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EXECUTIVE SUMMARY 

Open modular architecture controller technology offers great potential for integration of 
process improvements and better satisfaction of application requirements. With an open 
architecture, controllers can be built from best value components from best in class services. 
The need for open-architecture controllers is high, but vendors are slow to respond. One 
reason for the delay in industry action is that no clear open-architecture solution has evolved. 
In an effort to promote open architecture control solutions, a workgroup within the Open 
Modular Architecture Controller (OMAC) users group is working on defining an OMAC 
Application Programming Interface (API). The goal of the OMAC API workgroup is to specify 
standard APIs for a set of open architecture controller components. This document contains 
background information, design methodology and actual API definitions. 
As background, the following material will be presented: 

• OMAC API definition of open architecture 
• advantages and impediments to open architectures 
• overview of the OMAC API reference model. 

At a high level of conceptual design, the OMAC API reference model will be presented and 
includes the following items: 

• OMAC API core modules 
• application framework 
• application design and examples.  

The OMAC API reference model does not specify a reference architecture. Instead, modules 
can be freely connected. In lieu of a reference architecture, the document includes several 
reference examples. 
At a detailed level of design, the OMAC API specification methodology will be presented and 
subscribes to the following principles: 

• API programming abstraction is used 
• Object Oriented techniques for encapsulation, inheritance, specialization and 

object interaction are applied 
• Client/Server is the communication model 
• Proxy Agents provide transparency of distributed communication 
• Finite State Machine (FSM) is the behavior model 
• Finite State Machine (FSM) are passed as data to then provide control 
• Reusability of software components is achieved through foundation classes 
• System objects are mirrored in human machine interface 
• No specification of an infrastructure is attempted instead a commitment to a 

PLATFORM + OPERATING SYSTEM + COMPILER + LOADER + 
INFRASTRUCTURE SUITE is necessary for it to be possible to swap modules. 

 . 
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1. BACKGROUND 

Most Computer Numerical Control (CNC) motion and discrete control applications incur high cross-
vendor integration costs and vendor-specific training. On the other hand, in a modular, standards-
based, open-architecture controller modules can be added, replaced, reconfigured, or extended based 
on the functionality and performance required. Modifications to a module should provide equivalent 
or better functionality as well as offer different performance levels. Ideally, the module interfaces 
should be vendor-neutral, plug-compatible and platform independent. 
However, it is important to note that openness alone does not achieve plug-and-play. One vendor’s 
idea of openness need not be the same as another vendor’s. Openness is but one step towards plug-
and-play. In reality, plug-and-play openness is dependent on a standard. This leads to the following 
definition of an open architecture controller: 
 
An open architecture control system is defined and qualified by its ability to satisfy the 
following requirements: 
Open provides ability to piece together systems from components, provides ability to modify the way 
a controller performs certain actions, and provides ability to start small and upgrade as a system 
grows. 

Modular refers to the ability of controls users and system integrators to purchase and replace 
controller modules without unduly affecting the rest of the controller, or requiring extended 
integration engineering effort.  

Extensible refers to the ability of sophisticated users and third parties to incrementally add 
functionality to a module without completely replacing it.  

Portable refers to the ease with which a module can run on different platforms.  

Scalable allows different performance levels and size based on the platform selection. Scalability 
means that a controller may be implemented as easily and efficiently by systems integrators on a 
stand-alone PC, or as a distributed multi-processor system to meet specific application needs.  

Maintainable supports robust plant floor operation (maximum uptime), expeditious repair (minimal 
downtime), and easy maintenance (extensive support from controller suppliers, small spare part 
inventory, integrated self-diagnostic and help functions.)  

Economical allows the controller of manufacturing equipment and systems to achieve low life cycle 
cost.  

Standard Interfaces allow the integration of off-the-shelf hardware and software components and 
a standard computing environment to build a controller. Standard interfaces are vital to plug-and-
play.  
Degree of openness can be evaluated by comparing a claim of openness against the above 
requirements. Herein, the concept of an open-architecture control system that supports openness, 
and the auxiliary requirements will be identified as “open, openness or open architecture.” 

1.1 ADVANTAGES OF OPEN ARCHITECTURE TECHNOLOGY 

Based on specific instances of problems encountered by users of proprietary controllers, the following 
list of open-architecture requirements was generated. An open architecture should be able to do the 
following: 

• provide a migration path from existing practices; 
• allow an integrator/end user to add, replace, and reconfigure modules; 
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• provide the ability to modify spindle speed and feed rate according to some user-
defined process control strategy; 

• allow access to the real-time data at a predictable rate up to the servo loop rate; 
• allow full 3-D spatial error correction using a user-defined correction strategy; 
• decouple user interface software and control software and make control data 

available for presentation; 
• provide capability to integrate controller with other intelligent devices; 
• increase the ability for 3rd party software enhancements. Examples of 3rd party 

enhancements include: 
∗ replace a PID control law with a more sophisticated Fuzzy Logic control law 
∗ collect servo response data with a 3rd party tool, and set tuning parameters in 

the appropriate control law 
∗ add a force sensor, and modify the feed rate according to a user defined process 

model 
∗ perform high resolution straightness correction on any axis 
∗ replace the user interface with a 3rd party user interface that emulates a user 

interface familiar to your machine operators.  
 
The initial validation strategy for the OMAC API would be to insure that this list of 
capabilities can be addressed. 

1.2 IMPEDIMENTS TO OPEN ARCHITECTURE TECHNOLOGY 

It is difficult to define a controller specification that is safe, cost-effective, and supports real-time 
performance.  
A specification cannot be an island of technology. To be successful, a specification must satisfy legacy 
needs, factor in current practices, as well as anticipate evolving technologies. Attaining an open 
architecture specification that is flexible and isn’t biased toward legacy or emerging technology can 
be hard.  
Of great importance within the controls domain is the requirement for guaranteed, hard-real-time 
performance. Without this, safety is at risk. Safety is a major concern voiced within the controller 
industry that is especially concerned with the issues of liability and allocation of responsibility 
within an open architecture paradigm. Industry would have to adopt new practices for open 
architecture controllers. A greater responsibility would be placed on the integrator. Conformance 
testing would play a larger role. Conformance could require regression and boot-up testing and 
verification procedures to guarantee proper operation.  
A further hindrance is the fact that modules are not “self-contained.” Defining an infrastructure 
within which the modules can operate is necessary and quite difficult. An infrastructure is defined 
as the services that tie the modules together and allow modules to use platform services. The 
infrastructure is intended to hide specific hardware and platform dependence; however, this is often 
difficult to achieve.  
Containing the scope of the specification is also difficult. Openness goes beyond run-time APIs. There 
can be “other” APIs, including configuration, integration, and initialization. As an example, consider 
the simple use of a math library API. Even there, specification of the math library implementation 
must be done to select either a floating point processor or software emulation.  
Finally, group and industry dynamics can be a problem. From a workgroup perspective, getting 
people to agree can be a challenge because there are difficult trade-offs in modularization, scope, life 
cycle benefits, costs, time to market, and complexity. It is recognized that industry will find it 
difficult to adopt the OMAC paradigm, due to entrenchment in the legacy of prior implementations, 



THE OMAC API SET WORKING DOCUMENT 

 VERSION 0.16 

  OCTOBER 12, 1999  3

the “comfort zone” of past practice and culture, the investment hurdle to effect change, and the 
shortage of skilled resources. Proper acculturation, training and education of people and an orderly 
introduction, demonstration, deployment, and scale-up will be needed to realize the potential 
benefits. From an industry perspective, many companies do not perceive any direct benefit from an 
open architecture. Overcoming the workgroup inertia and industry skepticism by promoting and 
demonstrating the benefits of open architecture remains a fundamental key to open architecture 
acceptance.  
 

2 REFERENCE MODEL 

The OMAC API requirements were derived from the OMAC or “Open Modular Architecture 
Controller” requirements document [OMA94]. The OMAC document describes the problem with the 
current state of controller technology and prescribes open modular architectures as a solution to 
these problems. OMAC defines an open architecture environment to include Platform, 
Infrastructure, and Modules. 
In the interest of flexibility, scalability, and reusability, OMAC API does not specify a fixed 
architecture. Instead, OMAC API assumes a reference model described by this abstraction hierarchy: 

• Foundation Classes 
• Modules 
• Architectural Design 
• Detailed Design Framework 

The Foundation Classes are derived from decomposing a generic controller into classes. These 
classes define the controller class hierarchy. Foundation classes are then grouped into Modules that 
become plug-and-play components. A controller is generated by selecting from different 
implementations of OMAC Modules containing object implementations of the foundation classes. A 
system design is divided into two phases. The first phase is Architectural Design and deals with 
system decomposition into OMAC Modules. The second phase is called Detailed Design and is 
responsible for detailing individual object API, that is, the object attributes and methods. In this 
case, the design uses the OMAC API or extends the API to suit the application. 
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2.1 FOUNDATION CLASSES 

Primitive Data Types (int,double, etc.)

Units Measures Containers
(matrix)(length)(meter)

Geometry
(coordinate frame; circle)

Kinematic structure

Control components
(pid; Filters)

Axis components
(sensors, actuators)

Machine tool axis or robotic joints
(translational; rotational)

Axis groups Fixtures
Other tooling

Simple machines; tool-changers; work changers Processes

PlansMachining systems/cells; workstations

 
Figure 1: Controller Class Hierarchy 

The decomposition of a generic controller into classes spans many levels of abstraction and has 
elements for motion control and discrete logic necessary to coordinate and sequence operations. 
Figure 1 portrays the class hierarchy derived from a controller decomposition. At the lower levels, 
the Foundation Classes are the building blocks that may be found in multiple modules. For example, 
the class definition of a Geometry “position” would be found in most modules. Moving up the 
hierarchy, the Foundation Classes broaden their scope to define device abstractions for such motion 
components as sensors, actuators, and PID control laws. As the scope broadens however, not all 
software objects have physical equivalents. Objects such as axis groups are only logical entities. Axis 
groups hold the knowledge about the axes whose motion is to be coordinated and how that 
coordination is to be performed. Services of the appropriate axis group are invoked by user-supplied 
plans. 
Within Foundation classes, OMAC API define base classes and add to the base classes using the 
Object Oriented concept of inheritance to define derived classes. OMAC API also uses inheritance to 
maintain levels of complexity. Level 1 constitutes base functionality seen in current practice. Level 2 
constitutes functionality expected of advanced practices. Higher levels constitute advanced capability 
seen in emerging technology, but unnecessary for simple applications. 

2.2 MODULES 

OMAC API defines a module to have the following characteristics: 
• significant piece of software used in composing controller 
• grouping of similar classes 
• well-defined API 
• well-defined states and state transitions 
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• replaceable by any piece of software that implements the API, states, and state 
transitions.  

Using the OMAC Specification [OMA94] as a baseline, Figure 2 diagrams the OMAC API Modules 
including a brief description of a module’s general functional requirements. The Modules have the 
following general responsibilities: 
Axis modules are responsible for servo control of axis motion, transforming incoming motion 
setpoints into setpoints for the corresponding actuators. 

Axis Group modules are responsible for coordinating the motions of individual axes, transforming 
an incoming motion segment specification into a sequence of equi-time-spaced setpoints for the 
coordinated axes.  

OMAC Base Class provides a uniform API base class for an OMAC module. The OMAC base class 
defines a state model and methods for start-up and shutdown. The OMAC Base Class defines a 
uniform name and type declaration and provides an error-logging interface. The OMAC Base Class 
maintains a global directory service for name lookup and reference binding.  

Capability is an object to which the Task Coordinator delegates for specific modes of operation. 
Capability corresponds to the traditional CNC modes (AUTO, MANUAL, MDI, etc.) At the Capability 
Level, there is no coordination between Capabilities. A Capability is a Control Plan Unit (see Control 
Plan module) with the distinction being that a Capability is Control Plan Unit associated with a Task 
Coordinator module.  

Control Law components are responsible for servo control loop calculations to reach specified 
setpoints.  

Control Plan consists of a series of related Control Plan Units (CPU) and forms the basis of 
control and data flow within the system. A Control Plan Unit is a base class that contains finite state 
logic. A Motion Segment is a derived class of Control Plan Unit for motion control. Discrete Logic 
Unit is a derived class of Control Plan Unit for discrete logic control. Capability is a derived class of 
Control Plan Unit used within a Task Coordinator and because it is such a significant piece of 
software, it is also considered an OMAC API module.  
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Control Plan Generator modules are responsible for translating application programs into Control 
Plans. As examples, programs written in the RS274D [RS274] and IEC 1131-3 [IEC93] languages 
can be translated into Control Plans.  

Discrete Logic modules are responsible for implementing discrete control logic or rules that can be 
characterized by a Boolean function from input and internal state variables to output and internal 
state variables. More than one discrete logic module is permitted, but not necessary. Multiple 
discrete logic modules is similar to having many PLC’s networked together within the same 
computing platform.  

Human Machine Interface (or HMI) modules are responsible for human interaction with a 
controller including presenting data, handling commands, and monitoring events. Defining a 
presentation style (e.g., GUI look and feel, or pendant keyboard) is not part of OMAC API effort.  

• trajectory following (loop
closure)

• gain tuning

Control Law

• kinematics calculations
• coordinate system

translations
• kinematics coordinate

transformation
• tool offsets, tool radius

correction
• other kinematic

compensations

Kinematics

• multi-axis coordination
• block look-ahead
• velocity profile generation
• feedhold
• stop

Axis Group

• specialization of finite state
machine

• graph of Control Plan units
or nested control plans

• units are control instructions

Control Plan

• Controlling one axis of
motion

• uses control law
• servo compensation
• axis properties
• axis state

Axis

• feedrate override
• spindle speed override

Process Model

• remote access
• transfer file across network
• program invocation and job

control (e.g. start, stop,
pause, etc. program)

• event monitoring

Machine-to-Machine

• specialization of finite state
machine

• perform 1131-like functions
• mode switching

Discrete Logic

• read/write data
• data subscription
• data notification
• sensor integration
• domain-independent data

sampling

IO Points

• specialization for IEC1131,
RS274D, etc.

• generate control plan

Control Plan Generator

• start-up / shutdown
• system snapshot
• mode selection
• configuration
• diagnostics
• maintenance
• setup

Human-Machine Interface

• naming, version control
• directory and naming

services

OMAC Base Module

• Coordination control plan
units

• corresponds to NC operating
modes

• operates independently of
other capabilities

Capability

• specialization of finite state
machine

• start-up, shut-down
sequencing

• task coordination
• control cycling (i.e. request
next unit from control plan)

• error-logging

Task Coordination

 
Figure 2: OMAC Modules  
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I/O Points are responsible for the reading of input devices and writing of output devices through a 
generic read/write interface. The goal is to provide an abstraction for the device driver. Logically 
related IO may be clustered within a Discrete Logic module.  

Kinematics Models modules are responsible for geometrical properties of motion. Computing 
forward and inverse kinematics, mapping and translating between different coordinate systems, 
applying geometric correction and tool offsets, and resolving redundant kinematic solutions are 
examples of kinematic model functionality.  

Machine-to-Machine modules are responsible for connecting and communicating to controllers 
across different domains (address spaces). An example of this functionality is the communication 
from a Shop Floor controller to an individual machine controller on the floor.  

Process Model is a module that contains dynamic data models to be integrated with the control 
system. Process control modules (not detailed by this specification) produce adjustments or 
corrections to nominal rates and path geometry. Feedrate override and thermal compensation are 
examples of process model functionality. The process model is crucial to the concept of extensible 
open systems.  

Task Coordinator modules are responsible for sequencing operations and coordinating the various 
motion, sensing, and event-driven control processes. The task coordinator can be considered the 
highest level Finite State Machine in the controller.  

Some clarifying observations about modules include:  

• Interchangeable modules may differ in their performance levels. 
• Modules may provide more functionality (added value) than required in the 

specification. Specialization of a module interfaces is the mechanism to achieve 
additional functionality. 

• A controller may have more than one instance of a module. 
• Modules can be explicitly control-related (e.g., Axis) or be inheritance-related 

encapsulating common functionality (e.g., OMAC Base Class.) 
• Modules do not need to run as separate threads (or intelligent agents.) Systems can 

be built from a single thread of execution. 
• Modules can contain multiple threads of execution. 
• Modules may be used to build other components. For example, a discrete mechanism, 

such as a tool changer component, can be built using OMAC modules. 
• Multiple instances of a module are required to handle different configurations. For 

example, assume a system with 3 axes x, y, z and a spindle. Three Axis Group 
objects would be created at configuration time, ag1, ag2, ag3, with the following 
configuration: 

ag1: x, y, z 
ag2: spindle 
ag3: x, y, z, spindle 
 

For most machining where the motion control and the spindle are loosely related, references to ag1 
and ag2 would be used. However to do a Rigid Tap requiring tight synchronization of the spindle and 
motion, a reference to ag3 would be used. 

