 Type Library")
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64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

OCoOoO~NOOUTAWNE

NRRRRRRRRERR
QUOWOONOOUDAWNEO

NN
N -

WNNNNDNNN
QOO ~NOO U~ W

wWww
WN -

W ww
[e2é I N

AR OWWW
RPOON

42
43
44
45

]

library DI SCRETE_LOG C_MODULE_Li b
{

importlib("stdole32.t1b");
inportlib("stdole2.tlb");
[ :
uui d( 134A028F- E101- 11d2- B512- AEC041D2957B) ,
hel pstring("DiscretelLogi c O ass")
cocl ass DiscretelLogic
[default] interface |Discretelogic;
uui d(134A0290- E101- 11d2- B512- AEC041D2957B) ,
hel pstring("Di scretelLogicUnit C ass")
]
cocl ass DiscretelLogicUnit
[default] interface |DiscretelLogicUnit;
oo
#endi f
B.12 CONTROL PLAN GENERATOR
11
/1 Control Pl anCGenerator.idl
Il
#i f ndef Control Pl anGenerator__idl
#defi ne Control Pl anGenerator__idl
i nport " DataRepresentation.idl";
i nport "Control Pl anMbdul e.idl";

/1
[

Level 1 assuming sinple File Manipul ation

obj ect,
uui d( 134A02A2- E101- 11d2- B512- AEC041D2957B) ,

hel pstring("Control Plan Generator Interface"),
poi nt er _def aul t (uni que)

interface | Control Pl anGenerator : | Unknown

]

HRESULT _stdcal |l setProgramNane([in] BSTR s);

HRESULT _stdcal |l get ProgramName([out,retval] BSTR **nane );

HRESULT _stdcall checkSyntax([out,retval] boolean **flag);

//get error codes or returns file nanme or file pointer?

HRESULT _stdcall getErrorCodes([out,retval] BSTR ** results);

/1 conplete translation into Control Pl an

HRESULT _stdcall translate([out,retval] |EnunControl Plans ** cp);

/] step by step translation

HRESULT _stdcall getNextControl Pl anUnnit([out,retval]

uui d( 134A02A3- E101- 11d2- B512- AEC041D2957B) ,
version(1l.0),

I Control PlanUnit ** cpu);

hel pstring("Control Pl anGenerator Mdule 1.0 Type Library")

library CONTROL_PLAN GENERATOR MODULE Li b

importlib("stdole32.t1b");
inportlib("stdole2.tlb");

[
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46 uui d( 134A02A4- E101- 11d2- B512- AEC041D2957B) ,
47 hel pstring("Control Plan Generator C ass")
48

49 cocl ass Control Pl anGener at or

50

51 [default] interface |Control Pl anGenerator;
52 }

53 };

54

55 #endif

56

B.13 AXIS GROUP

There are some inconsistencies within the Axis Group module API. The major remaining problem is
to resolve the use of the axis group velocity profile generator (VPG) versus having the VPG

embedded within a motion segment.
#i f ndef Axi sGroup__IDL
#define Axi sGroup__IDL

1

2

3

4 inport "DataRepresentation.idl"
5 inport "OmacMdule.idl"

6 inport "Kinenatics.idl"

7 inport "Control Plan.idl"

8
9

//+ add accel node - use instead of enum - w ndows problem
10 typedef |ong ACCMode;
11 #define SCURVE 1
12 #define TRAPEZO DAL 2

13

14 interface | Axi sG oup;

15 interface | Mot i onSegnent ;

16 interface | Rat e;

17 interface | Vel oci tyProfil eGenerator;

18 typedef | ong AccDecProfil e;

19 struct _Coordi nat edAxes {

20 doubl e axi s[10];

21 } Coordi nat edAxes;

22

23 struct _CRCMODE { /'* FIXME */ } CRCMCDE;

24

25 [

26 obj ect,

27 uui d(134A0292- E101- 11d2- B512- AEC041D2957B) ,

28

29 hel pstring("Axis Group Interface"),

30 poi nt er _def aul t (uni que)

31 ]

32 interface | AxisGoup : |Qmc

33 {

34 //+ enum{ ERROR, HELD, HOLDI NG STOPPED, STOPPI NG

35 /1 PAUSED, PAUSI NG, RESUME, EXECUTI NG, |DLE };

36

37 /1 STATE LOGd C

38 /1

39

40 HRESULT _stdcall hardStopAxes(); // Stop at max deceleration rate (abort)
41 HRESULT _stdcall pauseAxes(); /1 stop on path

42 HRESULT _stdcall hol dAxes(); // stop at end of segnent
43 HRESULT _stdcall resuneAxes(); /1 Resunes notion fromcurrent point
44

45 // HRESULT _stdcall updat eAxes();

46 HRESULT _stdcall update(); //+ changed for consistent interface
47

48 HRESULT _stdcall getCurrentState([out,retval] |ong **val ue);
49 HRESULT _stdcall getCurrent St at eNane(BSTR st at enane) ;

50 HRESULT _stdcall isOk(boolean **flag);

51 HRESULT _stdcall isExecuting([out,retval] bool ean **fl ag);
52 HRESULT _stdcall isHeld([out,retval] bool ean **fl ag);

53 HRESULT _stdcall isHolding([out,retval] bool ean **fl ag);
54 HRESULT _stdcall isPaused([out,retval] bool ean **fl ag);

55 HRESULT _stdcall isPausing([out,retval] bool ean **fl ag);
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56 HRESULT _stdcall isStopping([out,retval] bool ean **fl ag);
57 HRESULT _stdcall isStopped([out,retval] boolean **flag);
58

59 /1 These nethods could be operator Control Plan Unit
60 HRESULT _stdcall jogAxis([in] |ong axisNo,

61 [in] Velocity speed );

62

63 HRESULT _stdcall homeAxis([in] |ong axisNo,
64 [in] Velocity speed );

65

66 HRESULT _stdcall noveAxisTo([in] |ong axisNo,
67 [in] Velocity speed,

68 [in] Length toPosition);

69

70 HRESULT _stdcall increnentAxis([in] |ong axisNo,
71 [in] Velocity speed,

72 [in] Length increnent);

73

74 /1 BUFFERI NG MANAGEMENT

75 11

76 HRESULT _stdcall set Next MbtionSegnent ([in] | MtionSegnent bl ock);

77 /1 MotionSegrment getCurrentMtionBlock( ); //hazardous to your controller’s health

78 HRESULT _stdcall getMaxqsize( [out,retval] long ** val); /'l largest queue size possible=n
79 HRESULT _stdcall setQength([in] long value); // maxi mum nunber of queue nenbers=(1..n)

80 HRESULT _stdcall getQength([out,retval] long ** val);

81 HRESULT _stdcall getCurrent(size([out,retval] long ** val); /1 nunber of itenms in queue=i
82 HRESULT _stdcall isFull([out,retval] boolean **flag); /1 nunber of items = n
83 HRESULT _stdcall isEnpty([out,retval] long ** val); /1 nunber or items = 0

84

85 HRESULT _stdcall flush(); /1 flush all segnents

86 HRESULT _stdcall skip(); /1 skip to next segnent

87 HRESULT _stdcall saveQContext(); /'l save current queue

88 HRESULT _stdcall restoreQContext(); /'l restore saved queue

89

90 /1 FI XME: possibly nmore queue nmgt functions (accessor, query, ... )

91

92 /1 CONVENI ENCE FUNCTI ONS TO ACCESS MOTI ON SEGVENT DATA

93 /1

94 HRESULT _stdcal | get Nei ghborhood([out,retval] Length ** dval);

95 HRESULT _stdcal |l getFeedrate([out,retval] LinearVelocity ** dval);

96 HRESULT _stdcall getTraverserate([out,retval] Velocity ** dval);

97 HRESULT _stdcal |l getFeedrateOverride([out,retval] double ** val);

98 HRESULT _stdcal |l get Spi ndl eRat eOverride([out,retval] double ** val);

99 HRESULT _stdcall getJerkLimt([out,retval] LinearJderk ** 1j);

100 HRESULT _stdcall getlnPosition([out,retval] boolean ** flag);

101 HRESULT _stdcall setlnPosition([in] boolean value); /* privapte nethod*/

102

103 // See Note 1

104 HRESULT _stdcal |l getActual Axi sPosition([in] long axi sNo, [out,retval] Measure **val ue );

105 HRESULT _stdcal |l get Actual AxesPositions([out, retval] QGacVector ** vector);

106 HRESULT _stdcal | get XformedActual Positions([out,retval] CoordinateFranme ** coord );

107 HRESULT _stdcall get CommandedAxi sPosition([in] |long axisNo, [out,retval] Measure ** dvVal );

108 HRESULT _stdcall get CommandedAxesPositions([out,retval] QGacVector ** vector );

109 HRESULT _stdcall get Xf ormredConmmandedPositions([in] QacVector axisPositions, [out,retval]
Coor di nat eFrame ** cf );

110

111  HRESULT _stdcall getAccnode([out,retval] ACCMbde ** accnode);
112

113 /1 KI NEMATI C | NFORVATI ON

114 /1

115 // Axis under control

116 HRESULT _stdcal | get Coordi nat edAxes([out,retval] Coordi nat edAxes ** ca);
117 HRESULT _stdcall getKinstructure([out,retval] IKinStructure ** kin );
118 HRESULT _stdcall setKinstructure([in] IKinStructure value);

119 HRESULT _stdcall getTool Transform([out,retval] Transform?** t);

120 HRESULT _stdcall getBasefranme([out,retval] Transform** t);

121  HRESULT _stdcall setBasefrane([in] CoordinateFrane val ue);

122

123 // recovery fromfault error, sharing

124  HRESULT _stdcall inhibitAxis([in] long axisNo, [in] boolean inhibit );
125 HRESULT _stdcall axislnhibitd([in] |ong axisNo, [out,retval] boolean ** flag );
126  HRESULT _stdcal | inhibitSpindle([in] boolean inhibit );

127 HRESULT _stdcall spindlelnhibitd([out,retval] boolean ** flag);
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128

129 // TRAJECTORY | NFORVATI ON

130 //

131 HRESULT _stdcall setBlending([in] boolean flag); /1 TRUE=ON, FALSE=OFF

132 HRESULT _stdcall setSingleStep([in] boolean flag); /1 TRUE=QON, FALSE=CFF
133

134 // HRESULT _stdcall setVpg([in] |VelocityProfileGenerator vpg);

135 // VelocityProfil eGenerator getVpg();

136

137 // Timng is now a reference to another object

138 // tinmeMeasure get Axi supdateinterval () const;

139 // HRESULT _stdcall setAxi supdateinterval (ti mneMeasure val ue);

140 /1 attribute Tine timng;

141

142  HRESULT _stdcall setPhysicalLimts([in] Rate limts); //+ 3-Jun-1997
143 HRESULT _stdcall getPhysicalLimts([out,retval] Rate ** r ); I+
144 };

145

146 // NOTES

147 // 1. There is a problemin JAVA with returning data type.
148 // Storing into calling paraneter as a side effect Side
149 // instead of

150 // QacVect or get ConmandedAxesPositions( );
151 // use
152 // get CommandedAxesPosi ti ons( OCacVector positions );

153 // It is possible to redo above in this signature style.

154 // 2. lssue: There are issues as to maxi mum accel erati on of device
155 // versus Control Plan Unit (Mtion Segnent)

156

157 // Control Plan O ass Definitions- Mtion Segnents

158

159

160 [

161 obj ect,

162 uui d(134A0293- E101- 11d2- B512- AEC041D2957B) ,

163

164 hel pstring("Path Node Interface"),

165 poi nt er _def aul t (uni que)

166 ]

167

168 i nterface | Pat hNode

169 {

170 HRESULT _stdcall getControltransform([out,retval] Transform** t);
171 HRESULT _stdcall setControltransforn(Transformval ue);

172 };

173 [

174 obj ect,

175 uui d(134A0294- E101- 11d2- B512- AEC041D2957B) ,
176

177 hel pstring("Pat hEl enent |nterface"),

178 poi nt er _def aul t (uni que)

179 ]

180 interface | PathEl enent : | KinematicPath

181 {

182 HRESULT _stdcall initAccDecProfile([in] LinearVelocity vel);

183 HRESULT _stdcall setStartPoint([in] |PathNode startPoint ); // axgroup sets

184 HRESULT _stdcall getStartPoint([out,retval] |PathNode ** pn );

185 HRESULT _stdcall getEndPoint([out,retval] |PathNode ** pn ); /1 axgroup sets
186 // HRESULT _stdcall setEndPoint([in] |PathNode endPoint); /1 ppt or internal use
187 HRESULT _stdcall getDi stanceToGo([out,retval] LengthMeasure ** |en);

188 HRESULT _stdcall isPathConplete([out,retval] boolean ** flag);

189 HRESULT _stdcall pathLength([out,retval] LengthMeasure ** len );

190 // LengthMeasure pathLength(XYZ xyz); // what is this

191 };

192

193

194 |

195 obj ect,

196 uui d( 134A0295- E101- 11d2- B512- AEC041D2957B) ,

197

198 hel pstring("Rate Interface"),

199 poi nt er _def aul t (uni que)

200 ]
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201 interface | Rate

long ** pplVal );

Il

)

)

202 {

203 HRESULT _stdcall setNomi nal Feedrate([in] double vnom;

204 HRESULT _stdcall setCurrentFeedrate([in] double vmax, [out,retval]
i ncl udes override

205 HRESULT _stdcal | setMaxi nunmAccel eration([in] double amax, [out,retval]

206 HRESULT _stdcall setMaxinumlerk([in] double jmax, [out,retval] |ong **val ue);

207

208 HRESULT _stdcal |l get Nomi nal Feedrate([out,retval] double ** ppdVal);

209 HRESULT _stdcall getCurrentFeedrate([out,retval] double ** ppdval);
override

210 HRESULT _stdcall getMaxi mumAccel eration([out,retval] double ** ppdval);

211  HRESULT _stdcal | get Maxi numlerk([out,retval] double ** ppdVval);

212

213  HRESULT _stdcall getCurrentVelocity([out,retval] double ** val);

214  HRESULT _stdcall setCurrentVelocity([in] double vcur);

215

216 HRESULT _stdcall getFinal Velocity([out,retval] double ** val );

217  HRESULT _stdcall setFinal Velocity([in] double vcur);

218

219 HRESULT _stdcall getCurrentAcceleration([out,retval] double ** va

220 HRESULT _stdcall setCurrentAcceleration([in] double acur);

221

222  HRESULT _stdcall getAccState([out,retval] |ong **val ue);

223 HRESULT _stdcall setAccState([in] long val);

224  HRESULT _stdcall isDone([out,retval] boolean ** flag);

225 HRESULT _stdcall isAccel ([out,retval] boolean ** flag);

226  HRESULT _stdcall isConst([out,retval] boolean ** flag);

227 HRESULT _stdcall isDecel ([out,retval] boolean ** flag);

228

229 HRESULT _stdcall setNom nal Spi ndl eSpeed([in] double spd); // why here?

230 HRESULT _stdcall get Nom nal Spi ndl eSpeed([out,retval] double ** val

231};

232 [

233 obj ect,

234 uui d(134A0296- E101- 11d2- B512- AEC041D2957B)

235

236 hel pstring("Kinematic Info Interface"),

237 poi nt er _def aul t (uni que)

238 ]

239 interface |Kinenmaticlnfo

240 {

241 HRESULT _stdcall setTool Center([in] Length effectiveDi splacenent,

242 [in] CRCMODE cutterRadi usConpensati on);

243

244  HRESULT _stdcall getCurrentFrane([out,retval] Transform=** tr);

245 HRESULT _stdcall setCurrentFrame([in] TransformcurrentFrane );

246

247 HRESULT _stdcall getKinematics([out,retval] |KinMechanism** kin);

248  HRESULT _stdcall setKinenmatics ([in] |KinMechani sm kin)

249 };

250

251 [

252 obj ect,

253 uui d( 134A0297- E101- 11d2- B512- AEC041D2957B) ,

254

255 hel pstring("Vel ocityProfileGenerator Interface"),

256 poi nt er _def aul t (uni que)

257 ]

258 interface | Vel ocityProfil eGenerator

259 {

260 HRESULT _stdcall getAccdecprofile([out,retval] AccDecProfile ** accdec);

261 HRESULT _stdcall setAccdecprofile([in] AccDecProfile value);

262

263 HRESULT _stdcall setBl endi ngPoi nt Di stance([in] double distance );

264  HRESULT _stdcal | getBl endi ngPoi nt Di stance([out,retval] double ** val);

265

266  HRESULT _stdcall getSanplingTine([out,retval] Tinme ** t);

267 HRESULT _stdcall setSanplingTine([in] Tinme value);

268 /* New 3-Jun-1997 */

269 HRESULT _stdcall hol dSegnent ();

270  HRESULT _stdcall pauseSegnent();

271  HRESULT _stdcall resuneSegnent();
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272 };

273 // Base Cass for Mdtion Segnment

274 // Derived fromControl PlanUnit - see part program transl ator
275 [

276 obj ect,

277 uui d( 134A0298- E101- 11d2- B512- AEC041D2957B) ,
278

279 hel pstring("MtionSegnent |nterface"),

280 poi nt er _def aul t (uni que)

281 ]

282 interface | MtionSegnent : |Control Pl anUnit
283 {

284  HRESULT _stdcall getKinenmaticlnfo (Kinematiclnfo **kin);
285 HRESULT _stdcall setKinenaticlnfo (Kinenmaticlnfo kin);

286

287 HRESULT _stdcall setVpg([in] |VelocityProfileGenerator aVPG;

288 HRESULT _stdcall getVpg([out,retval] |VelocityProfileGenerator ** vpg);
289

290 HRESULT _stdcall setTranslational Rate([in] IRate rate);

291 HRESULT _stdcall getTranslational Rate([out,retval] I|Rate ** rate );

292

293 HRESULT _stdcall setOrientationRate([in] Rate rate);
294 HRESULT _stdcall getOrientationRate([out,retval] Rate ** rate);

295

296 HRESULT _stdcall setAngularRate([in] IRate rate); // does this belong in axis group?
297 HRESULT _stdcall getAngularRate([out,retval] IRate ** rate);

298

299 // if internal velocity profile generation supply this interface

300 HRESULT _stdcall setBl endi ngPoi nt Di stance([in] double distance );

301 HRESULT _stdcall getBl endi ngPoi nt Di stance([out,retval] double **val);

302

303 HRESULT _stdcall cal cDi stanceRemmining([out,retval] Length **1); // axes

304

305 HRESULT _stdcall getlncrenental Di stance([out,retval] GacVector **vector );

306 HRESULT _stdcall getLengthsRemaining([out,retval] COCacVector ** vector ); // per axis
307 HRESULT _stdcall cal cNextlncrenent([in] double feedOverride,

308 [in] doubl e spindleOverride,
309 [out,retval] OCacVector ** vector
310 ;

)
311 HRESULT _stdcall startNextSegnent([out,retval] boolean ** flag); //? what does this nean init?
312 //? int init(double cycleTine); //+ 3-Jun-1997
313 HRESULT _stdcal | pauseSegnent();
314 HRESULT _stdcall holdSegrment(); /* new */
315 HRESULT _stdcall stopSegnent(); /* new 3-Jun-1997 set notion to done */
316 HRESULT _stdcall resuneSegnent();
317 HRESULT _stdcall isPaused([out,retval] boolean ** flag);
318 HRESULT _stdcall isHeld([out,retval] boolean ** flag);

319

320 #i fdef SKIPTH S

321

322 // Programinformation (file, line nunber, block) and signal s(active)