2.3 ARCHITECTURAL DESIGN 

Since there is no explicit OMAC reference architecture, composing a system architecture from OMAC 
modules is left to the developer. This offers much flexibility, but without guidance, can be confusing. 
This section will give some application architecture examples for clarification. This section starts 
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with a simple application and then develops a series of examples to illustrate the stages of 
development one might encounter when building an application architecture. The examples 
highlight the static relationship between OMAC modules (as opposed to the data flow.) However, an 
underlying assumption is directives flow from top to bottom. 
2.3.1 OPERATOR CONTROL OF A SET OF IO POINTS EXAMPLE 

The simplest case is an operator controlling several IO points. The OMAC API model allows the 
connection of a Human Machine Interface (HMI) object to several IO points. Figure 3 shows the 
simple connection between HMI and IO points. Within the diagram, an arrow indicates a reference 
from one object to another. 
The rationale for such a simple example is to show that the OMAC API is not monolithic, and a small 
system together can be put together. With this ability, OMAC systems can start small and be pieced 
together. 

HMI

IO POINTS
 

 Figure 3: Operator Control of a Set of IO Points 

2.3.2 ONE AXIS BOOTSTRAP 

After establishing an HMI and IO connection, the natural progression in building a CNC machine 
tool controller is to add an axis of motion under manual control. This scenario is typical in offline 
assembly and testing of an axis that may eventually be assembled in a multi-axis CNC machine tool. 
Jogging and Homing are the primary functionality used. At this point, there is no coordination with 
any other motion, mechanism, or state in the NC machine tool. During this stage of the assembly of a 
machine tool, it is also helpful to perform the calibration, tuning, or health monitoring tests. 
The Axis Module coordinates IO points. Assume that the IO points will consist of a PWM motor 
drive, an amplifier enable control, an amplifier fault status signal, an A-QUAD-B encoder with 
marker pulse and switches for home and axis limits. Figure 4 shows a one-axis system that uses two 
Control Laws, one for PID control of Position, and another to do PID control of velocity. The Axis will 
output accelerations to the actuator and read encoder values through IO points referenced by the 
Axis module. For operator control of the axis, an HMI module mirrors exists for the Axis module as 
well as mirrors for each Control Law module. The mirrors provide a snapshot of control system 
objects and use proxy agents for communication.  
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AXIS
HMI

AXIS

IO POINTS IO POINTS

Control Law
HMI

Control Law
HMI

PID
Control Law

PID
Control Law

(Position)

(Velocity)

Method

 
Figure 4: Simple, Single Axis, Jog/Home Only System 

2.3.3 PROGRAMMABLE LOGIC EXAMPLE 

Consider a case of work-handling equipment that provides peripheral functions for a CNC machine 
tool. The equipment includes two hydraulically actuated, two-position on-off mechanisms, named, 
Loader and Unloader. Let their sensing, actuation, and control be under a Discrete Logic module, 
named LUNL whose sequence of operations was originally specified in some manner conforming to 
IEC 1131-3, and subsequently translated into a Control Plan Unit, named CPlunl. 
  

Discrete Logic
HMI

Discrete Logic

IO POINTS IO POINTS IO POINTS

Control Plan
Generator HMI

Control Plan
Generator
(1131-3)

Control Plan

Control Plan

Programming
Phase

Run Time
Phase

 
 

Figure 5: Loader/Unloader Discrete Logic Control 

Figure 5 illustrates the relationship of different OMAC modules within this LUNL application. 
Within the block diagram, two phases, Programming Phase and Run Time Phase, are shown. 
However, other phases are to be considered including a Configuration Phase and an Initialization 
Phase. The following steps sketch the different phases of system development. 

I. In the Programming phase, 

a. Develop IEC 1131-3 code that performs logical mapping of IO functionality 

b. Generate a number of Control Plan Units (CPU), possibly one associated with each state.  

c. Group Control Plan Units to become a LUNL Control Plan (i.e., CPlunl) 
 

II. At configuration phase, 
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a. Perform physical mapping of IO functionality 

b. Load Control Plan into the Discrete Logic Module 
 

III. At initialization phase,  

a. Resolve external object and module references 

b. Register events 
 

IV. At runtime phase, 

a. Clients (e.g., HMI or IO Points) generate events 

b. The LUNL Discrete Logic Module executes each ControlPlanUnit at an assigned scan 
rate. A ControlPlanUnit executes as a Finite State Machine (FSM). 

 
2.3.4 DRILLING MOTION CONTROL EXAMPLE 

An example describing programmed NC for one-axis drilling will be developed. A typical one-axis 
drilling workstation would perform holeworking operations, e.g., drilling with a spindle drill-head, 
boring a precision bore, counter-boring the bored hole, or probing the (axial) location of the 
counterbored shoulder. 
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Figure 6: Drilling Example 

Figure 6 illustrates the module and component relationships for a drilling application. Z motion 
requires an Axis module for servoing and an AxisGroup module for Cartesian motion. Spindle control 
requires another Axis module to interface to drive components assumed to provide a facility for 
setting spindle speed and direction and to start and stop spindle rotation. The Spindle requires an 
Axis Group for rate and override control. A third Axis Group is necessary for synchronized control of 
both the Motion Axis and the Spindle Axis (shown as shaded with dashed line connections). 
Generally, the Spindle Axis will not need a Control Law, however, when it is synchronized with 
motion it will require servoed control. 
 
In the diagram, a Task Coordinator exists to provide program control. A ControlPlanGenerator 
module translates a part program into ControlPlanUnits. The primary command communication 
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between modules is reflected in the diagrams by showing the keyword Method or 
ControlPlanUnits (which uses a method to pass it) next to an arrow. A Discrete Logic Module, 
typical of the previous example, exists as an equivalent for part loading and unloading, as well as 
machine state (e.g., temperature, estop). To improve predictability and reduce variation, a Process 
Model module will exist to integrate sensing and control to prevent tool breakage by monitoring 
spindle torques and thrust forces. A simple Kinematics module exists to model the workspace and 
handle different tool offsets and part placements. 

2.4 DETAIL DESIGN FRAMEWORK 
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Figure 7: Design Framework 

The Detailed Design is responsible for detailing individual object API, that is, the object attributes 
and methods. At this phase, one determines which objects are available, the extent of object 
capabilities, and whether the objects need to be bought or built. This phase corresponds to putting a 
system together with the OMAC API Framework. Frameworks are object-oriented technology 
consisting of sets of prefabricated software and building blocks that are extensible and can be 
integrated to execute well-defined sets of computing behavior. Frameworks are not simply collections 
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of classes. Rather, frameworks come with rich functionality and strong “pre-wired” interconnections 
between the object classes. 
This contrasts with the procedural approach where there is difficulty extending and specializing 
functionality; difficulty in factoring out common functionality; difficulty in reusing functionality that 
results in duplication of effort; and difficulty in maintaining the non-encapsulated functionality. 
With frameworks, application developers do not have to start over each time. Instead, frameworks 
are built from a collection of objects, so both the design and the code of a framework may be reused. 
In the OMAC API Framework the prefabricated building blocks are the implementations of 1) OMAC 
modules and 2) framework components (e.g., ControlPlanUnits). As a simple example, Figure 7 
illustrates a Detailed Design for assembling a controller application. An application developer buys 
modules and components as commercial off-the-shelf (COTS) technology. Then, the application 
developer configures the modules and “puts the pieces together” by linking the purchased COTS “.o” 
object files. 
Modules are configured based on their references to other objects. For the Axis modules in the 
example, references are needed for position (P), velocity (V) or torque (T) Control Law modules. 
These references could be to objects in software, hardware or some combination of hardware and 
software. For software P control, a Control Law object from the Software set is selected. For 
hardware P control, a Control Law object from the SERCOS[IEC95] set is selected. The applications 
developer is also responsible for mapping the logical IO points onto physical devices (e.g., D/A or 
CanBus). 
Modules are also configured based on the selection of Control Plan Units (CPU) that define module 
responsibilities. Within the example, there is a Task Coordinator module that has containers for 
inserting Capability CPU (in the figure represented by a -C- framed by a diamond). The Capabilities 
include Manual, Automatic or Jogging. The application developer is free to put one or more of these 
Capabilities into the Task Coordinator or develop a unique Capability. For Control Plan Generator 
and Axis Group, the application developer is already provided Line and Arc CPU but can plug in 
NURB or Weave CPU. 
Using the OMAC API Framework, application development involves three groups: 
Users define the behavior requirements and the available resources. Resources include such items 
as hardware, control and manufacturing devices, and computing platforms. For behavior, the user 
defines the performance and functionality expected of the controller. Performance includes such 
characteristics as speed or accuracy. Functionality defines the controller capability such as the 
ability to handle planar part features versus complex part features. 

System Integrators select modules and framework components to match the application 
performance and functional requirements. The system integrator configures the modules to match 
the application specification. The system integrator uses an integration architecture to connect 
modules and verify system operation. The system integrator also checks compliance of modules to 
validate the user-specification of performance and timing requirements.  

Control Component Vendors provide module and framework component products and support. 
For control vendors to conform to an open architecture specification, they would be required to 
conform to several specifications including the following:  

• customer specifications 
• module class specification 
• system service specification 

The system service describes the platform and infrastructure support (such as communication 
mechanisms) and the resources (disks, extra memory, among others) available. Computer boards 
have a device profile that includes CPU type, CPU characteristics and the CPU performance 
characteristics. Included within the profile is the operating system support for the CPU. A spec sheet 
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or computing profile [SOS94] is required to describe the system service specification that would 
include such areas as platform capability, control devices, and support software. 
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3 SPECIFICATION METHODOLOGY 

The primary goal of the OMAC API workgroup is to define standard API for the Modules. This 
section will refine the concept of  “API” and describe the OMAC API specification methodology. The 
API specification methodology applies the following principles: 
• Stay at API level of specification. Use IDL or MIDL to define interfaces. 

• Use Object Oriented technology. 
• Use general Client Server communication model, but use state-graph to model state 

behavior. 
• Use Proxy Agents to hide distributed communication. 
• Do not specify an infrastructure. 
• Finite State Machine (FSM) is model for data and control. 
• Mirror system objects in human machine interface. 

The following sections will discuss these principles. 

3.1 API SPECIFICATION 

API stands for Application Programming Interface, and refers to the programming front-end to a 
conceptual black box. The API consists of  a list of signatures per black box. A signature specifies 
the front-end with a function name, calling sequence, and return parameter. For example, “double 
cos(x)” specifies a cosine signature. The API is concerned with the signature, not the 
implementation. For the cosine, implementation could be it table-lookup or Taylor series. However, 
the API does specify performance,  which in turn, affects the implementation. For the cosine API, 
performance may dictate speed over accuracy so that computing a cosine should be as fast and not 
necessarily as accurate as possible. 
A standard API is helpful because programming complexity is reduced when one alternative exists 
as opposed to several. For example, the cosine signature is generally accepted as cos(x) , not 
cosine(x) . This is a small but significant standardization. At a programmatic level, the importance 
of a standard API can be seen within the Next Generation Inspection Project (NGIS) at NIST[NGI]. 
The NGIS project has integrated three commercial sensors and one generic sensor into the 
Coordinate Measuring Machine controller. Each sensor had a different “front-end” - one had a 
Dynamically Linked Library (.DLL) interface, one had a memory mapped interface, one had a 
combination port and memory mapping. None of the sensors had the same API. Yet, all of the 
sensors were “open.” 
APIs can be defined in any number of programming languages. This creates a problem when defining 
a standard API since the controller industry uses a variety of languages and platforms. OMAC API 
chose IDL, (Interface Definition Language) [COR91] or MIDL (Microsoft IDL) [MIDL] ,  as its 
specification language since it solves this problem. IDL is a technology-independent syntax for 
describing interfaces. In IDL, interfaces have attributes (data) and operation signatures (methods). 
IDL supports most object-oriented concepts including inheritance. IDL translates to object-oriented 
(such as C++ and JAVA) as well as non-object-oriented languages (such as C). IDL specifications are 
compiled into header files and stub programs for direct use by application developers. The mapping 
from IDL to any programming language could potentially be supported, with mappings to C, C++, 
and JAVA available. 
To clarify the problem of unifying the specification, consider the mapping of the OMAC API IDL onto 
three different validation testbeds. Figure 8 illustrates mapping IDL to the different implementation 
strategies. For ICON, the standard API in IDL has to be mapped into JAVA. At the University of 
Michigan, they are using the ROSE CASE tool to design their controller. ROSE accepts C++ header 
through a reverse engineering process. At the NIST testbed, the IDL will be translated into C++ 
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headers and use the Enhanced Machine Controller and its infrastructure[PM93]. For these three 
implementations, only the IDL specification can be mapped into all the languages needed to support 
the applications. 
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Figure 8: Specification Language Mapping 

3.2 OBJECT ORIENTED TECHNOLOGY 

OMAC API uses an object-oriented (OO) approach to specify the modules’ API with class definitions. 
The following terms will define key object-oriented concepts. A class is defined as an abstract 
description of the data and behavior of a collection of similar objects. Classes aggregate data and 
methods.  Class definitions offer encapsulation hiding details of a classes implementation. An 
object is defined as an instantiation of a class. For example, SERCOS-Driven Axis describes an 
instance of an Axis class in the running machine controller. A three-axis mill would have three 
instantiations of that class - the three objects implementing that class. An object-oriented 
program is considered a collection of objects interacting through a set of published APIs. A by-
product of the object-oriented approach is data abstraction, which is an effective technique for 
extending a type to meet programmer needs. 
3.2.1 INHERITANCE 

Inheritance is useful for developing data abstraction. OO classes can inherit the data and methods 
of another class through class derivation. The original class is known as the base or supertype 
class and the class derivation is known as a derived or subtype class. The derived class can add to 
or customize the features of the class to produce either a specialization or an augmentation of the 
base class type, or simply to reuse the implementation of the base class. To achieve a object-oriented 
framework strategy[Le95], all OMAC API class signatures (methods) are considered “virtual 
functions.” Virtual functions allow derived classes to redefine an inherited base class method. 
To illustrate inheritance, consider the case of a simplified Axis module acting as a server. Assume 
that the Axis API only allows the functionality to set a variable x. The following sketches a base and 
a derived Axis class definition. 

class Axis 
{ 
  virtual void setX(float x); 
private: 
  double myx; 
} 
 
application() 
{ 
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  Axis ax1; 
  ax1.setX(10.0); 
} 
 

To extend the base server class, a class myAxis is derived to add an offset to its X value before 
each set. This could also be achieved on the server side if so desired. 

class myAxis : public Axis 
{ 
        virtual void setX(float x){ x= x + offset; Axis::setX(x); } 
  private: 
        double myx; 
        double offset; // set elsewhere for offset calculation 
} 
 
application() 
{ 
        Axis ax1; 
        myAxis ax2; 
        double val=1.0; 
        double offset =10.0; 
 
        ax1.setX(val+offset); // explicit offset in application code 
        ax2.setX(val);        // offset hidden by configuration 
} 
 

3.2.2 SPECIALIZATION 

OMAC API leverages the OO concept of inheritance to attain specialization. Specialization is 
useful for managing the scope of an API. For example, when defining a control law, many options 
exist including PID, Fuzzy Logic, Neural Nets, and Nonlinear. This proliferation of options begs for a 
compartmental approach. The OMAC API approach is to define a base class (generally corresponding 
to one of the OMAC Modules) and for each option derive a specialized class. 
Specialization has many benefits. It helps manage the scope of capabilities, which reduces 
complexity. It allows differing terminology based on need (e.g., weights versus gains). Specialization 
provides a technique to handle evolving technology by allowing new derived class to be defined when 
necessary. To expedite the OMAC API effort, only options considered most important have been 
derived. 
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Figure 9: General Control Law 

The control law module will be used to illustrate specialization. The responsibility of the Control Law 
module is conceptually simple - use closed loop control to cause a measured feedback variable to 
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track a commanded setpoint value using an actuator. Figure 9 illustrates the definition of a base 
control law class. The concept of tuning is encapsulated within the black box and is conceptually 
controlled via “knob turning.” The concept of accepting third party signal injection is handled by the 
inclusion of pre-and post-offsets (e.g., FollowingError). These offsets allow sensors or other 
process-related functionality to “tap” and dynamically modify behavior by applying some coordinate 
space transformation. The IDL definition of the illustrated control law module follows. The IDL 
keyword interface signifies the start of a new interface, corresponding to a C++ class. 
 

interface IControlLaw 
{  // Parameters 
  void setCommanded(double setpoint); 
  double getCommanded(); 
 
  void setCommandedDot(double setpointdot); 
  double getCommandedDot(); 
 
  void setCommandedDotDot(double setpointdotdot); 
  double getCommandedDotDot(); 
 
  void setOutput(double value); 
  double getOutput(); 
 
  void setFeedback(double actual); 
  double getFeedback(); 
 
  void setFollowingError(double epsilon); 
  double getFollowingError(); 
 
  // Offsets 
  void setFollowingErrorOffset(double preoffset); 
  double getFollowingErrorOffset(); 
 
  void setOutputOffset(double postoffset); 
  double getOutputOffset(); 
 
  void setFeedbackOffset(double postoffset); 
  double getFeedbackOffset(); 
 
  void setTuneIn(double value); // enable with breakLoop 
  double getTuneIn();   
 
  void breakLoop();          
  void makeLoop(); 
  void calcControlCommand(); 
 
}; 
 

Each ControlLaw specialization is a subtype whereby each subtype inherits the definition of the 
supertype. By applying this concept, an evolutionary process evolves to adapt to changes in the 
technology. At first, only highly-demanded subtypes, such as PID, were handled. Figure 10 
conceptually illustrates the PID specialization of the control law. The IDL definition of the PID 
control law follows. 

interface IPIDTuning: IControlLaw 
{ // Attributes 
  double getKp(); 
  double getKi(); 
  double getKd(); 
 
  void setKp(double val); 
  void setKi(double val); 
  void setKd(double val); 
 
   double getKcommanded(); 
   double getKcommandedDot(); 
   double getKcommandedDotDot(); 
   double getKfeedback(); 
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   void setKcommanded(double val); 
   void setKcommandedDot(double val); 
   void setKcommandedDotDot(double val); 
   void setKfeedback(double val); 
}; 

OMAC API also uses inheritance to maintain levels of complexity. Level 0 would constitute base 
functionality seen in current practice. Level 2 would constitute functionality expected of advanced 
practices. Level 3, 4,..., n would constitute advanced capability seen in emerging technology, but 
unnecessary for simple applications. 
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Figure 10: PID Control Law 

3.3 CLIENT SERVER BEHAVIOR MODEL 

OMAC API adopts a client server model for inter-object communication. In the client/server model, 
an object is a server and a user of an object is called a client. Objects can act as both a client and a 
server. Objects cooperate by having clients issue requests to the servers. The server responds to 
client requests. For OMAC API, a client invokes class methods to achieve the described cooperative 
behavior. A client uses accessor methods to manipulate data. Accessor methods hide the data’s 
physical representation from the abstract data representation. 
Standard client-server requests result in a synchronous execution of operation. The synchronous 
execution has a client-server roundtrip where the client issues a request, server receives a method 
invocation, performs the corresponding method implementation, and sends a reply back to the client. 
OMAC API defines three types of client-server requests: (1) parametric requests, (2) directive 
requests and (3) monitor requests. State space logic may be required to manage client-server 
interaction. 
Parametric requests are the get/set methods that are, in theory, satisfied in one roundtrip. 
Parametric requests do not require state space logic. 
Directive requests are events which cause a change in the server’s state space (or state transition) 
and results in a new server state. These directive requests may run one or many cycles - such as, for 



THE OMAC API SET WORKING DOCUMENT 

 VERSION 0.16 

  OCTOBER 12, 1999  19

an Axis module completing a home() operation. Coordination between the client and server requires 
state space logic and is based on the server’s Finite State Machine model 
Monitor requests coordinate the execution of a module, for example, processServoLoop() or 
isDone() for Axis module. Monitor requests are coordinated by the state space logic. The 
processServoLoop method sends an event to Axis module execution to be interpreted by its state 
space logic. Invoking processServoLoop every servo loop period attains cyclic execution of the Axis 
module. In this cyclic mode, the Axis Module would be running as a software servomechanism: at 
every period, it accesses data (e.g., commanded position, actual feedback) and executes a transform 
function to derive a new setpoint. Status methods are necessary to monitor the progress of a directive 
request. 
Client Directive and Monitoring requests may come from separate threads of control. Figure 11 
illustrates a server with multiple clients running in two separate processes: an Axis Group process 
for issuing setpoints and a Periodic Updater process to coordinate execution. (These processes may be 
running in one or more threads.) Generally, the Directive service requests would come from an Axis 
Group module that is issuing setpoints to multiple axes. A Scheduling Updater module running in 
another thread of execution provides timing, synchronization and sequencing service for the Axis 
module. This Scheduling Updater module may be tied to some hardware device (such as a timer) to 
guarantee periodic execution behavior. 
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Figure 11: Multiple Threads of Control 

3.3.1 DIRECTIVE REQUESTS DISCUSSION 

Client directive requests are serviced as client-push events. (Server-push is a more difficult 
problem and is discussed in Section 5.2.) In a client-push request, events are  “pushed” to the server 
via method calls. Client-push events may be queued and ultimately cause state transitions. Below is 
a code sketch of the client-push event model for an Axis class that defines two methods 
processServoLoop and home. An AxisFSM class is defined to handle the events caused by 
processServoLoop and home. Whenever the home method is invoked, it inserts a HOME_EVENT 
event into the Axis FSM. The FSM has an internal queue (i.e., evq) for handling events. The FSM 
may optionally spawn a separate thread of control (i.e., FSMThread()) for event handling. The 
isDone() monitor request is used to determine when the home event has completed. 

// This is the public interface 
class Axis : OmacModule 
{ 
public: 
    processServoLoop(); 
    home(); 
    boolean isDone(); 
private: 
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    AxisFSM fsm; 
    boolean myDone; 
}; 
 
// This is hidden in the implementers code 
Axis::processServoLoop() { AxisFSM.handleEvent(AxisFSM::PROCESS_SERVO_LOOP_EVENT); } 
Axis::home() { AxisFSM.handleEvent(AxisFSM::HOME_EVENT); } 
Axis::isDone() { return myDone; } 
 
class AxisFSM : FSM { 
    enum { PROCESS_SERVO_LOOP_EVENT,  HOME_EVENT}; 
    MsgQueue evq; 
    int curState; 
    void handleEvent(EV_num)      
    {         
        evq.send(EV_NO); 
    } 
    void * FSMThread() // optional thread, this could be done in handleEvent 
    { 
        int evNum; 
        evq.receive(&evNum); 
        callAction(evNum, curState); 
    } 
    void homeUpdateAction() { /* perform homing */ } 
    void processServoLoopAction() { /* evaluate state */ } 
}; 
 

A key to the event model is to support local or remote method invocation identically. The next section 
on proxy agents explains how this event model provides a transparent interface. 
Server request actions should be as short as possible. In the example, the simple enqueuing of events 
provides an efficient interface model. The rationale for short request cycles is to reduce the amount 
of time the client will wait while the server services the request. Evaluating system timing and 
performance is difficult unless the client-server round-trip time is bounded. 

3.4 PROXY AGENT TECHNOLOGY 

Client/server interaction can be local or distributed. In local interaction, the client uses a class 
definition to declare an object. When a client accesses data or invokes object methods, interaction is 
via a direct function call to the corresponding server class member. At its simplest, local interaction 
can be achieved with the server implemented as a class object file or library. Interaction is achieved 
by binding the client object to a newly created server object implementation. Such a binding could be 
done by static linking, with a dynamic linked library (DLL), or through a register and bind process 
that does not use the linker symbol table. 
When distributed service is needed a proxy agent is used. A proxy agent is a set of objects that are 
used to allow the crossing of address-space or communication domain boundaries[M.S86]. The class 
describing a proxy agent uses the API of some other class (for which it is a proxy) but provides a 
transparent mechanism that implements that API while crossing a domain boundary. The proxy 
agent could use any number of lower level communication mechanisms including a network, shared 
memory, message queues, or serial lines. 
Below is a code example to illustrate the concept of proxy agents. We will assume that we have 
defined an axis module by the class Axis that has but one method setX();. The following code 
would be found in the axis module header file (or API specification): 

class Axis : Environment  
{ 
public: 
  void setX(); 
private: 
  double myX; 
} 
 

A user would then develop code to connect or bind to the axis module server, which in this case has 
the name “Axis1.” The _bind service is similar to a constructor method, but returns a server 
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reference pointer rather than an address reference pointer. The _bind keeps track of the number of 
client pointer references to the server. The bind establishes a client/server relationship with the axis 
module. The application code is the client, and when Axis methods are invoked, a message is sent to 
the server. In the following code, the application sets the x variable to 10.0: 

application(){ 
        Axis * a1; 
        a1 = Axis::_bind(“Axis1”); 
        a1->setX(10.0); 
} 
 

If the server is co-located with the application, it is trivial to implement the object server. The 
Axis::setX implements the value store. 

Axis::setX(double _x){ myX = _x; } 
 

However, for distributed communication, Axis::setX is defined twice - once on the client side and 
once on the server side. On the client side we set up the remote communication, which in this case, is 
an overview of a remote procedure call. 

Axis::setX(double _x){  
        callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out) 
} 
 

On the server side, a server waits for service events (such as the bind, and the setX method). A 
corresponding Axis::setX is defined to handle the x variable store. The server technology could 
handle events in the background or use explicit event handling. In either case, the actions of the 
server are transparent to the client. 

Axis::setX(double _x){ myX = _x; } 
 
server(){  
        /* register rpc server name */  
        while(1) { /* service events */ } 
} 
 

 

3.5 INFRASTRUCTURE 

The infrastructure deals primarily with the computing environment including platform services, 
operating system, and programming tools. Platform services include such items as timers, interrupt 
handlers, and inter-process communications. The operating system (OS) includes the collection of 
software and hardware services that control the execution of computer programs and provide such 
services as resource allocation, job control, device input/output, and file management. Real Time 
Operating System Extensions can be considered platform services since these extensions are 
required for semaphoring, and pre-emptive priority scheduling, as well as local, distributed, and 
networked interprocess communication. Programming tools include compilers, linkers, and 
debuggers. 
The OMAC API does not specify an infrastructure because many of the infrastructural issues are 
outside the controller domain, and it would be better handled by the domain experts. Further, it is 
more cost-effective to leverage industry efforts rather than to reinvent these technologies. For 
example, commercial implementations of proxy agent technology are available. Microsoft has 
developed and released DCOM (Distributed Common Object Model) [DCO] for Windows 95 and 
Windows NT. Many implementations of CORBA (Common Object Request Broker Architecture) 
[COR91] are available and Netscape incorporates an Internet Interoperable ORB Protocol (IIOP) 
inside its browser. The question concerning the hard-real-time capability of such products remains. 
But, industry is acting to solve this problem. In the interim, control standards that could provide a 
real-time infrastructure are available [OSA96]. 
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Because there are so many competing infrastructure technologies, OMAC API has chosen to let the 
market decide the course of the infrastructure definition. As such, to achieve plug-and-play module 
interchangeability, a commitment to a Platform + Operating System + Compiler + Loader + 
Infrastructure suite is necessary for it to be possible to swap OMAC object modules. 

3.6 BEHAVIOR MODEL 

For the OMAC API, behavior in the controller is embodied in Finite State Machines (FSM). OMAC 
API uses state terminology from IEC1131[IEC93]. An FSM step represents a situation in which the 
behavior, with respect to inputs and outputs, follows a set of rules defined by the associated actions 
of the step. A step is either active or inactive. Action is a step a user takes to complete a task that 
may invoke one or more functions, but need not invoke any. A transition represents the condition 
whereby control passes from one or more steps preceding the transition to one or more successor 
steps.  
 For the OMAC API, the following concepts apply. The receipt of a message causes an event that is 
evaluated with the FSM and may cause a state transition. An object method invocation is the 
mechanism in which messages are sent to cause an event.  For distributed communication, OMAC 
API makes the assumption that the proxy agent does the encoding of methods into messages and the 
decoding of the transmitted message into the corresponding method calls. 
3.6.1 LEVELS OF FINITE STATE MACHINES 

For an OMAC API module, there can be nesting of FSMs. OMAC API does not dictate the number of 
levels of FSM. In general, an outer administrative FSM exists to handle activities that include 
initialization, startup, shutdown, and, if relevant, power enabling. The administrative FSM must 
follow established safety standards. When the administrative FSM is in the READY state, it is 
possible to descend into a lower level FSM.  
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Figure 12: Generalized State Diagram 

OMAC API defines the OMAC Base Class module to provide a uniform administrative state model 
across modules. The OMAC Base Class state model is illustrated in Figure 12. The administrative 
state model describes the start-up, shutdown, enabled/ready, configured, aborted, and initialization 
operations that form the baseline of a module state space. States have methods (e.g., init(), 
startup()) to cause state transitions.  
To enter into a lower FSM, the module enters into the “executing” state as shown Figure 12. In the 
“executing” state, client/server coordination uses a lower FSM for coordination. This lower FSM is 
module- and application-dependent. This lower FSM, in turn, can have an FSM embedded within it 
so that further nesting of embedded FSMs is possible.  
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Figure 13: Levels of FSM 

Figure 13 shows the nesting of FSM levels. Within the figure, the FSM icon is represented by a 
rectangle inside a diamond. The dotted FSM icon represents an optional FSM. The nesting of one or 
more lower level operation FSMs is possible depending on system complexity. Within the nesting of 
the FSM shown in Figure 13, an “operational” FSM may handle different NC modes corresponding to 
“auto,” “manual,” or “MDI”. For example, at the operation level for part programming, there may be 
another level of FSM to handle a family of parts. The designer of a particular control system 
determines the number of nested FSM levels, depending upon the complexity and organization of the 
controlled system. The lowest level FSM or dominion FSM monitors the current focus of control. 
The dominion FSM “rule” over lower level objects. There may be one or more dominion FSM at the 
lowest level within an OMAC module.  
For OMAC API, method invocations result in events to be propagated from the client to the server 
that may cause server state transitions. Events are evaluated within the highest level FSM and then 
recursively propagated through each lower level FSM. For example, in Figure 13 a pause event is 
received at the highest Administration level and is evaluated. If the Operation FSM supports a 
pause method then this method is invoked and the event evaluated. This event evaluation and 
recursive cascading of the event may cross module boundaries and propagate all the way to the 
“bottom” FSM in the application controller.  
A major assumption concerning event propagation is the availability of the event method in a lower 
FSM. In the previous example, there was an underlying assumption that all lower-level FSM 
supported the pause method. This underlying assumption may or may not hold. For the interim, the 
following rules characterize the FSM behavior with regard to specifying an event space:  

• an OMAC module Administrative FSM supports all the events within the OMAC API Base 
FSM 

• any lower level FSM within an OMAC module supports both the OMAC Base FSM event 
space as well any event specializations that an OMAC module supports. For example, the 
Axis Group module defines events for hold, pause, resume and these would have to be 
supported by lower level FSM contained within the Axis Group. 

• Control Plan Units may have their own event model. It is unclear if they must support the 
complete OMAC Base Class set of events. 
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• optionally, an introspective query of an FSM could be specified to see if an event is supported 
(e.g., canPause()). This mechanism is similar to that of reusable component functionality of 
JavaBeans that provides for run-time and design-time methods. In addition to handling 
event space matching, introspection could be useful as a safety feature to insure that 
cooperating FSM understand each other.  

 

3.6.2 COMPUTATIONAL MODEL 

A general computational model exists for characterizing all OMAC control modules. Figure 14 
illustrates the general computational model. Each OMAC module can support levels of nesting FSM 
as part of general computational model. The OMAC API module may also have one or more FSM 
simultaneously executing on a dominion FSM list. Each FSM on the dominion list is conceptually 
equivalent to a concurrent thread of state logic. FSM on the dominion list can operate independently 
or have dependencies between them.  
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Figure 14: Module Computational Paradigm  

Within the FSM paradigm, different OMAC API modules have different FSM dominion list sizes. In 
general, the OMAC modules exhibit the following computational model characteristics. The Discrete 
Logic module generally has a multi-item dominion FSM list analogous to a scan list, (some active, 
some not active), to coordinate IO points. The Axis Group has a multi-item dominion list, one or more 
motion FSM and none, one, or more Process FSM. The Axis module has one FSM derived from the 
OMAC Base Class and an embedded FSM to support Axis functionality.  
In the general computational model, FSM are used for controlling behavior and also serve as 
data. When events are sent from the client to the server and contain FSM as data, the FSM data is 
called a ControlPlanUnit (CPU). A ControlPlanUnit is an FSM, but the internal representation is 
not important to the OMAC API. Instead, a CPU is defined with a simple state management API 
hiding messy FSM details. The following is a sketch of the ControlPlanUnit API.  

interface ControlPlanUnit 
{ // Option 1: 
  ControlPlanUnit executeUnit();    // return next ControlPlanUnit 
  // Option 2: 
  // boolean isDone();              // state query 
  // ControlPlanUnit getNextUnit(); // actually fetch next CPU when done 
  void setActive();                 // set when “executing” 
  void setInactive();   
  boolean isActive();            // for HMI to determine when active 
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  // ... methods for persistence data in binary or neutral format 
  // ... methods for graph representation for navigation purposes,  
  //     such as when performing lookahead 
}; 
 

The general computational model supports a mechanism to queue client requests - either events or 
CPU. A CPU received by a server is queued and is eventually inserted into the dominion list. Three 
types of CPU can exist on the dominion list:  
Transient  CPUs perform a fixed amount of work within a certain period. Transient CPUs execute 
cyclically and are removed from the dominion list when an internal condition is satisfied. An 
example of a transient CPUs is a motion segment CPU that has a beginning and an end. When the 
CPU isDone() returns true, the CPU is removed from the dominion list.  
Resident Cyclic CPUs execute “forever” and perform a function periodically. Resident cyclic CPUs 
execute repeatedly with no internal completion condition. One example of a resident cyclic CPU is a 
PLC operation to turn the oil/slides pump on/off every five minutes.  
Resident Event-driven CPUs execute once when an event triggers their execution. An example of 
a Resident Event-driven CPU is turning an IO point on or off.  
The ability to have multiple CPU executing concurrently can be especially useful for Process Model 
enhancement. Within the Axis Group for example, one can have a transient CPU for motion as well 
as a resident cyclic CPU to handle data logging.  
Equivalent application functionality can be achieved with different distributions of CPU within a 
controller. Depending on the circumstances, tight coupling or loose coupling can be used to 
coordinate logic and motion. Tight coupling is achieved by placing RESIDENT FSM on the dominion 
list. Loose coupling is achieved by placing RESIDENT FSM in a separate thread under same 
scheduler for all the other OMAC modules (which are resident FSM.)  