323  HRESULT _stdcall setPpb( PartProgranBl ock ppb );
324 HRESULT _stdcall segnentStarted();

325 HRESULT _stdcall segnentFinished();

326 #endi f

327 };

328 // NOTES:

329 // 1. Handling Term nation Condition:

330 // a. Exact Stop = bl ending distance=0

331

332 [

333 uui d(134A0299- E101- 11d2- B512- AEC041D2957B) ,

334 version(1.0),

335 hel pstring("Axis Goup Mdule 1.0 Type Library")
336 ]

337 library AXIS_GROUP_MODULE_Lib

338 {

339 inportlib("stdol e32.tlb");

340 importlib("stdole2.tlb");

341

342 [

343 uui d( 134A029A- E101- 11d2- B512- AEC041D2957B) ,
344 hel pstring("Axis Group O ass")
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345 ]
346 cocl
347 {
348

349

350 };
351 [
352

353

354 ]
355 cocl
356 {
357

358 };
359

360 [
361

362

363 ]
364 cocl
365 {
366

367

368 };
369

370 [
371

372

373

374 cocl
375 {
376

377 };
378

379 [
380

381

382 ]
383 cocl
384 {
385

386 };
387

388 [
389

390

391 ]
392 cocl
393 {
394

395 };
396

397 [
398

399

400 ]
401 cocl
402 {
403

404

405 1
406

407 };

408

409

410 #endi f
411

ass Axi sG oup

[default] interface | Axi sG oup;

interface | Omac;

uui d( 134A029B- E101- 11d2- B512- AEC041D2957B) ,
hel pstring("Pat hNode C ass")

ass Pat hNode

[default] interface | PathNode;

uui d(134A029C- E101- 11d2- B512- AEC041D2957B) ,
hel pstring("Pat hEl enent d ass")

ass Pat hEl enent

[default] interface |PathEl ement;
interface | Ki nematicPat h;

uui d( 134A029D- E101- 11d2- B512- AEC041D2957B) ,
hel pstring("Rate d ass")

ass Rate

[default] interface |Rate;

uui d(134A029B- E101- 11d2- B512- AEC041D2957B) ,
hel pstring(" Kinematiclnfo C ass")

ass Kinematiclnfo

[default] interface |Kinematiclnfo;

uui d( 134A029E- E101- 11d2- B512- AEC041D2957B) ,
hel pstring("Vel ocityProfil eGenerator C ass")

ass Vel ocityProfil eGenerator

[default] interface |Vel ocityProfil eGenerator;

uui d(134A029F- E101- 11d2- B512- AEC041D2957B) ,
hel pstring("MtionSegnent C ass")

ass MotionSegnent

[default] interface | MtionSegnent;
interface | Control Pl anUnit;

B.14 AXIS

1 // AxisModule.idl : IDL source for AxisModule.dll

89
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/1

/1 This file will be processed by the MDL tool to
/1 produce the type library (Axi shbdule.tlb) and marshal ling code.

import "oaidl.idl";

i nport "ocidl.idl";

i nport "DataRepresentation.idl";
i mport "QOmacMdul e.idl";

i nport "Control Lawivbdul e. i dl";

t ypedef
t ypedef
t ypedef
t ypedef

nterface | Axis;

nt erface | Axi sAbsol ut ePos;
nterface | Axi sAccel erati onServo;
nterface | Axi sCommanded! nput ;
nt er face | Axi sConmandedQut put ;
nterface | Axi sDyn;

nterface | Axi sError AndEnabl e;
nterface | Axi sForceServo;

nt erface | Axi sHom ng;

nterface | Axi sl ncrenent Pos;
nterface | Axi sKi nemati cs;
nterface | Axi sJoggi ng;

nterface | AxisLimts;

nt erface | Axi sMai nt enance;
nterface | Axi sPositioni ngServo;
nterface | Axi sRates;

nterface | Axi sSensedSt at e;
nterface | Axi sSet up;

nterface | Axi sVel ocityServo;

doubl e Axi sAccel Cnd;
doubl e Axi sFor ceCnd;
doubl e Axi sPositionCnd;
doubl e Axi sVel oci tyCnd;

/1 {9C56BEC5- 07CB- 11d3- AAB2- 00C04FA375A6}

cpp_quot e("const CATI D CATI D_Axi sModul e = { 0x9c56bec5, Ox7ch, 0x11d3, { Oxaa, Oxb2, 0x0, 0xcO,

Ox4f, Oxa3, 0x75, Oxa6 } }:;")

/| const

{ OxE1D6F9F1, OxB1FE, 0x11D2, { OXAA, 0xA8, 0x00, 0xCO, Ox4F, 0xA3, 0x75, OxA6} };

/1 Exanple: This CLSID is specific for one vendor,

GUI D CATI D_Control Lawivbdul e =

/1 {803B45C1- 07CB- 11d3- AAB2- 00C04FA375A6}

cpp_quot e("const CLSID CLSID_NI STAxi sModul eServer = { 0x803b45c1,

0x0, 0xcO, Ox4f, Oxa3, 0x75, Oxaé } };")

[

]

interface | Axi sModul eCl assFactory :

HRESULT _stdcall

obj ect,
uui d( 0A70EBBO- 06D9- 11D3- AAB2- 00C04FA375A6) ,

** ppvadj ) ;

1

uui d( AAO3FCE5- FF08- 11D2- AAB2- 00C04FA375A6) ,

hel pstring("lAxis Interface"),
poi nt er _def aul t (uni que)

]

interface | Axis : |1 Qmc

Il Get

HRESULT _stdcall

Ref erence (bjects

Creat eModul e([in]

hel pstring("! Axi sMbdul ed assFactory Interface"),
poi nt er _def aul t (uni que)

I Unknown

BSTR nane,

get Absol ut ePos([out, retval]

90

REFIID riid,

NI ST) Control Law Server

0x07cb, 0x11d3, { Oxaa, 0xb2,

[out, iid_is(riid)] void

| AXi sAbsol ut ePos ** val);
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71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
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89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
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113
114
115
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117
118
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120
121
122
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124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140

141

HRESULT _stdcal |l getAccel erationServo([out,retval] |AxisAccel erationServo ** a);
HRESULT _stdcal |l get Commanded!| nput ([out, retval] | Axi sCommanded| nput ** a);
HRESULT _stdcal |l get ConmandedCQut put ([out,retval] | Axi sConmandedQut put** a);
HRESULT _stdcal |l getDynam cs([out,retval] |AxisDyn ** val);
HRESULT _stdcal | get Error AndEnabl e([out,retval] | Axi sError AndEnabl e** a);
HRESULT _stdcall get ForceServo([out,retval] |Axi sForceServo **a);
HRESULT _stdcal |l getHom ng([out,retval] |AxisHom ng ** a);
HRESULT _stdcall getlncrenentPosition([out,retval] |AxislncrenmentPos ** a);
HRESULT _stdcal |l getJoggi ng([out,retval] |AxisJogging ** a);
HRESULT _stdcall getKinenatics([out,retval] |AxisKinematics ** val);
HRESULT _stdcall getLimts([out,retval] |IAxisLimts ** val);
HRESULT _stdcal |l get Mai ntenance([out,retval] |Axi sMaintenance ** val);
HRESULT _stdcal | getPositioningServo([out,retval] |AxisPositioningServo ** a);
HRESULT _stdcall get SensedState([out,retval] |Axi sSensedState ** a);
HRESULT _stdcal |l getSetup([out,retval] |AxisSetup ** val);
HRESULT _stdcall getVel ocityServo([out,retval] |AxisVelocityServo ** a);
HRESULT _stdcall setAbsol utePos([in] |Axi sAbsol utePos * val);
HRESULT _stdcal |l setAccel erationServo([in] |AxisAccel erationServo * val);
HRESULT _stdcall set Commanded| nput ([in] | Axi sConmmanded!| nput * val);
HRESULT _stdcal |l set ConmandedQut put ([in] | Axi sConmandedCQut put * val);
HRESULT _stdcal |l setErrorAndEnabl e([in] |AxisError AndEnable * val);
HRESULT _stdcall setForceServo([in] |AxisForceServo * val);
HRESULT _stdcall setHomi ng([in] |AxisHom ng * val);
HRESULT _stdcall setlncrenentPosition([in] |AxislncrementPos * val);
HRESULT _stdcall setJogging([in] |AxisJogging * val);
HRESULT _stdcall setKinenmatics([in] |AxisKi nematics * val);
HRESULT _stdcall setLimts([in] IAxisLimts * val);
HRESULT _stdcal |l set Maintenance([in] |Axi sMaintenance * val);
HRESULT _stdcal |l setPositioningServo([in] |AxisPositioningServo * val);
HRESULT _stdcal |l setSensedState([in] |AxisSensedState * val);
HRESULT _stdcall setSetup([in] |AxisSetup * val);
HRESULT _stdcall setVelocityServo([in] |AxisVelocityServo * val);
HRESULT _stdcall setPositionControlLaw([in] I|Control Law * val);
HRESULT _stdcall setVelocityControl Law([in] |Control Law * val);
HRESULT _stdcall setAccelerationControl Lawm[in] |Control Law * val);
HRESULT _stdcal |l getPositionControl Law([out,retval] |Control Law ** a);
HRESULT _stdcal |l getVel ocityControl Law([out,retval] |Control Law ** a);
HRESULT _stdcal |l getAccel erationControl Law([out,retval] |Control Law ** a);
HRESULT _stdcal |l processServoLoop( ); // the primary function.
HRESULT _stdcal |l checkPreconditions([out, retval] long * val); // checked at every servo | oop.
// State transition nmethods and state queries
HRESULT _stdcal | disabl eAxis(); /1 DI SABLEEvent
HRESULT _stdcal |l enabl eAxis(); /1 ENABLEEvent
HRESULT _stdcall foll owCommandedPosition(); // FOLLOAWPositionEvent
HRESULT _stdcal |l foll owConmandedTor que(); /1 FOLLOWIor queEvent
HRESULT _stdcall foll owCommandedVel ocity(); // FOLLOWel ocityEvent
HRESULT _stdcal |l foll owConmandedForce(); /1 FOLLOWFor ceEvent
HRESULT _stdcall hone([in] double velocity); // STARTHomeEvent
HRESULT _stdcall jog([in] double velocity); /1 STARTJogEvent
HRESULT _stdcall reset Axis(); /| RESETEvent
HRESULT _stdcal |l stopMtion(); /1 CANCELEvent
HRESULT _stdcall estop(); I
ESTCOPEvent
HRESULT _stdcal | updateAxis(); /1 UPDATEEvent
/'l Instead of:
/1 int currentState();
/1 DI SABLED = 1,
/1 ENABLED = 2,
/1 EStopped = 3,
/1 FOLLOW NGPosi tion = 4,
/1 FOLLOW NGTor que = 5
/1 FOLLOW NGVel ocity = 6,
/1 HOM NG = 7,
/1 JOGE NG = 8§,
/1 STOPPI NG = 9; // Use accessor functions so there is no confusion about
nunberi ng
/1 Also inherit state queries from OVAC Base Modul e
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142