 
Figure 15: Example Loose Coupling Probe Architecture 

As an example, consider the integration of a Probe with an Axis Group to modify motion control. 
Several ways exist for incorporating the Probe CPU into the system.  

• The Probe CPU is placed in the Discrete Logic module to be run at a given period. The probe 
could running at the same period as the Axis Group or be oversampled. This is an example of 
loose coupling. 

• The probe could run as standalone resident CPU scheduled like any other OMAC module. 
The probe CPU could run at a slower, faster or the same frequency as the Axis Group. This is 
an example of loose coupling and is illustrated in Figure 15. 

• The Probe could be a Process Model resident CPU that runs inside of the Axis Group at the 
same frequency as the Axis Group. This is an example of tight coupling and is illustrated in 
Figure 16.  
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Figure 16: Example Tight Coupling Probe Architecture 

3.6.2 Control Plan Unit  Abstractions 
The CPU is the base class, but the OMAC API defines several uses and specializations. Figure 17 
illustrates the ControlPlanUnits hierarchy of possible ControlPlanUnit specializations. CPU 
specialization is the mechanism to add extensions. For example, the NURB MotionSegment is 
derived from the MotionSegment CPU. Specialization of CPU include:  
 Capabilities 

correspond to different machine modes (manual, auto). When the Capability FSM is in the READY 
state, the Capability can descend into a lower FSM or ControlPlanUnit. For example, once in the 
auto Capability FSM, a lower level FSM for the “cycle” ControlPlanUnit can be used to sequence 
through a series of ControlPlanUnits.  

MotionSegments 
corresponds to the FSM input for an Axis Group module. In addition to the FSM directive and 
parameter methods, a MotionSegment includes such information as rate, geometry, and a 
reference to a velocity profile generator that are necessary for trajectory planning. 

DiscreteLogicUnits 
corresponds to the FSM input for a Discrete Logic module. DiscreteLogicUnits coordinate and 
control an aggregation of IO points. In addition to the FSM directive and parameter methods, a 
DiscreteLogicUnit contains the information necessary to either define asynchronous logic - the 
event or condition trigger, or to define synchronous logic - the scan rate and FSM. 

ProgramLogic 
CPU for decision making, (e.g., statement, loops, end program and if/then/else). 
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Figure 15: Examples of Different Types of Control Plan Units 

A ControlPlanUnit is responsible for its own branching. For this reason, the method 
executeUnit() returns a reference to the next ControlPlanUnit. A ControlPlanUnit may embed 
other ControlPlanUnits. A series of ControlPlanUnit(s) is a ControlPlan. A ControlPlan 
can be a simple list to represent sequential behavior or a complex tree. Figure 18 illustrates some 
possible connections of ControlPlanUnits. Through the use of ProgramLogic CPU, one can achieve a 
mapping from computer programming control constructs into a list representation.  
To coordinate the ControlPlan (which is a graph of ControlPlanUnits) for outside observers (such as 
the Human Machine Interface), there is a central ControlPlan header. The ControlPlan header 
monitors navigation through the graph as ControlPlanUnit are activated and deactivated. As activity 
in the ControlPlan occurs, the ControlPlan header points to active ControlPlanUnits. Traversal 
methods are defined within a ControlPlanUnit so that external modules, such as the HMI, can 
monitor progress of ControlPlan via the isActive() method. 
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Figure 18: Control Plan built from Series of Control Plan Units 
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3.6.3 CONTROL PLAN UNIT NESTING 

A ControlPlanUnit can contain other ControlPlanUnits. When activated, a CPU can send 
embedded CPU to lower level servers. Thus, CPUs contain “intelligence” and understand how to 
coordinate and sequence the lower level logic and motion modules.  

 

Figure 19: Example Control Plan State Transitions  

Figure 19 illustrates an example of the relationship between a CPU, its states, and its travel through 
a control system. In this example, a ControlPlanGenerator, such as one for RS247D or IEC1131, 
initially generates Control Plans from part programs most likely using a CPU constructor. During 
execution of a Control Plan, the CPU is becomes the next active CPU in the Task Coordinator. The 
Task Coordinator does an executeUnit on this CPU. The CPU determines if it can append an 
embedded Motion Segment CPU onto the Axis Group motion queue. If for example, a tool change is 
desired, then assume the CPU should wait until all current motion must be completed first. This 
requires the CPU do synchronize with lower level modules. The synchronization would occur inside 
the CPU and could be done with or without blocking. The code for a blocking CPU would look like 
this:  

         CPU execute_unit() 
         { axgrp->wait_for_motion_idle();  // blocks until this is true 
           axgrp->setNextMotionSegment(moveToToolChangerMS); 
         // pass change tool CPU to discrete logic 
          return nextCPU; 
         } 

The code for a non-blocking CPU would look like this and assumes that the Task Coordinator 
periodically performs an executeUnit on the CPU.  

          
        CPU executeUnit() 
         { if(!axgrp->isIdle())  return this; 
           axgrp->setNextMotionSegment(moveToToolChangerMS); 
         // pass change tool CPU to discrete logic 
         return nextCPU; 
         } 

Once the CPU is free to continue, embedded CPU(s) are passed to subordinate modules and loaded 
onto their event queues. That is, the CPU running in the Task Coordinator passes the next Motion 
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Segment CPU to the Axis Group module and passes a Tool Change Discrete Logic Unit to the 
Discrete Logic module.  
Once the Motion Segment CPU is loaded onto the Axis Group queue, it waits for activation. 
Activation can occur if the CPU is first on the queue and no CPU are on the dominion list running, or 
the previous CPU already running on the dominion list returns a true to startNextCPU().  
If ready for activation, the Axis Group moves the MotionSegment method from the motion queue to 
the dominion list and calls start, which places the CPU in the started state. Herein, the 
MotionSegment is in the executing state and the Axis Group periodically calls the Motion Segment 
CPU update() method until the isDone() condition is true.  
The transition from executing to done does not result from an externally-generated event, but 
rather is achieved by the CPU satisfying an internal termination condition (hence the reference to 
self).  
Figure 20 illustrates the propagation of CPU through a controller. The Control Plan Generator 
generates a top-level ControlPlanUnit CPU1 for the Task Coordinator. CPU1 contains embedded 
MotionSegment CPU MotionSegmenta and DiscreteLogicUnit CPU DiscreteLogicUnitCPUb. 
Consider the coordination required for a tool change. The top-level CPU1 forwards CPU1b or 
DiscreteLogicUnitCPUb to the DiscreteLogic module to be placed on its scanning list. For 
simplicity, assume the top-level CPU waits until the DiscreteLogic reports that it is done with the 
tool change. Once the tool change motion is completed, the top-level CPU1 can then forward CPU1a or 
MotionSegmenta to the AxisGroup. 
It is important to understand the nesting of CPU and subsequent propagation of CPU. It 
is the fundamental mechanism for passing data through an OMAC API controller. 
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Figure 17: Intelligent CPU Spawning Lower Level CPU  

Figure 18 is an Object Interaction Diagram for the following propagation scenario. Assume a Human 
Machine Interface will set the current Capability to Auto mode. Then, the HMI interacts with the 
Auto Capability to load a program name and then start the cycle. This will cause the Task 
Coordinator to request the Control Plan Generator to translate the part program into a Control Plan. 
Once translated, CPU1 will be executed via the executeUnit method. While CPU1 is executing, it 
will forward two new Control Plan Units - first a Discrete Logic Unit dlub to perform a tool change 
and afterwards a Motion Segment ms1. When it’s time, the scheduler or updater will cause the 
DiscreteLogic module to execute. The DiscreteLogic module will then process its scan list and in turn 
execute dlub. When the dlub tool change isDone, CPU1 will forward Motion Segment msa. At the 
appropriate time, the scheduler or updater will cause the AxisGroup to execute and it will start 
processing msa. 
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Figure 18: Embedded CPU Forwarding Object Interaction Diagram 

The OMAC API specifies that ControlPlanUnit objects can embed module references and direct 
method calls. On the surface, this approach appears implausible. However, because of proxy agent 
technology, it is not hard to create a “forward reference” assuming one can dynamically bind to an 
object. This dynamic binding is beneficial since it eliminates static encoding of methods (e.g., with id 
numbers) necessary for methods to execute across domains (i.e., address spaces). To enable forward 
references, the requirement does exist for the infrastructure to support some “lookup()” method to 
map object names to addresses. Consider the following C++ code to handle generic Axis Group 
control within the Task Coordinator. 

class G0CPU : ControlPlanUnit 
{ 
  void setMotionSegment(MotionSegment _msA);  // parameters set by the CPG 
 
  setAxisGroup(char * axgroupname) { ag=lookup(axgroupname); } 
  setAxisGroup(AxisGroup * axgrp)  { ag=axgrp; } 
 
  CPU executeUnit()   
  {  
    if(!firstTime++)  
        ag->setNextMotionSegment(msA);      // message passing! 
    if(!ag->isDone()) return this;         // not done 
    else return NULL;                       // return NULL or done CPU 
  } 
 
  private:  
    MotionSegment msA; 
    long firstTime; 
}; 
 

In the example, a ControlPlanGenerator will create a G0CPU that contains a MotionSegment (i.e., 
msA). When the TaskCoordinator is executing the G0 CPU, the executeUnit method uses 
explicit calls to an Axis Group object, (i.e. ag). In early binding, a “forward reference” must be 
fulfilled by the ControlPlanGenerator to the Axis Group object is required. In late binding, the 
TaskCoordinator could do the lookup of the AxisGroup reference. However, late binding can 
unnecessarily slow down the “block throughput” of CPU, hence only early binding will be considered. 
To achieve early binding, suppose the Control Plan Generator (CPG) constructor receives the name 
“axisgroup1” for an Axis Group object. The CPG can lookup the object “axisgroup1” to retrieve a 
reference address. Upon receiving a reference address to “axisgroup1,” the CPG passes this 
reference address to a CPU, in this example, with the method setAxisGroup. 
The degree of difficulty to do a reference address lookup depends on the execution environment. For 
modules running as one or more threads in a process, the reference address is trivial. For reference 
addresses that cross domain boundaries, proxy agent technology is required. Proxy agents must 
encode reference addresses with a more sophisticated scheme to capture the domain (e.g., machine, 
process) and encode the object reference and the methods. Proxy agent technology should hide the 
reference address encoding from the programmer. 

3.7 DATA REPRESENTATION 

Exchange of information between modules relies on standard information representation. Such 
control domain information includes units, measures, data structures, geometry, kinematics, as well 
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as the framework component technology. OMAC API has chosen two levels of compliance for data 
definitions. 
The first level defines named data types to allow type-checking. The OMAC API uses the IDL 
primitive data types and builds on these data types to develop the foundation classes and framework 
components. For control domain data modeling, the OMAC API used data representations found in 
STEP Part Models for geometry and kinematics [Inta, Intb]. Internally, any desired representation 
could be used. The STEP data representations were translated from EXPRESS[EXP] into IDL. 
Representation units are assumed to be in International System of Units, universally abbreviated SI. 
Below is the basic set of data types, which use STEP terminology for data names but reference other 
terms for clarification. 
Primitive Data 

• IDL data types include constants, basic data types (float, double, unsigned long, 
short, char, boolean, octet, any), constructed types (struct, union and enum), 
arrays and template types bounded or unbounded sequence and string. 

• IEC 1131 types - 64 bit numbers 
• bounded string 

Time 

Length  
• Plane angle 
• Translation commonly referred to as position 
• Roll Pitch Yaw (RPY) commonly referred to as orientation 
• STEP notion of a Transform which is composed of a translation + rpy, also commonly 

referred to as a “pose.” 
• Coordinate Frame which is defined as a Homogeneous Matrix 

Dynamics 

• Linear Velocity, Acceleration, Jerk 
• Angular Velocity, Acceleration, Jerk 
• Force 
• Mass 
• Moment 
• Moment of Inertia 
• Voltage, Current, Resistance  

The second level provides for more data semantics. The OMAC API adopted the following strategy to 
handle data typing, measurement units, and permissible value ranges. Distinct data representations 
were defined for specific data types. For example, the following types were defined in IDL to handle 
linear velocity. 

// Information Model - for illustrative purposes 
typedef Magnitude double;   
 
// Declaration 
interface LinearVelocity : Units  { 
         
        Magnitude  value; // should this value be used? 
        // Upperbound and Lowerbound, both zero ignore 
        Magnitude ub, lb; // which may be ignored 
 
        disabled(); 
        enabled(); 
}; 
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// Application 
LinearVelocity vel; 
 

In this case, linear velocity is a special class. Unit representation is inherited from a general unit’s 
model. Permissible values are defined as a range from lowerbound to upperbound. The units and 
range information are optional and may not be used by the application. 
Another data typing problem that must be resolved concerns the use of a parameter. Not all 
parameters are required or set by every algorithm. For example, setting the jerk limit may not be 
necessary for many control algorithms. It was decided to use a special value to flag a parameter as 
“not-in-use”. This approach seems simpler than having a useXXX type method for each parameter. 
For now, OMAC API has decided that setting a parameter to an unrealistic “Not in use Number” (but 
not actually “Not a Number”)  value - such as MAXDOUBLE or 1.79769313486231570e+308 - renders a 
double parameter to be ignored or not-in-use. A similar number would be required for an integer. 
This works for level 1 and level 2. Within level 2, the methods enable and disable were added to 
explicitly indicate use of a parameter. 
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4 MODULE OVERVIEW 

4.1 TASK COORDINATOR 

The general characteristics of the Task Coordinator module include: 
• act as central point for coordination 
• initiate startup and shutdown since it understands the controller configuration - 

what modules are in the system and how to start up the modules 
• act as the highest level Finite State Machine within the controller. 
• change frequently. The leaf nodes in the OMAC API architecture will be most stable. 

As such, each system change should not require an entire rewrite of the TC. Instead, 
TC should be flexible to accommodate change. 
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Figure 19: Task Coordinator Computational Model 

The Task Coordinator module is an FSM. The Task Coordinator FSM functionality is defined by 
ControlPlanUnits, called a Capability, that are received from clients. The Task Coordinator has a 
one-element FSM dominion list to manage these Capabilities. The Capability class supports stop, 
start, execute, and isDone methods. 
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For an application controller, there is list of capabilities that a Task Coordinator can use. Figure 19 
illustrates a CNC application with Capability instances. When a Capability is executing, it 
coordinates the servicing of requests from the HMI. When the Auto Capability FSM is executing, 
it interacts with the Control Plan Generator. 
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Figure 20: Task Coordinator and Capability Object Interaction Diagram 

Figure 20 illustrates a sequence of operations that takes a milling CNC from manual mode to 
automatic mode. The diagram shows the use of Capability start, stop, and execute FSM 
methods. In the scenario, the controller comes up in the manual mode as loaded by the HMI at 
startup. Then, the operator pushes the auto button that causes the HMI to execute the Manual 
Capability stop method, and load the Auto Capability onto the Task Coordinator queue. That 
cycle, the Task Coordinator will see that the Manual Capability boolean isDone is True and will 
swap the Auto Capability FSM into the dominion FSM list. The operator action to Load Program 
will result in a program name loaded into the Control Plan Generator. When the operator pushes the 
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CPU 
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cycle start button, it will cause the Auto Capability FSM to translate a part program and then 
start sequencing a ControlPlan generated by the Control Plan Generator. 