143  HRESULT _stdcall isFollow ngAccel eration([out,retval] boolean * b);

144  HRESULT _stdcall isFollow ngForce([out,retval] boolean * b);

145  HRESULT _stdcall isFollow ngPosition([out,retval] boolean * b);

146  HRESULT _stdcall isFollow ngVel ocity([out,retval] boolean * b);

147 HRESULT _stdcall isHoming([out,retval] boolean * b);

148 HRESULT _stdcall islncrenmentingPosition([out,retval] boolean * b);

149 HRESULT _stdcall isJogging([out,retval] boolean * b);

150 HRESULT _stdcall isMyvingto([out,retval] boolean * b);

151

152 HRESULT _stdcall isReset([out,retval] boolean * b);

153 HRESULT _stdcall islnited([out,retval] boolean * b);

154  HRESULT _stdcall isEnabl ed([out,retval] boolean * b);

155 HRESULT _stdcall isD sabled([out,retval] boolean * b);

156 HRESULT _stdcall isReady([out,retval] boolean * b);

157 HRESULT _stdcall isEstopped([out,retval] boolean * b);

158

159 // Add isStopping() which includes any stoppi ng?

160 /1 Returns a ASClI| readable string

161 HRESULT _stdcall current StateName([out,retval] BSTR * nane);

162

163 };

164

165 [

166

167 wuui d(50B62B8D- 4513- 11d3- AABB- 00C04FA375A6) ,

168

169 hel pstring("lAxi sAccel erationServo Interface"),

170 pointer_defaul t(uni que)

171 ]

172 interface | OmacAxis : | Omac

173 { HRESULT _stdcall setAxisContainer([in] IAXis * a);

174 };

175

176 [

177

178 uui d( AAO3FCE7- FF08- 11D2- AAB2- 00C04FA375A6) ,

179

180 hel pstring("!Axi sAccel erati onServo Interface"),

181 pointer_defaul t (unique)

182 ]

183 interface | Axi sAccel erationServo : | OmacAxis

184 {

185 // Al invoked by Axis FSM

186 HRESULT _stdcal |l stopFoll ow ngAccel erati onAction();

187 HRESULT _stdcall estopFoll ow ngAccel erati onAction();

188 HRESULT _stdcall startFoll owi ngAccel erati onAction();

189 HRESULT _stdcal |l updat eFol | owi ngAccel erati onAction();

190

191 HRESULT _stdcall isDone([out,retval] boolean * b);

192 HRESULT _stdcall isFollow ngAccel erationError([out,retval] boolean * b);
193

194

195 };

196 [

197

198 wuui d( AAO3FCE9- FF08- 11D2- AAB2- 00C04FA375A6) ,

199

200 hel pstring("Il Axi sCormandedl| nput Interface"),

201 poi nter_def aul t (uni que)

202 ]

203 interface | Axi sConmanded| nput : | OmacAxi s

204 {

205 HRESULT _stdcall getPositionCndl nput([out,retval] AxisPositionCnd * a);
206 HRESULT _stdcall getVel ocityCmdl nput ([out,retval] AxisVelocityCrd * a);
207 HRESULT _stdcall getAccel erati onCndl nput ([out,retval] AxisAccelCnd * a);
208 HRESULT _stdcall getForceCndl nput([out,retval] Axi sForceCrd * a);

209 HRESULT _stdcall setPositionCndl nput([in] AxisPositionCnd positioningCnd );
210 HRESULT _stdcall setVelocityCmdlnput([in] AxisVelocityCrd velocityCmd );
211  HRESULT _stdcall setAccel erationCndl nput ([in] AxisAccel Cnd accel erationCnd );
212 HRESULT _stdcall setForceCndlnput([in] AxisForceCrd forceCnd );

213 HRESULT _stdcal |l updat eCommanded| nput(); // updates using connections to IO
214
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215 };

216

217 [

218

219 uui d( AAO3FCEB- FF08- 11D2- AAB2- 00C04FA375A6) ,

220

221 hel pstring("! Axi sConmandedCut put | nterface"),

222 pointer_defaul t (uni que)

223 ]

224 interface | Axi sConmandedCQut put : | OmacAxi s

225 {

226  HRESULT _stdcall getPositionChrdQutput([out,retval] AxisPositionCrd * a);
227  HRESULT _stdcal |l getVel ocityCndQut put ([out,retval] AxisVelocityCnd * a);
228 HRESULT _stdcall getAccel erati onCndQut put ([out,retval] Axi sAccel Cmd * a);
229  HRESULT _stdcal | getForceCndCQut put ([out,retval] AxisForceCnd * a);

230 HRESULT _stdcall setPositionCrdQutput([in] AxisPositionCrd positioningCnd );
231  HRESULT _stdcall setVel ocityCndQutput([in] AxisVelocityCnd velocityCnd );
232 HRESULT _stdcall setAccel erati onCndQut put ([in] Axi sAccel Cmd accel erati onCmd );
233  HRESULT _stdcall setForceCndCQutput([in] AxisForceCnd forceCnd );

234  HRESULT _stdcal | updat eCormandedCutput(); // updates using connections to IO
235

236 };

237 [

238

239 uui d( AAO3FCED- FF08- 11D2- AAB2- 00C04FA375A6) ,

240

241 hel pstring("lAxisDyn Interface"),

242 pointer_defaul t (uni que)

243 ]

244 interface | AxisDyn : | OmacAxis

245 {

246  HRESULT _stdcall getAccelerationLimt([out, retval] LinearAcceleration *pVal);
247 HRESULT _stdcall get Axmass([in] Mass newal);

248 HRESULT _stdcall getBacklash([out, retval] Length *pVal);

249  HRESULT _stdcall getDanping([out, retval] Force *pVval);

250 HRESULT _stdcal |l getDeadband([out, retval] Length *pVal);

251 HRESULT _stdcall getDecelerationLimt([out, retval] LinearAcceleration *pVal);
252  HRESULT _stdcall getlnertia([out, retval] Mass *pVal);

253 HRESULT _stdcall getJerkLimt([out, retval] LinearJerk *pVal);

254  HRESULT _stdcal |l getlLoadedCaseSpringRate([out, retval] LinearStiffness *pVal);
255 HRESULT _stdcall get MaxVel AccLi m([out, retval] LinearAccel eration *pVal);
256  HRESULT _stdcal |l getOvershoot Stepl nput([out, retval] Length *pVal);

257 HRESULT _stdcall getQuasi StaticlLoadLimt([out, retval] Force *pVal);

258 HRESULT _stdcall getRisingTineSteplnput([out, retval] Tine *pVal);

259 HRESULT _stdcall getRunFriction([out, retval] Force *pVal);

260 HRESULT _stdcall getStaticFriction([out, retval] Force *pVal);

261 HRESULT _stdcall getTi meConstant([out, retval] Tinme *pVal);

262 HRESULT _stdcal |l getWrstCaseSpringRate([out, retval] LinearStiffness *pVal);
263 HRESULT _stdcall getZeroVel AccLin([out, retval] LinearAcceleration *pVval);
264

265 HRESULT _stdcall setAccelerationLinmt([in] LinearAcceleration newal);

266  HRESULT _stdcall setAxnmass([out, retval] Mass *pVal);

267 HRESULT _stdcall setBacklash([in] Length newval);

268 HRESULT _stdcall setDanping([in] Force newal);

269 HRESULT _stdcall setDeadband([in] Length newval);

270 HRESULT _stdcall setDecelerationLimt([in] LinearAcceleration newal);

271  HRESULT _stdcall setlnertia([in] Mass newval);

272  HRESULT _stdcall setJerkLimt([in] LinearJerk newal);

273 HRESULT _stdcall setlLoadedCaseSpringRate([in] LinearStiffness newal);

274  HRESULT _stdcal |l setMaxVel AccLin({[in] LinearAccel eration newal);

275 HRESULT _stdcall setOvershoot Steplnput([in] Length newval);

276  HRESULT _stdcall setQuasi StaticlLoadLimt([in] Force newal);

277 HRESULT _stdcall setRisingTi meSteplnput([in] Time newval);

278 HRESULT _stdcall setRunFriction([in] Force newal);

279 HRESULT _stdcall setStaticFriction([in] Force newval);

280 HRESULT _stdcall setTineConstant([in] Tinme newal);

281 HRESULT _stdcall setWrstCaseSpringRate([in] LinearStiffness newal);

282  HRESULT _stdcal |l setZeroVel AccLin{[in] LinearAcceleration newal);

283

284 };

285

286 [

287
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288 uui d( AAO3FCF2- FF08- 11D2- AAB2- 00C04FA375A6) ,
289

290 hel pstring("! Axi sForceServo Interface"),
291 pointer_defaul t (uni que)

292 ]

293 interface | Axi sForceServo : | OmacAxi s
294 {

295 // Al invoked by Axis FSM

296

297 HRESULT _stdcall stopFoll owi ngForceAction();
298 HRESULT _stdcal |l estopFol | owi ngForceAction();
299 HRESULT _stdcall startFoll owi ngForceAction();
300 HRESULT _stdcal | updateFol | owi ngForceAction();
301

302 HRESULT _stdcall isDone([out,retval] boolean * b);
303 HRESULT _stdcall isFollow ngForceError([out,retval] boolean * b);
304

305 };

306 [

307

308 uui d( AAO3FCF4- FF08- 11D2- AAB2- 00C04FA375A6) ,

309

310 hel pstring("Il Axi sérror AndEnabl e Interface"),
311 pointer_defaul t (uni que)

312 ]

313 interface | Axi sError AndEnable : | OmacAxi s

314 {

315 HRESULT _stdcall resetAxi sAction();

316 HRESULT _stdcall disabl eAxisAction();

317 HRESULT _stdcall enabl eAxi sAction();

318 HRESULT _stdcall estopAxisAction();

319 };

320

321 [

322

323 uui d( AAO3FCF6- FF08- 11D2- AAB2- 00C04FA375A6) ,

324

325 hel pstring("! Axi sHomi ng Interface"),

326 pointer_defaul t (uni que)

327 ]

328 interface | Axi sHomi ng : | OmacAxi s

329 {

330 HRESULT _stdcall startHom ngAction([in] double startVelocity ); // prepares honi ng

331 HRESULT _stdcall updateHom ngAction(); /1 called each servo cycle

332 HRESULT _stdcall stopHom ngAction(); /1 stops hom ng before conpletion

333  HRESULT _stdcall estopHom ngAction(); /1 On transition fromhonm ng to E-stopped
334 HRESULT _stdcall conpl et edHom ngAction(); // On transition fromhom ng to disabled

335 HRESULT _stdcall isDone([out,retval] boolean * b);
is conpleted

336 HRESULT _stdcal |l isStopping([out,retval] boolean * b);

337 HRESULT _stdcal |l isHomi ngError([out,retval] boolean * b);
occurred during hom ng

338 };

339 [

340

341 uui d( AAO3FCF8- FF08- 11D2- AAB2- 00C04FA375A6) ,

342

343 hel pstring("! Axi sJoggi ng I nterface"),

344 poi nter_defaul t (uni que)

345 ]

346 interface | Axi sJogging : | OmacAxis

347 {

348 HRESULT _stdcall conpl et edJoggi ngAction();

349 HRESULT _stdcall estopJoggi ngAction();

350 HRESULT _stdcall startJoggingAction([in] double targetVelocity );

351 HRESULT _stdcall stopJoggi ngAction();

352 HRESULT _stdcall updateJoggi ngAction();

353 HRESULT _stdcall updateJoggi ngSt oppi ngAction();

354

355 HRESULT _stdcall isDone([out,retval] boolean * b);

356 HRESULT _stdcall isStopping([out,retval] boolean * b);

357 HRESULT _stdcall isJoggingError([out,retval] boolean * b);
358

/1 signals when honm ng

/] true if error
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359 };

360 [

361

362 uui d( AAO3FCFA- FF08- 11D2- AAB2- 00C04FA375A6) ,
363

364 hel pstring("|AxisKinenmatics Interface"),

365 poi nter_defaul t (uni que)

366 ]

367 interface | AxisKinematics : | OmacAxis

368 {

369 HRESULT _stdcall getKs([out, retval] double *pVal);
370 HRESULT _stdcall setKs([in] double newal);

371 HRESULT _stdcal |l get PosFeedBackGai n([out, retval] double *pVal);
372 HRESULT _stdcall setPosFeedBackGai n([in] double newal);

373 HRESULT _stdcal |l get Vel FeedBackGai n([out, retval] double *pVal);
374 HRESULT _stdcall set Vel FeedBackGai n([in] double newal);

375 HRESULT _stdcal |l get UpperKi nenati chModel ([out, retval]
376 HRESULT _stdcall setUpperKi nemati chvbdel ([in] UpperKi nenati chModel
377 HRESULT _stdcal |l getLowerKi nematicMdel ([out, retval]
378 HRESULT _stdcall setLowerKi nemati civbdel ([in] LowerKi nenati chModel
379 HRESULT _stdcall getPlacenent([out, retval] CoordinateFrane *pVal);
380 HRESULT _stdcall setPlacenment([in] CoordinateFrame newval);

381

382 };

383 [

384

385 uui d( AAO3FCFD- FF08- 11D2- AAB2- 00C04FA375A6) ,
386

387 helpstring("lIAxisLimts Interface"),
388 pointer_defaul t(unique)

389 |

390 interface | AxisLinmits : | OmacAxis
391 {

392 HRESULT _stdcall getCutOfPosition([out, retval] Length *pVal);

Length *pval);
Length *pVal);
Length *pval);

Length *pVal);

397 HRESULT _stdcall getJerkLimit([out, retval] LinearJerk *pVal);

398 HRESULT _stdcall getMaxForceLimit([out, retval] Force *pVal);

399 HRESULT _stdcall getMaxVelocity([out, retval] LinearVelocity *pVval);

400 HRESULT _stdcal |l getOvershoot Viol ationLi n{[out, retval]
401 HRESULT _stdcall get OvershootWarnLevel Limt([out, retval]

393 HRESULT _stdcall getFoll owi ngErrorViolationLin{[out,

394  HRESULT _stdcal |l getFol | owi ngErrorWarnLi n{[out, retval]

395 HRESULT _stdcall getHardFwdOTravel Li m([out, retval]
396 HRESULT _stdcal |l getHardRevOrravel Li n{[out, retval]

402 HRESULT _stdcal |l get SoftFwdOTravel Li n{[out, retval]
403 HRESULT _stdcal |l get SoftRevOlravel Li m([out, retval]

404 HRESULT _stdcal |l getUnderreachViol ationLi n{[out, retval]
405 HRESULT _stdcal |l getUnderreachWarnLevel Limt([out, retval]
406 HRESULT _stdcal |l getUseful Travel ([out, retval] Length *pVal);

407

408 HRESULT _stdcall setCutOfifPosition([in] Length newval);

Lengt h newval);
410 HRESULT _stdcall setFollow ngErrorWarnLi n{[in] Length newval);
411 HRESULT _stdcal |l setHardFwdOTravel Li m{([in] Length newval);

412 HRESULT _stdcall setHardRevOlravel Lin{[in] Length newval);

413 HRESULT _stdcall setJerkLimt([in] LinearJerk newval);

414  HRESULT _stdcall setMaxForceLimt([in] Force newval);

415 HRESULT _stdcall setMaxVelocity([in] LinearVelocity newval);

416  HRESULT _stdcall setOvershootViol ationLin{[in] Length newval);
417 HRESULT _stdcall setOvershootWarnLevel Limt([in] Length newval);
418 HRESULT _stdcal |l set SoftFwdOTravel Li n{[in] Length newval);

419 HRESULT _stdcall setSoftRevOlravel Linm([in] Length newval);

420 HRESULT _stdcall setUnderreachViol ationLin{([in] Length newval);
421 HRESULT _stdcall setUnderreachWarnLevel Linmt([in] Length newval);
422  HRESULT _stdcall setUseful Travel ([in] Length newval);

409 HRESULT _stdcall setFollow ngErrorViolationLi n([in]

423

424 };

425 [

426

427 uui d( AAO3FCFF- FF08- 11D2- AAB2- 00C04FA375A6) ,
428

429 hel pstring("| Axi sMai ntenance | nterface"),
430 poi nter_def aul t (uni que)

431 ]

95

Upper Ki nenat i cMbdel *pVal);
newval ) ;
Lower Ki nenat i cMbdel *pVal);
newval ) ;

Length *pVal);
Length *pVval);
Length *pVal);

Length *pVval);

Length *pVal);
Length *pVval);
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432 interface | Axi sMai ntenance : | OmacAxi s

433 {

434 };

435

436 [

437

438 uui d( AAO3FDO1- FF08- 11D2- AAB2- 00C04FA375A6) ,

439

440 hel pstring("! Axi sPositioningServo Interface"),

441 poi nter_defaul t (uni que)

442 ]

443 interface | Axi sPositioningServo : | QOmacAxis

444 {

445 /] Al invoked by Axis FSM

446  HRESULT _stdcal |l stopFol | owi ngPositionAction();

447  HRESULT _stdcall estopFol | owi ngPositionAction();

448 HRESULT _stdcall startFoll ow ngPositionAction();

449  HRESULT _stdcal | updateFol | owi ngPosi tionAction();

450

451 HRESULT _stdcall isDone([out,retval] boolean * b);

452  HRESULT _stdcal |l isFollow ngPositionError([out,retval] bool ean * b);

453

454 };

455

456 [

457

458 uui d( AAO3FDO3- FF08- 11D2- AAB2- 00C04FA375A6) ,

459

460 hel pstring("lAxi sRates Interface"),

461 poi nter_defaul t (uni que)

462 ]

463 interface | Axi sRates : | OmacAxis

464 {

465 // Specifications of travel capabilities.

466 //worst-case conditions. But to take advantage of nore

467 //capability provide a npdel that describes conditions

468 //when nore capability is available and the correspondi ng

469 //values or val ue-functions.