4.2 DISCRETE LOGIC 
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Figure 21: Discrete Logic Computational Model 

The Discrete Logic module is similar to the Task Coordinator module in that it sequences and 
coordinates actions through dominion FSM. However, instead of a one-element dominion FSM, the 
Discrete Logic module has a multi-item dominion FSM list that is analogous to a scan list. In 
general, a Discrete Logic FSM could be coded in any of IEC-1131 languages and translated into 
ControlPlanUnits. Figure 21 illustrates the types of FSM that may be found on the Discrete Logic 
dominion list for a typical CNC milling application. An FSM to handle IO scanning would be 
expected. An FSM implemented as a Ladder Rung could be expected to handle a relay for turning a 
Mist pump on. Below is a sketch of the activity for turning the IO mist pump on. 

mistPumpOnRung() 
execute() 
{ logic:  trigger relay to turn pump on 
          wait till IO/pt says pump is on 
          IOmist<- on; 
} 
 

At a higher level, a hardware-independent Mist FSM would be required to coordinate turning Mist 
on and off. Below is a sketch of pseudo code to sequence the Mist on operation. For coordination 
between FSM logic, polling or event-drive alternatives exist to wait for the IO Mist on activity to 
complete. 

mistOnFsm() 
{ “MistOn LR IO <- on” to turn LR=ladder rung on 
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  “subscribe to event that IO Mist On ==on” 
  “wait for event or poll for IO point for Mist On == on “ 
  “done - deactivate FSM for scanning” 
} 
 

4.3 AXIS 

Axis module contains classes encapsulating the features pertaining to a single axis in a multi-axis 
control system. Figure 22a diagrams the relationship of the various classes. Classes are defined to 
provide a variety of setpoint control (e.g., following AxisPositionServo, AxisVelocityServo, 
AxisAccelerationServo, AxisForceServo), actions (e.g., AxisHoming, AxisJogging) and 
data (e.g., AxisCommandedOutput, AxisRates, AxisLimits, AxisSensedState). Figure 22b 
diagrams the finite state model of execution. 
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Figure 22a: Axis Class Diagram 

The following list itemizes some basic open architecture requirements the axis module must support: 
• nested control loops (e.g. position and velocity) using either derived feedback or 

additional sensors (e.g. encoders and tachometers) 
• perform backlash compensation 
• ability to incorporate any appropriate sensors and actuators available in the system 
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• provide settable error limits and “clamping” of various quantities in the loop. If error 
limits are exceeded, the loop will “safe”  itself, and inform of an error condition. 
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Figure 22b: Axis Module State Diagram  

Within the Axis module definition, several issues exist. 
One issue that occurs is mapping a single axis to multiple actuators. At this time, actuators are not 
an OMAC API module. The current resolution to the single axis-multiple actuator problem is to 
define specializations of the Axis base class to handle the multiple actuators. 
Another issue is exposing the FSM methods. The reason for exposing the FSM methods is so that 
such FSM classes (such as AxisAccelerationServo) can be a replaceable component within the 
system. Different implementations of the class definition would adhere to the interface. 
Another issue is what happens when a method is invoked in the wrong state? For example, suppose 
an ACCEL_EVENT occurs when in the HOMING state and there is no defined transition? The first 
possible action is to ignore the event, but this is poor system design. The preferable option is to throw 
an exception, but OMAC API has not enumerated exceptions yet. 
Another issue is how is a Control Law attached to a servo class such as Position, Velocity, 
Acceleration, or Force? The answer is to use class specialization to extend the base class to contain 
Control Law component. For example, AxisAccelerationServo may not need a control law 
component if connected to SERCOS drive so that it uses the specified Base Class: 

 



THE OMAC API SET WORKING DOCUMENT 

 VERSION 0.16 

  OCTOBER 12, 1999  40

  
interface AxisAccelerationServo(){} 
 

For software servoing, an Axis class specialization would be defined that incorporates a control law 
component using a Derived Class: 

  
interface CLAxisAccelerationServo() : AxisAccelerationServo  
{ ControlLaw controllaw; 
}; 
 

4.4 AXIS GROUP 

The Axis Group module is responsible for transforming an incoming MotionSegment into a sequence 
of equi-time-spaced setpoints, incorporating mechanism and process knowledge, and coordinating the 
motions of individual axes. 
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FSM STATE
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DOMINION

EVENT ControlPlan Unit
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Process

FSM STATEFSM STATE
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Figure 23: Axis Group Module 

Figure 24 shows the class diagram for the Axis Group module. The Axis Group module consists of the 
following classes: 
AxisGroup 

is the coordination module that has the following responsibilities: 

• kinematics coordination transformation 
• dynamic offset (e.g. sensing inputs) and overrides 
• multi-axis coordination 
• blending and block look-ahead 
• feedhold 
• operation stop 
• execution on compensation look-up tables 
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• path or rate-control modification based on sensor-feedback (including operator 
overrides)  

PathElement is the class definition to define the motion geometry. 

Rate is the class definition to define the motion rates and limits along a path. 

VelocityProfileGenerator is generates time-based steps along a path. Time-scaling of motions is 
performed along a path based on rate-control (desired velocities, accelerations) or time-duration. 
Includes control of acceleration/deceleration. 

MotionSegment is derived from ControlPlanUnit to define a motion-control FSM. Contains 
references to VelocityProfileGenerator, PathElement and Rate classes.  
Figure 23 illustrates AxisGroup computational model. The AxisGroup receives MotionSegment CPUs 
that define the motion. MotionSegments are queued to allow blending or lookahead. Process CPUs 
are required for integrating sensing and mechanism knowledge. Process CPUs have tightly-coupled 
associations with the Kinematics Module (for mechanism knowledge) and the Process Model (for 
sensing and application specific knowledge). 
The Kinematics module describes the relationship of the machine and part to a world coordinate 
system. Such information could include a relative offset to the machining bed and another offset to a 
part origin. Obstacles such as fixtures would also be included within this description. The Process 
Model integrates operator and sensor feedback into the trajectory motion. This feedback can be used 
to modify the rate-control. 
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Figure 24: Axis Group Class Diagram 

Discussion on some issues and procedures common to Axis Group operation follows. 
Concerning the issue of power management, it is assumed to be user-specifiable by the 
ControlPlanUnit within some timing constraint. For example, a sequence to set a bit, wait 3 seconds 
and then check brakes can be embodied with a ControlPlanUnit. 
A common Axis Group procedure is to stop running, change a broken tool and then resume operation. 
For this Axis Group module has API to save motion queue context and then restore it. An underlying 
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assumption is that if there are other queues internal to the Axis Group (e.g., lookahead, blending) 
that these too will be saved and restored. 
The issue of standard stopping procedures is fundamental to a standard Axis Group API. OMAC API 
proposes three modes to stop: 

hard stop is a stop with max deceleration rate. Also called abort. 

pause is a stop on the path as defined by the KinematicPath in the MotionSegment. 

hold is a stop at end of segment as defined as the next increment provided by the Velocity 
Profile Generator. 
 

There are four recovery modes from stop: 
resume start motion from the current point 

skip skips to the next segment 

flush  flushes all segments on the motion queue 

restore after a motion queue save after stopping, with possible intervening motions (such as 
to change a broken tool or backing out), the motion queue can have its previous context 
restored. 

A standard Axis Group estop is not addressed because of the many different interpretations of 
estop. For most purposes, a hard stop and estop are identical. 
An issue of axis grouping and creating higher level objects can be resolved by defining a higher level 
AxisGroup module. Some grouping issues include: 

• error grouping - the AxisGroup has an inhibit() API for error recovery (e.g., 2 live 
axis with 3 dead axis) 

• power sequencing - TBD 
• power chain grouping - TBD 
• kinematic grouping is done with the Kinematics module. 

4.5 PROCESS MODEL 

The Process Model is responsible for dynamic control modifications. The Process Model exists to 
encapsulate the application- or domain-dependent knowledge. For example, the Process Model for 
machining would incorporate feedrate override, but the Process Model for a pick-and-place robot 
would probably not. Some typical Process Model dynamic modifications associated with machining 
include: 

• feedrate override 
• spindle speed override 
• path offset (normal adjustment for cutter compensation) 
• tool length offset (dynamically modified based on tool wear, not just tool change) 
• data logging flag 
• cycle interruptions (e.g., estop, hard stop, feed hold) 

The Process Model is generally associated with the Axis Group in order to modify the current motion. 
The relationship between the Process Model, Axis Group and MotionSegment modules can vary. This 
variation greatly affects the openness flexibility. 
In the dependent relationship, the Axis Group and the Process Model know each other’s API a priori. 
For example, suppose the Axis Group understands that the Process Model supports feedrate override 
via a getFeedrateOverride() API. Then, the Axis Group can retrieve the current feedrate 
override value in order to modify the current MotionSegment’s feedrate. 
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The dependent relationship is flexible if all the required shared variables between the Axis Group 
and the Process Model exist. For example, if the feedrate override had been under operator-control, a 
user may replace the Process Model with a custom module to change the feedrate override based on 
some force/torque sensing. However, problems arise if the user wants to add a cutter compensation 
normal to a MotionSegment and a pre-defined API does not exist. Now, the Axis Group or each 
MotionSegment must be rewritten to incorporate this modification. 
In an independent relationship, the Axis Group and Process Model coexist without a priori 
knowledge of each other. For this case, OMAC API is proposing to allow the Process Model to send 
CPU to Axes Group so that these CPU can modify the current motion CPU (i.e., MotionSegment). 
Consider the following alternatives where the user wants to integrate a new probe into the control 
system and coordinate when the motion controller to start recording points. 

1. For the dependent relationship, a solution is to rewrite the Axis Group to accept a 
“log data” flag and then record data. 

2. Another possibility is to mandate that every control plan be rewritten to contain a 
“log flag.” 

3. In the proposed independent relationship, the Process Model would generate a CPU 
that is sent to the Axes Group which is executed every cycle to actually log data 
based on an external reference to a “log flag.” 

In the independent relationship, countless other real-time modifications could be applied by 
ControlPlanUnits within the AxisGroup (as well as the Kinematics Module). The ability to extend 
the controller based on evolving sensor-based applications was a primary OMAC requirement. 
Hence, the necessity to support the Process Model independent relationship. 

4.6 KINEMATICS 

Kinematics refers to all the geometrical and time-based properties of motion[Cra86]. The OMAC API 
uses a graph representation to model the geometrical aspect of kinematics. The model is flexible 
enough to handle kinematic chains and kinematic hierarchies. Figure 25 illustrates the terminology 
used to model the geometric kinematics. A KinStructure describes the geometry of an axis link. A 
KinStructure has a Base Frame (generally used to model compensation) and a Placement Frame 
to model the axis link transformation. The BaseFrame is useful as an offset to model spindle growth 
or other compensation variables. When no compensation is planned, the BaseFrame location equals 
the placement frame location. A Connection models the relationship between two KinStructures 
using a from KinStructure and a to KinStructure. A KinMechanism models a kinematic chain as a 
series of connections. The OMAC API kinematic model allows recursive kinematic definition. A 
KinStructure can itself be a kinematic chain modeled as a KinMechanism. This recursive definition 
allows a static kinematic chain to collapse into a single pre-computation. 
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Figure 25: Kinematics Model 

A KinMechanism is responsible for computing the forward and inverse kinematics. A KinStructure 
contains the following information necessary for these calculations: 

• transform 
• static or dynamic link 
• home state 
• link model - translational, prismatic, rotational 
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Figure 26: Kinematics Example 

As an example, consider the case of a three axis machine with tool to mill parts on a table given a 
part offset. The machine tool kinematic chain contains a spindle KinMechanism to model spindle 
growth. Figure 26 illustrates the chain of KinStructures World, Table, Part, Goal Pt, a1, 
a2, a3, spindle, and tool to model this example. We will assume the table is motionless. 
The following code sketches an OMAC API kinematic model for this example. 
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// Declarations 
KinMechanism worldKM, axKM[3], spindleKM, toolKM;   
KinMechanism  overallKM;                // collection w-a1-a2-a3-spindle-tool kinematic chain 
KinStructure * worldKS, * axKS[3], * spindleKS, * toolKS; 
Transform Identity = new Transform (1, 0 , 0, 0, 0 , 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); 
 
// Define KinStructures and embed in KinMechanism 
  worldKS= new KinStructure(); 
  worldKS->setBaseFrame(&Identity); 
  worldKS->setPlacementFrame(&Identity); 
  worldKM.setConnections(NULL); // trivial case, does not contain KinMechanisms 
  worldKM.setKinMechanisms(NULL); // trivial case 
  worldKM.setKinStructure(worldKS); 
 
  axKS[0]= new KinStructure(); 
  axKS[0]->setBaseFrame(&Identity); 
  axKS[0]->setPlacement(/*some transform*/); 
  axKM[0].setConnections(NULL); 
  axKM[0].setKinMechanism(NULL); 
  axKM[0].setKinStructure(axKS[1]); 
  ... 
 
// Set connections 
  Connection c[5]  
  Connections connections; 
  c[0] = setFrom(w); 
  c[0] = setTo(axKM[0]); 
  c[1] = setFrom(axKM[0]); 
  c[1] = setTo(axKM[1]); 
  c[2] = setFrom(axKM[1]); 
  c[2] = setTo(axKM[2]); 
  for(int i=0; i< 5; i++) connections.add(c[i]);  
 
//Define overall KinMechanism 
  overallKM.setConnections(connections); 
 
// Modification of axis values 
  axKM[0]->getKinStructure()->setPlacementFrame(&newFrame1); 
  axKM[1]->getKinStructure()->setPlacementFrame(&newFrame2); 
  axKM[2]->getKinStructure()->setPlacementFrame(&newFrame3); 
 

The importance of the Kinematics module is not only calculating the forward and inverse solutions, 
but also providing a mechanism to perform offsets and compensation. A few examples will be 
considered. 
Relative Positioning The equivalent to the RS274D Absolute and Relative positioning cases are 
handled by two separate KinMechanisms. 

Change Tool Suppose a tool table is to be maintained. A KinMechanism for each tool in the table 
will need to be defined. For a tool change, a new reference to the new tool is substituted for the tool 
KinMechanism in the overall kinematic chain.  
 KinMechanisms tool[100];   
    toolKM = &tool[2]; 
 

Tool Length Offset Consider the case in which tool length offset is changed to compensate for tool 
wear, reconditioning, depth of cut (rough, finish), or dry run. In this case, the tool KinStructure 
PlacementFrame is modified to reflect the change. For example, changing column 4 row 3 (i.e., the z 
value) of Tool displacement frame will change the offset.  

toolKM->getKinstructure->setPlacementFrame(newFrame); 
 

Spindle Growth A majority of variation during machining is attributable to spindle growth. The 
example kinematic chain contained a Spindle KinMechanism to model spindle growth. Modifying the 
spindle BaseTransform based on spindle growth achieves good correction at a modest cost.  

        spindleKM->getKinstructure->setPlacementFrame(newFrame); 
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Axial Growth Consider the case in which an axis is growing in length as the leadscrew mounting 
bearings heat up during machining. In this case, the axial member is growing in length. Next to the 
spindle, axis growth is the most common and cost-effective compensation technique. In this case, an 
axis KinStructure baseFrame is changed.  

 
        axKM[0]->getKinStructure()->setBaseFrame(); 
 

Cutter Radius Compensation Consider the scenario in which path modification is based on cutter 
radius compensation. Assume the need to apply a normal offset to the pre-defined curvilinear 
kinematic path from point A to point B.  

 
In the static case, the entire kinematic path can be recomputed as specified based on a flag. In this 
case, responsibility is delegated to the CPU to handle the change from the nominal path to the 
compensated path. 
In a quasi-static case, suppose the cutter radius is computed on-line by some process controller or 
sensor to do radial compensation to adjust the path. In this case, a radial compensation value is 
input to the Kinematic Path class and it returns a corrected value. 

 
In the dynamic case, the modification is to the next increment of the interpolated path of the current 
MotionSegment. This would be achieved by calling the KinematicPath (i.e., KP) with the normal 
offset. 

        KP->applyNormalOffset(&normalOffset); 
 

Configuration Solution rules for configuration such as up/down elbow or redundant links are 
handled by class specializations.  

 

Update Unresolved is the responsible module and mechanism used to update dynamic (e.g., axis) 
values.  

4.7 IO SYSTEM 

The purpose of the IO system is to provide a uniform interface to Physical or Virtual input or 
output points in the system. The IOPoint class defines the uniform interface and hides the details of 
the underlying hardware interactions. An example of an IO Point is a DAC on a multiple DAC digital 
to analog output card. The IOPoint base class manages a single value, and provides an interface for 
reading and writing that value. The IO Point base class contains readValue() and writeValue() 
methods.  
Each IOPoint may be accessed individually but IOPoints are controlled by an IO System. An IO 
System is a module consisting of one or more IO Points, grouped together because they share some 
resource (either hardware or software). There can be many IO systems in a controller (e.g., Sercos, 
D/A board, etc.)  

4.7.1 IO NOTIFICATION 

Each IO System may optionally contain Callback Notification and Callback Handlers.  
Callback Notification object(s) provide a mechanism for other modules to be informed when some 
internal activity has taken place in the IO System. Each Callback Notification object contains a list of 
Callback Handlers to be activated on the desired event. This allows multiple modules to be 
informed on an IO System state change. The Callback Handlers are entered into the Callback 
Notification object’s list at system integration time. For example, a Callback Notification might exist 
to inform other modules when the values associated with an IO System’s IO Points have changed.  
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The IO System may also by notified by Callback Handlers. A callback by other modules would inform 
the IO System that some event has occurred. For example, the IO System may contain a Callback 
Handler to be activated when it is time to sample all of its IO Points’ inputs.  