470 /] FIXVE: Problemhere with typedef derivative of double, versus real class definition?
471 HRESULT _stdcal |l get MaxAccel eration([out, retval] LinearAcceleration *pVal);
472 HRESULT _stdcall get MaxJerk([out, retval] LinearJerk *pVal);

473 HRESULT _stdcal |l getMaxTravel ([out, retval] Length *pVal);

474  HRESULT _stdcall get MaxVelocity([out, retval] LinearVelocity *pVal);

475 HRESULT _stdcal | get PosErrRatioCut Moving([out, retval] Length *pVal);

476  HRESULT _stdcal |l get PosErrRati ol dl eMoving([out, retval] Length *pVal);

477 HRESULT _stdcall getPosErrRatioldl eStationary([out, retval] Length *pVal);
478 HRESULT _stdcall getRepeatability([out, retval] long *pVal);

479

480 HRESULT _stdcall set MaxAccel eration([in] LinearAcceleration newal);

481 HRESULT _stdcall setMaxJerk([in] LinearJerk newval);

482  HRESULT _stdcall setMaxTravel ([in] Length newval);

483 HRESULT _stdcall setMaxVel ocity([in] LinearVelocity newval);

484  HRESULT _stdcal |l setPosErrRatioCutMoving([in] Length newval);

485 HRESULT _stdcal |l setPosErrRatioldl eMoving([in] Length newval);

486 HRESULT _stdcall setPosErrRatioldl eStationary([in] Length newval);

487 HRESULT _stdcall setRepeatability([in] |ong newval);

488

489 };

490 [

491

492  uui d( AAO3FDO5- FF08- 11D2- AAB2- 00C04FA375A6) ,

493

494 hel pstring("!Axi sSensedState Interface"),

495 poi nt er _def aul t (uni que)

496 ]

497 interface | Axi sSensedState : | OmacAxi s

498 {

499 //if(!hardFwdOTravel ) && if(!softFwdOTravel ) && f(!hardRevOlravel) &&

500 // i f(!softRevOlravel)
501 //then enablingPrecondition
502 //else enablingPrecondition
503 // Concurrency: Sequenti al
504 HRESULT _stdcall getEnablingPrecondition([out, retval] boolean * b);

1;
0;
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505 HRESULT _stdcall inPosition([out, retval] boolean * pVal);

506 HRESULT _stdcall isSoftFwdOTlravel ([out, retval] bool ean *pVal);

507 HRESULT _stdcall isHardFwdOTravel ([out, retval] bool ean *pVal);

508 HRESULT _stdcall isSoftRevOrlravel ([out, retval] bool ean *pVal);

509 HRESULT _stdcall isHardRevOlravel ([out, retval] bool ean *pVal);

510 HRESULT _stdcall isFollow ngErrorWarn([out, retval] boolean *pVal);
511  HRESULT _stdcall isFollow ngErrorViolation([out, retval] bool ean *pVal);
512 HRESULT _stdcall isOverShootViolation([out, retval] bool ean *pVal);
513 HRESULT _stdcal | isEnablingPrecondition([out, retval] boolean *pVal);
514

515 HRESULT _stdcall setAxisContainer([in] IAxis * a);

516

517 HRESULT _stdcall getActual Position([out,retval] Length * a);

518 HRESULT _stdcall getActual Velocity([out,retval] LinearVelocity * a);
519 HRESULT _stdcal |l getActual Accel eration([out,retval] LinearAcceleration * a);
520 HRESULT _stdcall getActual Force([out,retval] Force * a);

521

522 };

523 [

524

525 uui d( AAO3FDO7- FF08- 11D2- AAB2- 00C04FA375A6) ,

526

527 hel pstring("lAxisSetup Interface"),

528 pointer_defaul t (uni que)

529 ]

530 interface | Axi sSetup : | OmacAxis

531 {

532 // sets the reference to the axis rates for physical limts, software linmits.

533 HRESULT _stdcall getCurrentRates([out, retval] |Axi sRates **pVal);
534 HRESULT _stdcall getDynam cRates([out, retval] |AxisDyn **pVal);
535 HRESULT _stdcall getPhysicalLimts([out, retval] |AxisRates **pVal);
536 HRESULT _stdcall setCurrentRates([in] |AxisRates * newval);

537 HRESULT _stdcall setDynami cRates([in] |AxisDyn * newal);

538 HRESULT _stdcall setPhysicallLimts([in] |AxisRates * newal);
539

540 };

541

542 [

543

544 uui d( AAO3FD09- FF08- 11D2- AAB2- 00C04FA375A6) ,

545

546 hel pstring("l AxisVel ocityServo Interface"),

547 pointer_defaul t (uni que)

548 ]

549 interface | Axi sVel ocityServo : | OmacAxi s

550 {

551 // Al invoked by Axis FSM

552  HRESULT _stdcal |l stopFol | owi ngVel ocityAction();

553 HRESULT _stdcall estopFoll ow ngVel ocityAction();

554  HRESULT _stdcall startFollow ngVel ocityAction();

555  HRESULT _stdcal | updateFol | owi ngVel ocityAction();

556

557 HRESULT _stdcall isDone([out,retval] boolean * b);

558 HRESULT _stdcall isFollow ngVel ocityError([out,retval] boolean * b);
559

560 };

561 [

562

563 uui d( AAO3FDOB- FF08- 11D2- AAB2- 00C04FA375A6) ,

564

565 hel pstring("l Axi sAbsol utePos Interface"),

566 poi nter_defaul t (uni que)

567 ]

568 i nterface | Axi sAbsol utePos : | OmacAxi s

569 {

570 HRESULT _stdcall conpl et edAbsol ut ePosAction();

571 HRESULT _stdcall estopAbsol utePosAction();

572  HRESULT _stdcall startAbsol utePosAction([in] double targetVelocity );
573 HRESULT _stdcall stopAbsol utePosAction();

574  HRESULT _stdcall updateAbsol utePosAction();

575
576 HRESULT _stdcall isDone([out,retval] boolean * b);
577 HRESULT _stdcall isStopping([out,retval] boolean * b);
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578 HRESULT _stdcall isAbsolutePosError([out,retval] boolean * b);
579 };

580

581 [

582 object,

583 uui d( AAO3FDOD- FF08- 11D2- AAB2- 00C04FA375A6) ,
584 hel pstring("l Axi sl ncrenent Pos Interface"),
585 pointer_defaul t (uni que)
586 ]
587 interface | AxislncrenentPos : | OmacAxis
588 {
589 HRESULT _stdcall conpl etedl ncrenentingAction();
590 HRESULT _stdcall estoplncrenentingAction();
591 HRESULT _stdcall startlncrenentingAction([in] double targetVelocity );
592  HRESULT _stdcall stoplncrenentingAction();
593 HRESULT _stdcall updatel ncrenentingAction();
594
595 HRESULT _stdcall isDone([out,retval] boolean * b);
596 HRESULT _stdcall isStopping([out,retval] boolean * b);
597 HRESULT _stdcall islncrementingError([out,retval] boolean * b);
598
599 };
600 [
601 uui d( AAO3FCD8- FF08- 11D2- AAB2- 00C04FA375A6) ,
602 version(l.0),
603 hel pstring("AxisMbdule 1.0 Type Library")
604 ]
605 li brary AXI SMODULELI b
606 {
607 inportlib("stdole32.t1b");
608 inportlib("stdole2.tlb");
609
610
611 [
612 uui d( OA70EBBL1- 06D9- 11D3- AAB2- 00C04FA375A6) ,
613 hel pstring("Axi sMbdul eC assFactory C ass")
614 ]
615 cocl ass Axi sModul eCl assFact ory
616 {
617 [default] interface |Axi sMbdul ed assFactory;
618 interface | OmacMdul ed assFactory;
619 }s
620
621 [
622 uui d( AAO3FCE6- FF08- 11D2- AAB2- 00C04FA375A6) ,
623 hel pstring("Axis O ass")
624 ]
625 cocl ass Axis
626 {
627 [default] interface |Axis;
628 1
629 [
630 uui d( AAO3FCE8- FF08- 11D2- AAB2- 00C04FA375A6) ,
631 hel pstring("Axi sAccel erati onServo C ass")
]

632

633 cocl ass Axi sAccel erati onServo

634 {

635 [default] interface |AxisAccel erationServo;
636 };

637

638 uui d( AAO3FCEA- FF08- 11D2- AAB2- 00C04FA375A6) ,
639 hel pstri ng(" Axi sConmanded! nput C ass")

640 ]

641 cocl ass Axi sCommanded! nput

642 {

643 [default] interface |Axi sConmanded! nput;
644 };

645

[
646 uui d( AAO3FCEC- FF08- 11D2- AAB2- 00C04FA375A6) ,
647 hel pstri ng(" Axi sConmandedCQut put C ass")

]

648
649 cocl ass Axi sCommandedCut put
650 {
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651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

[default] interface |Axi sConmandedCut put;

[
uui d( AAO3FCEE- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("Axi sDyn O ass")

]

cocl ass Axi sDyn

{
[default] interface |AxisDyn;

1

uui d( AAO3FCFO- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("! Axi sError AndEnabl e C ass")
]

cocl ass Axi sError AndEnabl e

[default] interface |AxisErrorAndEnabl e;

1

[
uui d( AAO3FCF3- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("Axi sForceServo C ass")

cocl ass Axi sForceServo

[default] interface |Axi sForceServo;

1

[
uui d( AAO3FCF7- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("Axi sHomi ng O ass")

]

cocl ass Axi sHom ng

{
[default] interface | Axi sHom ng;

[
uui d( AAO3FCF9- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("Axi sJoggi ng C ass")

]

cocl ass Axi sJoggi ng
[default] interface |AxisJogging;
[
uui d( AAO3FCFB- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("Axi skKinematics C ass")
cocl ass Axi sKi nenatics
[default] interface |AxisKinenatics;
[
uui d( AAO3FCFE- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("AxisLimts C ass")
coclass AxisLimts

[default] interface | AxisLimts;

1

uui d( AAO3FDO0- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("Axi sMai nt enance C ass")
]

cocl ass Axi sMai nt enance

[default] interface |AxisMintenance;

1

[
uui d( AAO3FD02- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("Axi sPositioni ngServo C ass")

cocl ass Axi sPosi tioni ngServo

{

99
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724
725
726
727
728
729
730
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732
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[default] interface |AxisPositioningServo;

[
uui d( AAO3FDO4- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("Axi sRates C ass")

cocl ass Axi sRates

{
[default] interface |AxisRates;

1

uui d( AAO3FD06- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("Axi sSensedState C ass")
]

cocl ass Axi sSensedSt at e

[default] interface |Axi sSensedSt at e;

1

[
uui d( AAO3FD0O8- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("Axi sSetup C ass")

cocl ass Axi sSet up

[default] interface |AxisSetup;

1

[
uui d( AAO3SFDOA- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("Axi sVel ocityServo d ass")

cocl ass Axi sVel ocityServo

[default] interface | AxisVel ocityServo;

1

uui d( AAO3SFDOC- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("Axi sAbsol ut ePos C ass")

]

cocl ass Axi sAbsol ut ePos

[default] interface | Axi sAbsol ut ePos;

1

uui d( AAO3FDOE- FF08- 11D2- AAB2- 00C04FA375A6) ,
hel pstring("Axi sl ncrement Pos O ass")

cocl ass Axi sl ncrenent Pos

[default] interface |AxislncrenentPos;

1

B.15 CONTROL LAW

/1 Control Lawivbdul e.idl : IDL source for Control Lawivbdul e. dl |
I

/1 This file will be processed by the MDL tool to
/1 produce the type library (Control Lawivbdul e.tlb) and nmarshal li ng code.

i nport "oaidl.id";

import "ocidl.idl";
i nport "OmacMbdul e.idl";
[ .
obj ect,
uui d(4B179145- BC3B- 11D2- AAAA- 00C04FA375A6) ,

hel pstring("!1Control Law I nterface"),
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

poi nt er _def aul t (uni que)

]
interface | Control Law : | Omac

{

HRESULT _stdcal |l getActual Ofset([out,retval] double * val);
HRESULT _stdcal |l getActual Position([out,retval] double * val);
HRESULT _stdcall getCndOffset([out,retval] double * val);
HRESULT _stdcall getFollowi ngError([out,retval] double * val);
HRESULT _stdcal | get Qut put Conmand([out,retval] double * val);
HRESULT _stdcall getQutputOfifset([out,retval] double * val);
HRESULT _stdcal |l getScal eCffset([out,retval] double * val);
HRESULT _stdcall getSetpoint([out,retval] double * val);
HRESULT _stdcal | get Set poi nt Dot ([ out,retval] double * val);
HRESULT _stdcal | get Set poi nt Dot Dot ([out,retval] double * val);
HRESULT _stdcal | get SetpointPrine([out,retval] double * val);

HRESULT _stdcall setActual Offset([in] double k);

HRESULT _stdcall setActual Position([in] double x);
HRESULT _stdcall setCndOffset([in] double off) ;
HRESULT _stdcall setQutput Command([in] double value);
HRESULT _stdcall setQutputCOifset([in] double k);
HRESULT _stdcall setScal eOfset([in] double k) ;
HRESULT _stdcall setSetpoint([in] double X);

HRESULT _stdcall setSetpointDot([in] double Xdot);
HRESULT _stdcal | set Set poi nt Dot Dot ([i n] doubl e Xdotdot);
HRESULT _stdcall setSetpointPrine([in] double Xprine);

/1 This defines an abstract interface class definition
HRESULT _stdcal | cal cul at eQut put Command() ;
b

obj ect,
uui d(4B179148- BC3B- 11D2- AAAA- 00C04FA375A6) ,

hel pstring("1 Pl DControl Law | nterface"),
poi nt er _def aul t (uni que)

interface | PIDControl Law : | Control Law

{

HRESULT _stdcall getCycleTinme([out,retval] double * val);
HRESULT _stdcall getKaf([out,retval] double * val);

HRESULT _stdcall getKcf([out,retval] double * val);

HRESULT _stdcall getKd([out,retval] double * val);

HRESULT _stdcall getKi([out,retval] double * val);

HRESULT _stdcall getKp([out,retval] double * val);

HRESULT _stdcall getKvf([out,retval] double * val);

HRESULT _stdcall getKxprine([out,retval] double * val);

HRESULT _stdcall getintegrationLimt([out,retval] double * val);

HRESULT _stdcall setKaf([in] double k)
HRESULT _stdcall setKcf([in] double k);
HRESULT _stdcall setKd([in] double k);
HRESULT _stdcall setKi([in] double k);
HRESULT _stdcall setKp([in] double k);
HRESULT _stdcal |l setKvf([in] double k);

HRESULT _stdcall setKxprine([in] double k);

HRESULT _stdcall setlntegrationLimt([in] double integrationLimt);
HRESULT _stdcall setCycleTinme([in] double tine);

HRESULT _stdcall init();

HRESULT _stdcall reset();

HRESULT _stdcal |l cal cul at eCut put Conmand() ;

HRESULT _stdcall isConfigured([out,retval] BSTR * str);

HRESULT _stdcal |l debug();

HRESULT _stdcall toString([out,retval] BSTR * str);

HRESULT _stdcall configToString([out,retval] BSTR * str);

HRESULT _stdcall configure(BSTR filenane, BSTR section);

b
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89

90 // Now add Control LawCl assFactory so that nultiple factories

91 // can exist to create PID, or other control laws. dients

92 // look up available control |aw servers under CATI D Control Lawibdul e

93 // category. Then, the client does a CLSID | Onacd assFactory query interface on one of the
94 // Control Law nodul e servers.

95

96 cpp_quote("const CATID CATI D Control Lawivbdul e =
{ OxE1D6F9F1, OxB1FE, 0x11D2, { OxAA, 0xA8, 0x00, 0xCO0, Ox4F, 0xA3, 0x75, OxA6}}; ")

97

98 // Exanple: This CLSID is specific for one vendor, (i.e., N ST) Control Law Server

99 cpp_quote("const CLSID CLSID N STControl LawServer = { Ox24F48688, O0xE842, 0x11D2, {O0xAA, O0xB1,
0x00, 0xCO, Ox4F, O0xA3, 0x75, O0xA6}}:;")

100

101 [

102 obj ect,

103 /'l Replace this uuid with vendor-specific uuid

104 uui d( 0A70EBAC- 06D9- 11D3- AAB2- 00C04FA375A6) ,

105

106 hel pstring("! Control Lawibdul eC assFactory Interface"),

107 poi nt er _def aul t (uni que)

108 ]

109 interface | Control Lamvbdul eCl assFactory : | OmacMdul eCl assFact ory
110 {

111 extern const |ID 11D IDL_IPIDControl Law,

112 HRESULT _stdcall CreateModul e([in] BSTR name, [in] REFIID riid, [out, retval, iid_is(riid)]

void ** ppvQbj);
113 // HRESULT _stdcall CreatePl DObject([in] BSTR name, [out, iid_is(& ID IDL_IPIDControllLaw)] void

** ppvQhj);
114
115 };
116
117 [
118 uui d(4B179138- BC3B- 11D2- AAAA- 00C04FA375A6) ,
119 version(1.0),
120 hel pstring("Control Lawibdul e 1.0 Type Library")
121 ]
122 |i brary CONTROLLAWMODULELI b
123 {
124 inportlib("stdol e32.tlb");
125 importlib("stdole2.tlb");
126
127 /1 extern const GU D CATI D_Contr ol Lamvbdul e;
128 // extern const GU D CLSID_NI STControl LawSer ver;
129
130 [
131 uui d( ELD6F9ED- B1FE- 11D2- AAA8- 00C04FA375A6) ,
132 hel pstring("Control Law C ass")
133 ]
134 cocl ass Control Law
135 {
136 [default] interface |Control Law
137 interface | Omac;
138 };
139 /*
140 uui d(4B179147- BC3B- 11D2- AAAA- 00C04FA375A6) ,
141 hel pstring("Orac C ass")
142 ]
143
144 cocl ass Omac
145 {
146 [default] interface |Onac;
147 b
148 */
149 [
150 uui d( ELID6F9F1- B1FE- 11D2- AAA8- 00C04FA375A6) ,
151 hel pstring("Pl DControl Law C ass")
152 ]
153 cocl ass Pl DControl Law
154 {
155 [default] interface |PIDControl Law,
156 }s
157
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158 [
159 uui d( OA70EBAD- 06D9- 11D3- AAB2- 00C04FA375A6) ,
160 hel pstring("Control Lawibdul eCl assFactory C ass")
161 ]
162 cocl ass Control Lawvbdul eCl assFact ory
163 {
164 //[default] interface |Control Lawivbdul ed assFact ory;
165 [default] interface | OracMbdul ed assFactory;
166 interface |d assFactory;
167 )
168 };
169
170
B.16 HUMAN MACHINE INTERFACE
1 // HMMdule.idl : IDL source for HM dl|
2
3  #ifndef _ _HM Modul e__ | DL
4  #define __HM Modul e__ | DL
5 inport "oaidl.idl";
6 inport "ocidl.idl";
7 inport "OmacModule.idl";
8
9 [

obj ect,
uui d( 134A02A1- E101- 11d2- B512- AEC041D2957B) ,

hel pstring("HM Interface"),
poi nt er _def aul t (uni que)

]

interface IHM : | Omac

{
/1 Presentation Methods

NRRRRERRRRRRRE
QOVWoO~NOOUITRARWNEO

21 HRESULT _stdcall presentErrorView();
22 HRESULT _stdcall presentOperational View();
23 HRESULT _stdcall presentSetupView);
24 HRESULT _stdcall presentMai nt enanceVi ew();
25
26 // Events - to alert HM that sonething has happened
27 HRESULT _stdcall updateCurrentView);
28 1},
29
30
31 #endif
32
B.17 PROCESS MODEL
33 /1
34 // Processhodel .idl
35 //
36
37

38 #ifndef Processhodel _idl

39 #define Processhodel __idl

40 inport "oaidl.idl";

41 inport "ocidl.idl";

42 inport "DataRepresentation.idl";
43 /] Level 1

44

45 |

46

47 obj ect,

48 uui d( 134A02A0- E101- 11d2- B512- AEC041D2957B) ,
49
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50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