4.7.2 IO CONFIGURATION 

OMAC API uses a Presentation IO model in which each IO system (as one of many in the system) 
creates a series of IOPoints that other objects in the system access via references (or handles). This 
differs from an Attachment IO model, where each object in the system creates an IOPoint and 
attempts to attach the IOPoint to some hardware.  
As an analogy to differentiate between the Presentation and Attachment models, consider an IO 
Point filled with bytes from a file. In the Attachment model one opens a file, and uses a copy of a 
device driver to read bytes from the file. To read bytes within the Presentation Model, the 
assumption exists that a separately running IO System module has already opened the file and has 
presented a byte IOPoint for system-wide access. In IOPoint presentation, any number of objects in 
the system can access the byte IOPoint buffer, which is updated by its IO System.  
The Presentation IO model assumes that an object uses an ASCII naming and lookup service to 
connect to an IOPoint. This IOPoint connection is performed at configuration time. However, at this 
time the OMAC API does specify a configuration API for IO Point connection.  

4.7.3 IO CUSTOMIZATION 

Clients of I/O modules may wish to customize their interaction. OMAC API has defined IOPoint 
classes for the major types (e.g., short, long, float, double). THE FOLLOWING SECTION 
DISCUSSES ISSUES OF IO CUSTOMIZATION, HOWEVER, IO CUSTOMIZATION IS NOT WITHIN THE 
SCOPE OF THE OMAC API SPECIFICATION EFFORT.  
Customized IOPoint classes can be derived based on specializations (such as a read-only IOPoint) as 
well as methods to manipulate the value’s units, name, type, and other properties. These methods 
may be further supplemented with additional IO system-specific methods to configure IO waiting, 
synchronization, as well as low-level communication protocols.  

IO mechanism Since IO Systems will probably represent a particular piece of hardware 
plugged into the system, customization of the io mechanism is also desirable to provide non-
generic, hardware specific interfaces. These interfaces are referred to as Control 
Interfaces, and are somewhat analogous to the Unix ioctl() function calls. Unlike the 
other interfaces provided by the IO System, there is no fixed form for these interfaces. They 
exist to provide access, by knowledgeable software modules, to low level hardware functions 
that cannot be put into the generic forms used by the other interfaces. They would probably 
be used primarily by diagnostic software. Use of these interfaces by other modules, which are 
intended to be generic, is not recommended, since their use would prevent the module from 
using any other IO System that did not provide an identical interface.  
IO Data Handling  Customization of data handling requires some special characteristics. 
For example, the IO module tailors the service to offer different sampling strategies, transfer 
protocol and data age. The following is a list of customized IO data and protocol 
characteristics:  
Sampling Event IO system characteristic  

• ON-DEMAND, 

• ON-TRANSITION, 

• ON CLOCK  

Data Age  

• Sample Num 
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• Sample Num + N 

• Current Reading 

• Current Reading + N  

Transfer Type  

• Synchronous : wait until complete 

• Synchronous : wait up to specific time 

• Asynchronous : initiate and specify complete event handler 

• Asynchronous : continuous with completion event handler  

4.7.4 IO META DATA 

A major issue with handling IO is the aspect of IO Meta data. IO Meta data correlates the IO to the 
device, for example, “what board is this IO Pt associated?” IO meta data incorporates knowledge 
useful for maintenance and diagnostics. In many ways, IO Meta data is the bigger part of IO. OMAC 
API has not specified a formal IO Meta data. OMAC supports the notion of an IO registry that 
would include such IO Meta knowledge as:  

• IO as shared across the system 
• IO as used by different clients 
• IO as defined from a physical aggregation 
• IO grouping for efficiency (e.g., an IO group is clustered on one board) 
• physical device to logical IO mapping (e.g., a device has 4 analog inputs, 4 analog outputs, 16 

discrete IO).  
Overall, IO registry would consist of a container of devices as well as a container of IOPoints. Each 
IO point keeps a reference to a device as well as a device specific set of data which is needed to access 
that IO point (e.g. which bit, how wide, what type). This format information is retrieved at start-up 
and is returned in the form of a reference handle. This could allow a configuration utility to build a 
GUI and supply the data, which is then stored in the registry.  
Interaction with an IO registry is as follows. At configuration-time, IO registry functions include 
service to bind a device to IO name (i.e., device maps into a board, point, type) and this builds the 
internal tables. At initialization, the IO registry return handles for names for efficient access during 
execution. At runtime, IO has facilities for the read and write of grouped outputs and single 
outputs; as well as the read of grouped inputs and single inputs.  

4.7.5 IO ISSUES 

The OMAC API has not specified a solution to the issue of whether an IOPoint tells whether it is 
input or output.  A simple resolution would have an IO derived type from IO_PT used by 
configuration for mode differentiation and type checking.  
The OMAC API has not specified a solution to the issue of forcing IO and machine simulations 
through IO points.  

4.8 CONTROL PLAN GENERATOR 

The Control Plan Generator is responsible for reading and translating programs, which represent 
machine operation and tooling. The Control Plan Generator can either translate the entire file or 
provide instructions a statement at a time. The Application Programming Interface to the Control 
Plan Generator is not concerned with the format of the part program itself, but with syntax and 
translating program elements into Control Plan Units. Functionality of the Control Plan Generator 
includes: 
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• reading existing program files, which contain statements in the format understood by 
the translator but not standardized by the OMAC API 

• translating part program statements into ControlPlanUnits 
• correlating source knowledge about a program, (e.g., current line number, active 

statement) with a ControlPlanUnit.  
  

 

valid?

Control Plan
Generator

CPU Table

Control Plan

syntax check

lookup(1..n)

generate(1..m)

 
 

Figure 27: Control Plan Generator 

Figure 27 presents an overview of the Control Plan Generator. The Control Plan Generator is 
responsible for syntax checking of the part program. If the syntax is valid, the Control Plan 
Generator generates one or more Control Plan Units for each line of the part program. The Control 
Plan Generator is responsible for correlating part program source information (such as line numbers) 
with each ControlPlanUnits. Multiple source lines may be active with one ControlPlanUnit. 
Table lookup to translate a part program statement into a ControlPlanUnit can be done in a number 
of ways. OMAC API does not specify a standard lookup technique. One option to perform this lookup 
would be to associate each part program statement with a separate translation object that queries or 
is given the knowledge it requires. Each translation object would support an identical translate() 
interface. Another possibility is to use “flat” canonical functions instead of “object-oriented” 
translation classes. Any number of indexing or bidding schemes is also possible. 
It would be desirable for Control Plan Generators to generate generic machine-independent Control 
Plans. Then, translation from generic ControlPlan Unit to a machine specific ControlPlanUnit could 
be done based on the specific objects in the system. For Control Plan machine-independence, adding 
a machine profile (e.g., 3-axis versus 5-axis) and a Control Plan should produce identical results. 
Concerning the issue of part program portability, OMAC API does not expect the 
ControlPlanGenerator to produce a machine-independent ControlPlan. This flexibility is difficult to 
attain and the OMAC API determined that defining a Neutral Language Definition was outside the 
scope of the current effort. 

4.9 HUMAN MACHINE INTERFACE 
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Figure 31: MVC Design Pattern 

The Human Machine Interface is responsible for the connection between the controller and a human-
monitoring subsystem. The object-oriented design pattern called the model-view-controller (MVC) 
will be used as the HMI reference model [GHJV94]. Figure 31 shows the relationship of the different 
control and human aspects within the MVC pattern. The MVC model “M” defines the state of the 
HMI objects. The MVC View “V” corresponds to the front-end or visual presentation with which the 
user interacts. The MVC controller “C” is not the same as the motion controller, but refers to an 
object that controls a View object in such a way that it responds to user input and delivers output.  
Some clarifying objectives concerning the OMAC API HMI are in order. The goal of the OMAC API is 
to define an HMI specification that is independent of the visualization medium (i.e., V), the data 
entry mechanism, the operating system, or the programming language. The primary OMAC API 
objective is to specify a technology-neutral data and event model (i.e., M) for exchange of information 
between the Human subsystem and the Application Controller. The OMAC API would like to 
encourage the bundling of a control component with an HMI viewing component (i.e., supply 
component plus V & C). The OMAC API is not concerned with the “look and feel” of a HMI. The “look 
and feel” of an HMI is generally application-specific.  
To understand the HMI for OMAC API, the elements M,V, and C will each be reviewed.  
Model  

 The primary emphasis of the OMAC API is to define a model “M” API that allows the exchange of 
data and events. The traditional standardization effort for “M” relates to the data collection or 
back end that would be defined as a Dynamically (or Shared) Linked Library.  

 The desired HMI “M” functionality is best understood in the context of simple problems. Three 
canonical “M” problems exist that an HMI module must be able to handle. First, the HMI must 
have the capability for solicited information reports about the state of the controller, such as 
current axes position. Second, the user must have command capabilities such as the ability to 
set manual mode, select an axis, and then jog an axis. Third, the user must be alerted when an 
exception arises, in other words, handle unsolicited information reports.  
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Figure 32: HMI “M” Mirrors Controller 

 For “M” functionality, OMAC API specifies that every controller object has a corresponding HMI 
object “mirror”. Figure 32 illustrates an “M” that mirrors an application controller where each 
mirror object in the HMI has a reference to its companion object in the controller. The mirror 
object can then use the reference to get/set data, or to invoke methods to initiate events. In other 
words, these HMI and controller objects have identical interfaces for data manipulation and 
event-initiation. For event-notification (unsolicited reports), this is a special problem that really 
has to deal with the infrastructure. (See section on event-handling.) Compared to a conventional 
“M”, the use of get data mimics a data base copying the desired viewable values from the 
controller.  

 The major mirror assumption is that HMI objects communicate to control objects via proxy 
agents. An analysis of how the HMI mirror works will be developed.  
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Figure 33: Close-up of HMI Proxy Interaction 

1. To handle the information report functionality, an HMI mirror acts as a remote data base 
that replicates the state and functionality of the controller object and then adds different 
presentation views of the object. These HMI mirrors are not exact mirrors of the 
controller state, but rather contain a “snapshot” of the controller state. Figure 33 
illustrates the interaction of the HMI mirror and the control object. In the basic scenario 
of interaction, the control object is the server and the HMI mirror object is the client. 
Each HMI mirror uses the accessor functions of “get” and “set” to interact with the 
control object. Notice that each host controller object and its corresponding HMI mirror 
have a proxy agent to mediate communication. 

2. To handle command functionality, the HMI mirror contains the same methods as the 
controller object so that a command is issued by invoking a method remotely. 

3. To handle abnormal events when not polling, an HMI mirror must serve as a client to the 
control object so that it can post alert events. For such unsolicited information reports, 
the control object uses an event notification function, updateCurrentView, in which to 
notify the HMI mirror that an event has occurred. This notification in turn may be 
propagated to a higher-authority object.  

View  

 The MVC view “V” deals with the presentation medium, for example, whether it is a “V” for a 
GUI or a teach pendant. As previously stated, the OMAC API is not concerned with the “V” 
aspect pertaining to “look or feel” of a HMI.  
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 Of importance to the OMAC API specification pertaining to the MVC control “V” is the aspect 
that deals with data views. Different data views correspond to different modes of presentation. 
For example, there can be a view for configuration, calibration, error handling - as well as normal 
operation. In addition, the view “V” can be used to offer different screens to different levels of 
authority, such as for operator, maintenance, or systems engineer.  

 Given this emphasis on data views, the OMAC API defines the following “V” methods to handle 
the different expected data views.  
interface HMI  
{ 
  void presentErrorView(); 
  void presentOperationalView(); 
  void presentSetupView(); 
  void presentMaintenanceView(); 
}; 

 The association of data views along with a control component offers a strong potential for 
“complete” off-the-shelf integration. Instead of buying a control component with a standalone 
calibration program, a control component would come with a control view component. Then, just 
as the control component can be integrated into the application controller, so too can its 
corresponding control view component be automatically integrated into the controller 
presentation. As an example of this technology, a tuning package can provide a Windows-based 
GUI to do some knob turning. Another example, is a tuning package that offers this capability to 
be plugged inside a Web browser. With this development, unlimited component-based 
opportunities are available.  

 The MVC controller “C” discussion will further explore the coupling of a control component with 
a view component for automated system development.  

Controller  

 The MVC controller “C” is responsible for controlling the views presented to the user. In 
Figure 33 the control object is represented by the Client which changes views based upon the use 
of different MVC “V” methods (i.e., the different types of presentView methods - see above). 
However, the Client is not bound to use the mirror “V” methods when constructing presentation 
views. There exists a range of approaches that the MVC “C” Client can use when controlling the 
user presentation - from least to most customized.  

 In Figure 33, the Client is using the HMI mirrors to present the view. Exclusive use of the HMI 
mirrors presentation views could be considered the least customized option. The Client is 
bound to the view that the control vendor supplies. However, the benefit is that Client-builder 
has the least amount of work to do. In the least-customized, the following concepts apply.  

• each object contains methods which can display the object in one of several views 

• each of these methods can be given display real-estate by the caller 

• each object may recursively use its real-estate to display objects which it uses 

• users may override these methods, if desired, for minor customizations  

 At the other extreme, a more monolithic, all-powerful Client could ignore the HMI mirror 
presentation views altogether. This approach could be considered the most customized option. 
In this case, the monolithic Client uses the HMI mirrors for data manipulation purpose only and 
the Client presents its own view of the data. The Client can develop any view it wishes. However, 
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the Client-builder has the greatest amount of work in doing so. In the most-customized, the 
following concepts apply.  

• a “super-object”, which is aware of all of the other objects (and their types) is created 

• the “super-object” contains all code needed to create displays 

• the “super-object” may use the default methods if desired 

• the “super-object” may implement exactly the screens desired  

 Today, the MOST CUSTOMIZED approach with its monolithic, all-encompassing, micro-
management of the controller presentation is most prevalent. This monolithic approach is most 
common mostly out of default because few, if any, control components provide HMI views. It is 
hoped that OMAC API MVC “V” methods will help change this situation.  

 

4.10 MACHINE TO MACHINE INTERFACE 

MMS (Manufacturing Message Specification) is an OSI application layer protocol designed for 
the remote control and monitoring of industrial devices such as PLCs, NCs or RCs. It provides 
remote manipulation of a controller that includes the following services: 
Variables   can be simple (booleans, integers, strings...) or structured (arrays or records). MMS 

variables can be read or written individually, in lists (predefined or explicitly defined). 

 Programs  can be remotely started, stopped, resumed, killed. 

 Transfer  allows for the download or upload of areas called domains, which can contain code, 
data or both. 

 Semaphores  define two classes of semaphores, which can be used to ensure mutual exclusion 
or synchronization of processes.  

 Events  provide services for attachment of an action to an event and enrollment of calling or 
another process to receive the event notifications.   

The goal of the OMAC API is to provide an object oriented programming interface for remote 
functionality. It is expected that the baseline functionality would be the primary MMS capabilities. 
The following MMS functionality was determined to be mandatory: 

• initiate 
• conclude 
• cancel 
• unsolicited status 
• solicited status 
• getnamelist 
• identify 
• read 
• write 
• information report 
• get variable access attribute 
• initiate download sequence 
• download segment 
• terminate download sequence 
• initiate upload sequence 
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• terminate upload sequence 
• delete domain 
• get domain attributes 

It is expected that the implementation of an OMAC API MMI interface would offer a convenient 
programming interface that is not restricted to use MMS for its underlying communication 
technology. As envisioned, the internal controller infrastructure could be an ORB, while the external 
communication could be ORB or MMS based. 

5 DISCUSSION 

OMAC API has developed an API specification that is scaleable for the system design, integration 
and programming for systems ranging from a single-axis device to a multi-arm robot. The OMAC 
API working group’s initial focus was to establish programming requirements for precision 
machining. Applicability to other control environments may be possible but is not guaranteed. The 
OMAC API primary focus has been to define Application Programming Interfaces for certain 
modules that the ICLP community routinely wants to upgrade. In addition, the workgroup has 
defined an assembly framework with which to connect these modules. 
OMAC API has posted other papers to describe related information on life cycle, general computation 
models, and control models. For more information, see the Wide World Web at the Universal 
Resource Locator address: 

             http://isd.cme.nist.gov/info/omacapi 

Within the OMAC API home page, there are hyperlinks to send comments, and to review comments 
and responses. 
The OMAC API effort is not finished. The focus of effort has been to develop module APIs and to 
create a methodology for assembling and reconfiguring modules. Areas outside the OMAC API initial 
thrust areas or areas of disagreement include: 

• performance evaluation 
• validation and verification 
• resource profiling 
• configuration construction 
• error handling and error propagation 
• scheduling 
• module timing profile 
• event handling 
• machine-to-machine interface (MMI) is outlined but incomplete.  

The remaining sections will discuss some of the issues in dispute or issues that remain unresolved. 