O©CoO~NOTOAWNE

NRRRRRRRRRRE
QOVWoO~NOOUITRARWNEO

NN NN
ArWNBE

25
26
27
28
29

hel pstring("Process Mdel Interface"),
poi nt er _def aul t (uni que)
interface | Processhbdel I Unknown

HRESULT _stdcal |
HRESULT _stdcall setUser CoordinateC fsets([in]
HRESULT _stdcall

axes group
HRESULT _stdcall set AxesCoordi nateCf fsets([in]
HRESULT _stdcall
HRESULT _stdcall
HRESULT _stdcall
HRESULT _stdcall

H

set Feedrat eOverri deVal ue([in]

set Spi nl deCverri deVal ue([in]

uui d( 134A028A- E101- 11d2- B512- AEC041D2957B) ,
version(1.0),
hel pstring("Process Mdel

]
|'i brary PROCESS MODEL_MODULE_Li b
{
importlib("stdole32.t1b");
importlib("stdole2.tlb");

get User Coor di nat eOf f set s([ out,

get AxesCoor di nat e f set s([ out,

get Feedr at eOverri deVal ue([ out,

get Spi ndl eOverri deVal ue([out, retval]
Measure feed);

retval] QGacVector ** offsets);
CacVector offsets);
retval]

CacVector ** axoff); /1 used by

CacVector offsets); /1 set by sensor process
retval] Measure ** n); // used by axisgroup
Measure feed); // used by hm

Measure ** nm); /1 used by axisgroup

/1 used by hm

Modul e 1.0 Type Library")

uui d(134A028B- E101- 11d2- B512- AEC041D2957B) ,

hel pstring("Process Mdel C ass")

]

cocl ass ProcessMdel

[default] interface |Processhbdel;

oo
#endi f

B.18 KINEMATICS

#i fndef _KINEMATICS | DL

#define _KI NEMATI CS__I DL

i nport "DataRepresentation.idl";

/1 General Agreenent: 18-Jun-1997 Sushil

obj ect,
uui d( 134A02A5- E101- 11d2- B512- AEC041D2957B) ,

hel pstring("Ki nematics Interface"),
poi nt er _def aul t (uni que)
]
interface I KinStructure :1Unknown
{
HRESULT _stdcall

_ get Pl acenent Frane([ out, retval ]
HRESULT _stdcall

set Pl acenment Frame([i n]

HRESULT _stdcal |l getBaseframe([out,retval]

HRESULT _stdcal |l setBasefrane([in]
b
[ _
obj ect,
uui d( 134A02A6- E101- 11d2- B512- AEC041D2957B) ,
hel pstring("Ki nemati c Connection Interface"),

104

Birla, Steve Sorensen

Coor di nat eFrame ** cf);

Coor di nat eFrane val ue);

Coor di nat eFranme ** cf);
Coor di nat eFranme val ue);
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30 poi nt er _def aul t (uni que)

31 ]

32 interface | KinConnection :I|Unknown
33 {

34 HRESULT _stdcall getFron{[out,retval] |KinStructure ** val ue);
35 HRESULT _stdcall setFron{[in] IKinStructure * value);
36

37 HRESULT _stdcall getTo([out,retval] IKinStructure **val ue);
38 HRESULT _stdcall setTo([in] IKinStructure * val ue);
39

40 HRESULT _stdcall getPlacenent([out,retval] CoordinateFrane ** frane);
41 HRESULT _stdcall setPlacenent([in] CoordinateFrane val ue);
42},

43

44

45 [

46 obj ect,

47 uui d( 6735BEA5- EDA7- 11d2- AAB1- 00C04FA375A6) ,

48

49 hel pstring("Ki nemati ¢ Connections |nterface"),

50 poi nt er _def aul t (uni que)

51

52 interface | EnunKi nConnections : | Unknown

53 {

54

55 typedef [unique] |KinConnection *LPENUMCONNECTI ON;
56

57 [l ocal]

58 HRESULT Next (

59 [in] ULONG celt,

60 [out] I KinConnection **rgelt,

61 [out] ULONG *pcel t Fetched);

62

63 [cal | _as(Next)]

64 HRESULT Renot eNext (

65 [in] ULONG celt,

66 [out, size_is(celt), length_is(*pceltFetched)]
67 | Ki nConnection **rgelt,

68 [out] ULONG *pcel t Fet ched);

69

70 HRESULT Ski p(

71 [in] ULONG celt);

72

73 HRESULT Reset ();

74

75 HRESULT d one(

76 [out] | KinConnection **ppenumn;

7}

78

79 interface |EnunKi nMechani sns;

80

81 [

82 obj ect,

83 uui d( 134A02A7- E101- 11d2- B512- AEC041D2957B) ,

84

85

86 hel pstring("Ki nMechani sm I nterface"),

87 poi nt er _def aul t (uni que)

88

89 interface |Ki nMechani sm: | Unknown

90 {

91 HRESULT _stdcall forwardKinematicTransforn{[in] |Enunki nConnections * cn);
92

93 HRESULT _stdcall inverseKinematicTransforn{[in] CoordinateFrane cf,
94 DWORD si ze_vect or,

95 [out,retval,size_is(,size_vector)] double ** vector);

96

97 HRESULT _stdcall getConnections([out,retval] |Enunki nConnections ** c);

98 HRESULT _stdcall setConnections([in] |EnunKinConnections * val ue);

99

100 HRESULT _stdcall getKi nmechani sns([out,retval] |EnunKi nMechani snms ** mechs);
101 HRESULT _stdcall setKinmechanisnms([in] |EnunKi nMechani sns * val ue);

102 };
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103

104

105 // FIXME: A tenplate would map into | DL sequence

106 //typedef RWIPtrSlist<Ki nMechani s> Ki nMechani sis;

107 // FIXME: add graph/tree traversal functions

108

109

110 // Notes:

111 // 1. For various specilizations of inverseKi nematicTransformn()
112 // Specialize KinMechani sm and extend as needed.

113 [

114 obj ect,

115 uui d(949F889D- EDA8- 11d2- AAB1- 00C04FA375A6) ,

116

117 hel pstring("Enum Ki nenati c Mechani sns Interface"),
118 poi nt er _def aul t (uni que)

119 ]

120 i nterface | EnunKi nMechani sms : | Unknown

121 {

122

123 typedef [unique] |Ki nMechani sm * LPENUMKI NVECHANI SM
124

125 [l ocal]

126 HRESULT Next (

127 [in] ULONG celt,

128 [out] |KinMechanism**rgelt,

129 [out] ULONG *pcel t Fet ched);

130

131 [cal | _as(Next)]

132 HRESULT Renot eNext (

133 [in] ULONG celt,

134 [out, size_is(celt), length_is(*pceltFetched)]
135 | Ki nMechani sm **rgel t,

136 [out] ULONG *pcel t Fetched);

137

138 HRESULT Ski p(

139 [in] ULONG celt);

140

141 HRESULT Reset ();

142

143 HRESULT d one(

144 [out] | Ki nMechani sm **ppenun);

145 };

146 [

147 uui d( 134A02A8- E101- 11d2- B512- AEC041D2957B) ,

148 version(1.0),

149 hel pstring("Ki nematics Mdule 1.0 Type Library")
150 ]

151 li brary KI NEVATI CS_MODULE Li b

152 {

153 inportlib("stdole32.tlb");

154 inportlib("stdole2.tlb");

155

156 [

157 uui d( 134A02A9- E101- 11d2- B512- AEC041D2957B) ,
158 hel pstring("Ki nematics C ass")

159 1

160 coclass KinStructure

161

162 [default] interface |KinStructure;

163 1

164

165 [

166 uui d( 134A02AA- E101- 11d2- B512- AEC041D2957B) ,
167 hel pstring("Connection C ass")

168

169 cocl ass EnunKi nConnecti on

170

171 [default] interface |EnunkKi nConnecti ons;
172 };

173

174 [

175 uui d( 134A02AB- E101- 11d2- B512- AEC041D2957B) ,
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176 hel pstring("Ki nMechani sm C ass")

177 ]

178 cocl ass Ki nMechani sm

179

180 [default] interface |Ki nMechani sm

181 };

182

183 [

184 uui d( EBD7EEBF- EDA9- 11d2- AAB1- 00C04FA375A6) ,
185 hel pstring("Kin Mechani sns Collection C ass")
186

187 cocl ass EnunKi nMechani sns

188 {

189 [default] interface | EnunkKi nMechani sns;
190 };

191

192 };

193

194

195 #endi f

196

197

B.19 SCHEDULING UPDATER

i nport "oaidl.id";
import "ocidl.idl";

obj ect,
uui d( B64988A7- EDC3- 11d2- AAB1- 00C04FA375A6) ,

O©CoO~NOOAWNE

hel pstring(" TaskCoordi nator Interface"),
poi nt er _def aul t (uni que)

]

interface |Updatable : | Unknown

HRESULT _stdcall getPeriod([out,retval] double ** val ue);
HRESULT _stdcall setPeriod([in] double aPeriod);
HRESULT _stdcall update();

NRRRRERRRRRRRE
CQOVWoO~NOOUITRARWNEO

b
[ :
obj ect,

21 uui d( EO5FAB5D- EDC3- 11d2- AAB1- 00C04FA375A6) ,
22
23 hel pstring(" TaskCoordi nator |nterface"),
24 poi nt er _def aul t (uni que)
25
26 interface | AsynchUpdater : |Unknown
27
28 HRESULT _stdcall registerUpdatable([in] |Updatable * upd);
29 HRESULT _stdcall update();
30 };
31
32 |
33 obj ect,
34 uui d(134A0280- E101- 11d2- B512- AEC041D2957B) ,
35
36 hel pstring(" TaskCoordi nator |nterface"),
37 poi nt er _def aul t (uni que)
38 ]
39 interface |PeriodicUpdater : |AsynchUpdater
40
41 HRESULT _stdcall getTiminglnterval ([out, retval] double ** val ue);
42 |/ /*no virtual */ voi d update();
43 };
44
45
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