5.1 SCHEDULING AND UPDATING 

Hard real-time is fundamental to a controller operation and falls under the auspices of the Real-Time 
Operating System. Often, commercial RTOS only support priorities to manage task scheduling. This 
technique is flawed. It would be preferable if one could perform periodic updating by assigning 
periods and a time quantum to tasks. However, the OMAC API could not agree on a single solution 
to this problem. This section will discuss one of many solutions. 
OMAC modules can run as asynchronous or synchronous tasks. Asynchronous tasks are event-driven 
which is discussed in the next section. Synchronous tasks are expected to run periodically at a fixed 
frequency and bounded duration. Execution of a synchronous task can be either handled externally 
by a scheduling updater or internally by self-clocking. The remainder of this section will develop the 
concept of a Scheduling Updater module. 
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OMAC API has defined an Updater API for task execution. It is an optional API that can be useful as 
a reference. The Update API contains Updatable, AsynchUpdater, and PeriodicUpdater 
classes. If an OMAC module is periodic, it may derive the method update() by inheriting it from the 
Scheduling Updater class Updatable. For the Axis Module, the method update() is a wrapper that 
calls processServoLoop(). The update() method simplifies invocation, since the updater can go 
down a list of modules and invoke one signature. 
An example to illustrate the multi-client/server interaction will be developed. First, the object 
naming and constructor definition that is done at configuration time will be sketched. The 
integration creates object references (i.e., io1, io2, ax1, axgrp1) and then binds addresses to the 
created objects through some name registration. Since ax1 and axgrp1 are periodic updating OMAC 
modules, they have inherited a method update() and register with the PeriodicUpdater updater 
using its registerUpdatable() method. The second parameter field in registerUpdatable() 
method is the clock divisor. 

integrationProcessInit(){  
        // initialize parameters 
        PeriodicUpdater updater; 
 
        IOPoint  io1= new IOPoint(“encoder1”); 
        IOPoint  io2= new IOPoint(“actuator1”);} 
        Axis ax1= Axis(“Axis1”, io1, io2); 
        AxisGroup axgrp1= AxisGroup(“AxisGroup1”, ax1); 
 
        updater.setTimingInterval(.01);  // 10 millisecond period 
        updater.registerUpdatable((Updatable *) axgrp, 2); 
        updater.registerUpdatable((Updatable *) ax1, 1); 
} 

Next, a sequence of operations will highlight the connection between the Scheduling Updater 
(Updater), the Axis Group module (AxGrp), the Axis module (Axis) and the actuator and encoder IO 
points. Within the Axis module, references to the component classes AxisVelocityServo, 
AxisCommandOutput and Control Law module will be made. (Readers are referred to Section 4.0 
to further review Axis components.) 
Figure 30 presents an Object Interaction Diagram to track the sequence of axis operation as 
triggered by a Scheduling Updater. The Updater calls the AxisGroup, which sets followingVelocity 
servo control and sends a commanded velocity setpoint. The Updater then triggers the Axis which in 
turn causes a processServoLoop() to perform a servo cycle. Since velocity servoing is enabled, the 
AxisVelocityServo is responsible to get the velocity command, read the axis actual velocity (as 
retrieved from io1), computes the next acceleration setpoint using a Control Law and then output a 
commanded acceleration to io2.  
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Figure 30: Schedule Updating Axis Object Interaction Diagram 

As seen, the Axis module method processServoLoop performs the basic inputs, computes and 
outputs expected of a cyclic process. This functionality includes state interpretation so that an Axis 
module typically has a reference to an Axis FSM. Within the Axis FSM, the calls to 
AxisVelocityServo are made. 
As stated earlier, one assumption within the object interaction is that a state transition, such as 
followingVelocity, is permissible. If not, either the method invocation is ignored or an exception 
is thrown. 
Overall, the Scheduling Updater method update() is really a wrapper that calls 
processServoLoop. Hence, it isn’t necessary to use an Updater. However, the update() wrapper 
does provide a generic interface to simplify scheduling of a variety of modules. 
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5.2 EVENT HANDLING 

Standard client object requests to a server object result in synchronous execution of operation. In this 
case, the client sends the request and awaits a server response. This synchronous model includes the 
standard client-push model that sends an event through a method invocation. Section 3.3.1 has 
more on the client-push model. 
Many times client-server interaction requires a more decoupled communication model. Of interest is 
the client-server interaction, called the server-push model,  in which the server can spontaneously 
(asynchronously) issue an event to the client. For example, it is desirable to send an asynchronous 
informDone() event to the Task Coordinator when a CPU finished execution in the Axes Group. 
The question arises, “How is the Task Coordinator informed that the Axis Group is finished?” There 
are several options: 

• The Task Coordinator polls the Axis Group with the isDone() method. This is the 
client-pull event method. 

• Use cross-reference pointers between the communicating objects. In this case, the 
AxisGroup has a reference pointer back to the Task Coordinator, and it invokes a 
method (e.g., informDone()) to alert the Task Coordinator. There still must be some 
programming mechanism to tell the AxisGroup that it needs to call the Task 
Coordinator. Most likely, informDone() is mirrored in the TaskCoordinator and the 
AxisGroup to achieve this programming. The TaskCoordinator calls the AxisGroup 
informDone() to set the event, and the AxisGroup calls the TaskCoordinator 
informDone() when the event occurs. A simple event model is to add to all 
isXstate() query methods an informXstate() corollary. 

• Another approach is to have the Task Coordinator call an AxisGroup method 
waitUntilDone() that blocks until the AxesGroup is done. 

No agreement has been reached at this time regarding any standard server-push event model(s) or 
any server-push events. 
The following general-purpose sequence has been proposed as the server-push event model: 

• clients register what events it cares about with the server capable of detecting the 
event 

• server send unique event id to client as part of registration 
• when server detects an event it looks in a table (linked list) of clients which care 

about that event and sends the event id to each client (id will be unique for each 
client) 

• clients use and unregister events using the id not the name. 

5.3 CONFIGURATION 

As a part of the open architecture life cycle, configuration and integration are important 
elements. Configuration is defined as module specification that maps it into a specific solution. 
Integration is defined as the capability to allow the connection and cooperation of two or more 
modules within a system. Readers are urged to review an OMAC API document concerning the open 
architecture Life Cycle that can be found at URL 
http://isd.cme.nist.gov/info/omacapi/Bibliography/oalifecycle.pdf. Briefly summarizing, the following 
steps outline the major configuration and integration steps.  

1. distribution of modules to processes 
2. distribution of processes to CPU 
3. assignment of interprocess communication via proxy manager to processes 
4. module/object construction and connection  
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This section will review the module construction phase because of the crucial role of global naming 
within the open architecture paradigm.  
The construction phase is responsible for building the name data base and registering names with 
the appropriate lookup-information (e.g., address pointer or server information such as host id and 
server name). Within the Object Oriented paradigm there is a constructor phase wherein all the 
static application objects (in this case modules) must be constructed.  
At this time, no agreement has been reached regarding configuration for module constructors. 
Herein a couple of alternatives for module constructors will be discussed.  
Advertisement Model  - The constructor is an advertisement for what a module needs. As an 

example, an OMAC API Configurator would construct a directed graph of modules in the system. 
The Task Coordinator would use the directed graph to construct the system. In a pure approach 
only the constructor would contain configuration information, as in the following example.  

  
 X_AXIS = new Axis(new PID_CL()); 
 Y_AXIS = new Axis(new PID_ControlLaw()); 
 AG1 = new AxisGroup(X_AXIS,  Y_AXIS); 

 One problem with the pure constructor approach is resolving circular references. For example, 
suppose the Axis and Axis Group modules’ constructor need a reference to each other.  

Another problem with pure constructors for configuration is handling combinatorial explosion of 
constructor possibilities. For example, if the system is not doing force control, does one need a set 
of special constructors to allow AxisForceServo control law references? To handle the 
combinatorial explosion, one could either define a monolithic constructor that accepts null 
references, or define constructors for each potential configuration.  

 The use of SETPARAMETERREFERENCE (e.g., setControlLaw below) helps reduce the 
combinatorial constructor possibilities. However, in this case, configuration is now based on 
selectively configuring parameters. The following example illustrates configuring the X and Y 
positioning servo control law.  
 X_AXIS = new Axis(); 
 Y_AXIS = new Axis(); 
 X_AXIS->AxisPositioningServo->setControlLaw(new PID_ControlLaw()); 
 Y_AXIS->AxisPositioningServo->setControlLaw(new PID_ControlLaw()); 
 ... 
 AG1 = new AxisGroup(X_AXIS, Y_AXIS); 
 if((s=AG1->isSatisfied)!=NULL) cout << “Missing Parameter”<< s << endl; 

 Although flexible, selectively configuring parameters is vague so that it can be unclear what 
parameters must be specified. The potential for chaos can arise without some formalism. Does 
the AxisForceServo control law need to be configured? How does one determine when the 
AxisForceServo control law needs to be configured? To avoid confusion, a configuration method 
such as isSatisfied() that returns a string array of missing parameter definitions is 
essential.  

Registry Model – In this case, the constructor plays a small role and system generation is name-
driven. It is expected that names would be maintained in a globally accessible registry either a 
simple table or data base. Resolving object references would use a setParameterReference - although 
this time the method signature would be string-oriented.  

 Naming is divided into two categories - local naming and global naming.  

 Local naming is responsible for the names associated with a particular module. A vendor would 
be responsible for distributing a local naming table associated with each module. For example, 
the following table sketches a local naming table for an Axis module.  
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Local Name Type Configured 

“ENCODER” “IO_FLOAT” Y 

“ACTUATOR” “IO_FLOAT” Y 

“POSITION_CONTROL_LAW” “OMAC_CONTROL_LAW” y 

“VELOCITY_CONTROL_LAW” “OMAC_CONTROL_LAW” y 

…   

 Global naming is responsible for mapping local names to global names. Global naming serves two 
purposes. First, the global naming allows system access to local address references. Second, 
global naming enables familiar naming conventions. For example, a three axis mill would have 
three instances of the parameter ENCODER that could be resolved into corresponding global 
names of X-ENCODER, Y-ENCODER, and Z-ENCODER.  

Global Name Module Local Name 

“X-AXIS-ENCODER” “X_AXIS” “ENCODER” 

“X-POSITION-
CONTROL_LAW” 

“X_AXIS” “POSITION_CONTROL_LAW” 

… … … 

“Y-AXIS-ENCODER” “Y_AXIS” “ENCODER” 

“Y-POSITION-
CONTROL_LAW” 

“Y_AXIS” “POSITION_CONTROL_LAW” 

… … … 

 

 There would be several steps in configuring a global naming scheme, including:  

1. Create with “new” and constructor(string NAME). In this case, the constructor takes 
a unique name, registers the name and module type in the global registry, and uses 
recursion to back through the object's parents to add type/name for registry (or self-
discovery).  
 Axis X_AXIS = new Axis(“X-AXIS”); 
 Axis Y_AXIS = new Axis(“Y-AXIS”); 
 ControlLaw CL1 = new PID_ControlLaw(“CL1”); 
 ControlLaw CL2 = new PID_ControlLaw(“CL2”); 

 Recursion is necessary because modules (i.e., objects) may be specialized and other 
modules may need a less specialized object. For example, a “SercosAxis” module is also a 
derived type of “Axis” and “OMAC Module”. Self-discovery of an object such as 
“SercosAxis” would recursively descend its parents until it reached some base class, in 
this case “OMAC Module”. To provide a flexible naming service, lists for types and objects 
should exist to provide object references. Figure 35 illustrates the relationship between 
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each module base and derived types which have a pointer to a list of object names, which 
in turn, contains the actual object reference. This table could preexist in some data base.  

  

A c tive
M o tion  C P U

C O N T R O L
P L A N
U N IT
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R ec us ive
 R ef erenc in g

 
 

Figure 35: Type and Object Reference Lists from Recursive 

2. Initialize objects. This initialization scope is directed at objects’ local variables such as 
zeroing private variables. No external references should be used as these references may not 
have been resolved yet. 

3. Connect objects by assigning names to different internal references. The general method 
signature would be:  
        setReference(string localName, string  globalName); 

 The following illustrates the registering some Axis and Axis Group names.  
        AG1->setReference(“AXIS1”, “X-AXIS”); 
        AG1->setReference(“AXIS2”, “Y-AXIS”); 
        X_AXIS->setReference(“PositioningServoControlLaw”, “CL1”); 
        Y_AXIS->setReference(“PositioningServoControlLaw”, “CL2”); 
        if((s=AG1->isSatisfied)!=NULL) cout << “Missing Parameter”<< s << endl; 

 Within a module, the setReference method would do a symbolic lookup of the type 
based on the local name, and then use the type to retrieve the actual reference. The 
following code sketches this approach.  
         class Axis { 
         ...  
         IOFloat Encoder; 
         string itemType; 
 
           void setReference(LocalName localName, GlobalName globalName){ 
                itemType=typelookup(localName); 
                switch(localName){ 
                   case “encoder”: 
                     encoder= (IOFLoat) lookup(globalName, itemType);  
                     break; 
                   ... 
                } 
            } 
          } 

 As an alternative to hard coding the connections, a module could read a file or data base 
to derive the references it needs. The table could contain other performance parameters 
as well. Below is a sketch of the information that could be expected using a file registry.  
# 
# Global Name     Type           Period   Timing       Local Names 
# 
  AxGrp1        AxisGroup        .01      .002         Ax1=“X” 
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                                                       Ax2=“Y” 
                                                       Ax3=“Z” 
  X             Axis             .001     .0002        Output= “act1” 
                                                       Feedback= “enc1” 
                                                       Position= “PIDControlLaw” 
                                                       Velocity= “Sercos1” 
                                                       Acceleration= NULL 
 
  Y             Axis             .001     .0002        Output= “act2” 
                                                       Feedback= “enc2” 
                                                       Position= “PIDControlLaw” 
                                                       Velocity= “Sercos2” 
                                                       Acceleration= NULL 
     
  Z             Axis             .001     .0002        Output= “act3” 
                                                       Feedback= “enc3” 
                                                       Position= “PIDControlLaw” 
                                                       Velocity= “Sercos3” 
                                                       Acceleration= NULL 
  Sercos1   SERCOSControlLaw 
  Sercos2   SERCOSControlLaw 
  Sercos3   SERCOSControlLaw 
 
# This is sketch of an Abstract to Physical IO Map 
# IOPTs    Type    Board      Address        Bytes 
  act1     IO-W    D/A1       0xFFFFFF00      8                                    
  enc1     IO-R          
  act2     IO-W                                                  
  enc2     IO-R 
  act3     IO-W                                                  
  enc3     IO-R 

4. Reinitialization of objects. The second pass assumes that all external references are 
resolved, so that an object can access external objects as part of its initialization 
sequence.  

 

5.4 ERROR HANDLING, ERROR PROPAGATION 

“Exception and error handling is 90% of the aggravation on the shop floor.” Attempting to resolve 
errors/exceptions as they propagate through the system is difficult. Errors can be hard to anticipate 
and/or resolve. However, errors and exceptions are really just server-push events (clients don't push 
errors on the servers). Infrastructure support for server-push event handling is weak. 
As an intermediary solution, a simple error propagation technique is to allow object cross-references 
so that for every pair of objects, each one has a reference to the other object. In this case, each 
invokes methods in the other to propagate and event. 
Within OMAC API, a proposal for handling errors is for each OMAC module to support an error CPU 
with a setErrorCPU(cpu) method. In the event an error occurs, an error(errcode) method could 
be invoked. For example, in the case that a Task Coordinator received an error event, it could then 
dispatch the ERROR Capability. The ERROR Capability could be passed an error code or be smart 
enough to analyze the system and determine the error. 
As another example, consider the handling of thermal overload on a drive. How does it trickle up? A 
straightforward solution is to add a CPU to the Discrete Logic to monitor this event. If the overload 
occurs and the Discrete Logic can not rectify the error it could then notify the Task Coordinator of an 
error which will then initiate the ERROR Capability. 
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APPENDIX A – UML INTERFACE DEFINITIONS 

Unified Modeling Language (UML) is a standard notation for the modeling of application objects in 
developing an object-oriented program. UML contains notation to model the class (of objects), object, 
association, responsibility, activity, interface, use case, package, sequence, collaboration, and state. 
The advantage of UML is that it is vendor and language neutral.  However, at this time,  a UML 
OMAC API specification has not been attempted. 
 

APPENDIX B – MIDL API DEFINITIONS 

 
Technical Note: These API are for review and comment only. There is no guarantee of correctness. 
This specification approximates the intended direction of the final API. 

B.1 DISCLAIMER 

This software was produced in part by agencies of the U.S. government, and by statute is not subject 
to copyright in the United States. Recipients of this software assume all responsibility associated 
with its operation, modification, maintenance, and subsequent redistribution. 

B.2 NAMING CONVENTIONS 

The naming convention for the IDL specification uses the Hungarian notation of separating words 
with CapitalLetters. (This release removed all the “_” and used concatenation of Capital letters to 
distinguish words.) The following conventions are being followed. 

    File Name                        : same as major class name (JAVA convention) 
    #define    for constants         : entire name in UPPER CASE 
    class name & declaration         : CapStyle with beginning C 
    class/variable instance          : smallCapStyleAgain 
    method arguments                 : smallCapStyleAgain 
 
    general method signature         : nameCapStyle   
            query  parameter         : getParameterName 
            assignment               : setParameterName 
            state query              : isStateName 
 

There is consideration for adding a classifying prefix to class instances, global and static variable 
declarations and method arguments. In this case, d_VariableName would indicate a double variable. 
Note, C++ function declarations need parameter types but not parameter names, however, IDL 
requires both. 
The use of get and set methods on these attributes, since IDL does not produce a get/set prefix to the 
methods. This will not work for non-IDL-like systems. 

B.3 MICROSOFT COM  

 

B.3 MICROSOFT STATUS CODES 

Except in special circumstances, nearly every COM API interface member function returns a value of 
the type HRESULT. HRESULT is also called a "handle to a result."  COM follows a naming 
convention for different HRESULT success and error codes. Any name with E_ in it, which may be at 
the beginning as in E_FAIL or RPC_E_NOTCONNECTED means that the function failed. Any name 
with S_, as in S_TRUE, S_FALSE, or STG_S_CONVERTED, means that the function succeeded. The 
most common codes are listed in the following table.  
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B.4 BASIC TYPES 
1 #ifndef DataRepresentation 
2 #define DataRepresentation 
3 import "oaidl.idl"; 
4 import "ocidl.idl"; 
5 // Level 1 - these will be backed out from the other API definitions 
6 //  
7 //interface test { 
8  
9 typedef long     API; 
10 typedef double   AngularVelocity; 
11 typedef struct     __CoordinateFrame{ 
12     double c[4][4]; 
13 } CoordinateFrame; 
14 //typedef struct   _FILE {int fixme; } FILE; 
15 typedef double   Force; 
16 typedef double   Length; 
17 typedef double   LinearVelocity; 
18 typedef double   LinearAcceleration; 
19 typedef double   LinearJerk; 
20 typedef double   LinearStiffness; 
21 typedef struct   _LowerKinematicModel {int fixme; } LowerKinematicModel; 
22 typedef double   Magnitude; 
23 typedef double   Mass; 
24 // Matrix??? 
25 typedef double   Measure; 
26 typedef struct _OacVector{ 
27  short  size; 
28  double axis[10];  
29 } OacVector; 
30 typedef double   PlaneAngle; 
31 typedef struct   _RESOURCE  {int fixme; } RESOURCE ; 
32 typedef struct   _RPY  {int fixme;} RPY; 
33 typedef long     Status; 
34 typedef struct   _Time { int fixme; } Time; 
35 typedef struct   _Transform { int fixme; } Transform; 
36 typedef struct   _UNITS {int fixme; } UNITS; 
37 typedef struct   _UpperKinematicModel {int fixme; } UpperKinematicModel; 
38 typedef double   Velocity; 
39  
40 typedef struct    _Translation  {int fixme; } Translation; 
41 typedef Translation CartesianPoint; 
42  
43 /* 
44 //?? Or you can assume numbers are flagged not active at  
45 //?? construction time.  
46 // Below most control parameters would be typed as double 
47 #define doubleNotActive 1.79769313486231570e+308 
48 #define longNotActive 0x80000000 
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49 #define shortNotActive 0x8000 
50  
51  
52 // Level 2  Example - not defined here 
53  
54 interface LinearVelocity : Units  { 
55     Magnitude  value; // should this value be used? 
56     // Upperbound and Lowerbound, both zero ignore 
57     Magnitude ub, lb; // which may be ignored 
58     disabled(); 
59     enabled(); 
60 }; 
61 interface Units 
62 { // FIXME  
63 }; 
64 */ 
65  
66 #endif 
67  

B.5 CONNECTION TABLE FOR NAMING SERVICES 
68 // ConnectionInfo.idl : IDL source for ConnectionInfo.dll 
69 // 
70  
71 // This file will be processed by the MIDL tool to 
72 // produce the type library (ConnectionInfo.tlb) and marshalling code. 
73  
74 import "oaidl.idl"; 
75 import "ocidl.idl"; 
76  
77  
78 cpp_quote("#define PublishInfoMaxNameSize 1028") 
79  #define PublishInfoMaxNameSize 1028 
80  typedef struct _PublishInfo { 
81   wchar_t name[ PublishInfoMaxNameSize ]; 
82   wchar_t type[ PublishInfoMaxNameSize ]; 
83   IUnknown *address;   
84  } PublishInfo; 
85  
86  typedef enum tagBINDSTATES { Mandatory=1,  
87      Optional=2,  
88      Connected=4,  
89      Unconnected=8, any=0} 

BINDSTATES; 
90  
91  typedef struct _BindInfo { 
92  
93   wchar_t localname[PublishInfoMaxNameSize]; 
94   wchar_t type[PublishInfoMaxNameSize]; 
95   wchar_t globalname[PublishInfoMaxNameSize]; 
96   wchar_t description[PublishInfoMaxNameSize]; 
97   unsigned long state; 
98   IUnknown ** ref; // store into pointer variable 
99  } BindInfo; 
100 /* 
101  [ 
102   
103   uuid(6511417A-391B-11D3-AAB7-00C04FA375A6), 
104   
105   helpstring("IPublishInfo Interface"), 
106   pointer_default(unique) 
107  ] 
108  interface IPublishInfo : IUnknown  
109  { 
110  // HRESULT getPublishInfo([out,retval] PublishInfo * info); 
111  // HRESULT setPublishInfo([in] PublishInfo  info); 
112  
113  }; 
114  */ 
115  
116  [ 
117   object, 
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118   uuid(65114180-391B-11D3-AAB7-00C04FA375A6), 
119    
120   helpstring("IEnumPublishInfo Interface"), 
121   pointer_default(unique) 
122  ] 
123  interface IEnumPublishInfo : IUnknown 
124  { 
125     
126  
127    [local] 
128  
129    HRESULT Next([in] ULONG celt, 
130  
131        [out] PublishInfo* rgelt, 
132  
133        [out] ULONG *pceltFetched); 
134 /* 
135    [call_as(Next)] // Later... 
136  
137    HRESULT RemoteNext([in] ULONG celt, 
138  
139        [out, 

size_is(celt), 
140  
141         

length_is(*pceltFetched)] PublishInfo* rgelt, 
142  
143        [out] ULONG 

*pceltFetched); 
144 */ 
145     HRESULT Skip([in] ULONG celt); 
146  
147    HRESULT Reset(); 
148  
149    HRESULT Clone([out] IEnumPublishInfo **ppenum); 
150  
151  }; 
152  
153  [ 
154   object, 
155   uuid(7C045B5D-451C-11d3-AABB-00C04FA375A6), 
156    
157   helpstring("IEnumBindInfo Interface"), 
158   pointer_default(unique) 
159  ] 
160  interface IEnumBindInfo : IUnknown 
161  { 
162     
163  
164    [local] 
165  
166    HRESULT Next([in] ULONG celt, 
167  
168        [out] BindInfo* rgelt, 
169  
170        [out] ULONG *pceltFetched); 
171 /* 
172    [call_as(Next)] // Later... 
173  
174    HRESULT RemoteNext([in] ULONG celt, 
175  
176        [out, 

size_is(celt), 
177  
178         

length_is(*pceltFetched)] BindInfo* rgelt, 
179  
180        [out] ULONG 

*pceltFetched); 
181 */ 
182     HRESULT Skip([in] ULONG celt); 
183  
184    HRESULT Reset(); 
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185  
186    HRESULT Clone([out] IEnumBindInfo **ppenum); 
187  
188  }; 
189  
190  
191   
192  [ 
193   
194   uuid(6511417E-391B-11D3-AAB7-00C04FA375A6), 
195   
196   helpstring("IConnectionTable Interface"), 
197   pointer_default(unique) 
198  ] 
199  interface IConnectionTable : IUnknown 
200  { 
201   HRESULT getBindCount([out,retval] long * pnCount); 
202   HRESULT getPublishCount([out,retval] long * pnCount); 
203  
204   HRESULT getAllPublish(  
205     [retval][out]  IEnumPublishInfo  **ppAllConnections); 
206    
207   HRESULT getAllBindings(  
208     [retval][out]  IEnumBindInfo  **ppAllConnections); 
209    
210   HRESULT isFullyIntegrated(  
211     [retval][out]  boolean  *b); 
212    
213  
214   HRESULT getAllConnections(  
215     [retval][out]  IEnumString  **ppAllConnections); 
216    
217   HRESULT getAllRequiredConnections(  
218     [retval][out]  IEnumString  **ppRequiredConnections); 
219    
220   HRESULT getAllUnconnected(  
221     [retval][out]  IEnumString  **ppUnconnectedLocalNames); 
222  
223   HRESULT getAllRequiredConnected( 
224     [retval][out]  IEnumString  **ppConnections);  
225    
226   HRESULT isConnected(  
227     [in]  BSTR localName, 
228     [retval][out]  boolean  *b); 
229    
230   HRESULT isConnectionRequired(  
231     [in]  BSTR localName, 
232     [retval][out]  boolean  *b); 
233    
234   HRESULT getConnectionType(  
235     [in]  BSTR localName, 
236     [retval][out]  BSTR  *type); 
237    
238   HRESULT getConnectionDescription(  
239     [in]  BSTR localName, 
240     [retval][out]  BSTR  *description); 
241    
242   HRESULT getConnectedToName(  
243     [in]  BSTR localName, 
244     [retval][out]  BSTR  *connection); 
245    
246  /* HRESULT setConnectionTo(  
247     [in]  BSTR  localName, 
248     [in]  BSTR  *registeredName); 
249  */ 
250   HRESULT setConnectionTo(  
251     [in]  BSTR  localName, 
252     [in]  IUnknown  *connection); 
253 }; 
254  
255  [ 
256   
257   uuid(6511417C-391B-11D3-AAB7-00C04FA375A6), 
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258   
259   helpstring("ITestEnumInterface"), 
260   pointer_default(unique) 
261  ] 
262  interface ITestEnumInterface : IConnectionTable 
263  { 
264    
265  }; 
266  
267  [ 
268   
269   uuid(C9BA5F57-3BB0-11d3-AAB7-00C04FA375A6), 
270   
271   helpstring("ITestEnumAggregatedInterface"), 
272   pointer_default(unique) 
273  ] 
274  interface ITestEnumAggregatedInterface :  IUnknown 
275   { 
276    
277  }; 
278  
279  
280  
281 [ 
282  uuid(6511416D-391B-11D3-AAB7-00C04FA375A6), 
283  version(1.0), 
284  helpstring("Omac ConnectionInfo 1.0 Type Library") 
285 ] 
286 library CONNECTIONINFOLib 
287 { 
288  importlib("stdole32.tlb"); 
289  importlib("stdole2.tlb"); 
290 /* 
291  [ 
292   uuid(6511417B-391B-11D3-AAB7-00C04FA375A6), 
293   helpstring("PublishInfo Class") 
294  ] 
295  coclass PublishInfo 
296  { 
297   [default] interface IPublishInfo; 
298  }; 
299 */ 
300  
301  
302  [ 
303   uuid(65114181-391B-11D3-AAB7-00C04FA375A6), 
304   helpstring("EnumPublishInfo Class") 
305  ] 
306  coclass EnumPublishInfo 
307  { 
308   [default] interface IEnumPublishInfo; 
309  }; 
310  
311  [ 
312   uuid(DEB592DF-451C-11d3-AABB-00C04FA375A6), 
313   helpstring("EnumBindInfo Class") 
314  ] 
315  coclass EnumBindInfo 
316  { 
317   [default] interface IEnumBindInfo; 
318  }; 
319  
320  [ 
321   uuid(6511417F-391B-11D3-AAB7-00C04FA375A6), 
322   helpstring("ConnectionTable Class") 
323  ] 
324  coclass ConnectionTable 
325  { 
326   [default] interface IConnectionTable; 
327  }; 
328  
329  [ 
330   uuid(6511417D-391B-11D3-AAB7-00C04FA375A6), 
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331   helpstring("TestEnumInterface Class") 
332  ] 
333  coclass TestEnumInterface  
334  { 
335   [default] interface ITestEnumInterface; 
336  }; 
337  
338   [ 
339   uuid(ECD6C0BB-3BB0-11d3-AAB7-00C04FA375A6), 
340   helpstring("TestEnumAggregatedInterface Class") 
341  ] 
342  coclass TestEnumAggregatedInterface  
343  { 
344   [default] interface IConnectionTable; 
345   interface ITestEnumAggregatedInterface; 
346  }; 
347 }; 
348  

 

B.5 OMAC MODULE BASE CLASSES TYPES 
1 // ControlLawModule.idl : IDL source for ControlLawModule.dll 
2 // 
3  
4 // This file will be processed by the MIDL tool to 
5 // produce the type library (ControlLawModule.tlb) and marshalling code. 
6 import "oaidl.idl"; 
7 import "ocidl.idl"; 
8 import "ConnectionInfo.idl"; 
9  
10  [ 
11   
12   object, 
13   uuid(8CBFD25C-C72F-11d2-AAAB-00C04FA375A6), 
14   
15   helpstring("IOmac Interface"), 
16   pointer_default(unique) 
17  ] 
18  interface IOmac : IUnknown 
19  { 
20  
21  
22  HRESULT _stdcall update(); 
23  HRESULT _stdcall configToString([out,retval] BSTR * str); 
24  HRESULT _stdcall configure([in] BSTR inifile, [in] BSTR keyname); 
25  HRESULT _stdcall isConfigured([out,retval] BSTR * b); 
26  HRESULT _stdcall isFullyConfigured([out,retval] boolean * b); 
27  HRESULT _stdcall init(); 
28  HRESULT _stdcall toString([out,retval] BSTR * str); 
29  HRESULT _stdcall integrate(); 
30  HRESULT _stdcall setName([in] BSTR name); 
31  HRESULT _stdcall getName([out,retval] BSTR * str); 
32  
33  // Event Triggersing State Transition Methods 
34  HRESULT _stdcall execute(); 
35  HRESULT _stdcall startup(); 
36  HRESULT _stdcall begin(); 
37  HRESULT _stdcall done(); 
38  HRESULT _stdcall stop(); 
39  HRESULT _stdcall terminate(); 
40  HRESULT _stdcall abort();  
41  HRESULT _stdcall Enable(); 
42  HRESULT _stdcall Disable(); 
43   
44 }; 
45  [ 
46   
47   object, 
48   uuid(AC04B49D-E6CA-11d2-AAB0-00C04FA375A6), 
49   
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50   helpstring("Omac Named Factory Interface"), 
51   pointer_default(unique) 
52  ] 
53  interface IOmacModuleClassFactory : IClassFactory 
54  { 
55  HRESULT _stdcall CreateModule(BSTR name, REFIID riid, [out, iid_is(riid)] void ** ppvObj); 
56  
57  /* ******************************** */ 
58  /* Registration services */ 
59  /* ******************************** */ 
60  
61  
62     // get a reference to an 

object of type 
63  HRESULT _stdcall lookupOmacObject([in] BSTR registryName, [out, retval] IUnknown ** address 

); 
64  
65     // get a reference to an 

object of a specific type 
66  HRESULT _stdcall lookupTypedOmacObject( [in] BSTR registryName, 
67        [in] BSTR 

objectType, [out, retval] IUnknown ** address ); 
68  
69      // return an enumuration of 

Strings of all the 
70      // registered object types in 

the system 
71  HRESULT _stdcall getClassDirectory([out, retval] IEnumString ** ppEnumObjects); 
72  
73      // return an enumeration of 

Strings of all the 
74      // registered object 

instances of the specified 
75      // type 
76   HRESULT _stdcall  getObjectDirectory([in] BSTR objectType, [out, retval] IEnumString ** 

ppEnumObjects ); 
77   
78  
79 }; 
80  
81 // Create OMAC type library 
82 [ 
83  uuid(FF53F62B-E379-11d2-AAAF-00C04FA375A6), 
84  version(1.0), 
85  helpstring("Omac Module 1.0 Type Library") 
86 ] 
87 library OMACMODULELib 
88 { 
89  importlib("stdole32.tlb"); 
90  importlib("stdole2.tlb"); 
91  
92  [ 
93   uuid(FF53F62C-E379-11d2-AAAF-00C04FA375A6), 
94   helpstring("Omac Class") 
95  ] 
96  coclass Omac 
97  { 
98   [default] interface IOmac; 
99       interface 

IOmacModuleClassFactory; 
100    [optional] interface IConnectionTable; 
101  }; 
102   
103 }; 
104  
105  
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B.7 CONTROL PLAN 
1 #ifndef _CONTROL_PLAN 
2 #define _CONTROL_PLAN 
3 import "oaidl.idl"; 
4 import "ocidl.idl"; 
5  
6 interface IControlPlanUnit; 
7 interface IEnumControlPlans; 
8  
9 [ 
10     object, 
11     uuid(134A0282-E101-11d2-B512-AEC041D2957B), 
12  
13     helpstring("Control Plan Unit Interface"), 
14     pointer_default(unique) 
15 ] 
16  
17 interface IControlPlanUnit : IUnknown 
18 {    // approximate  a graph structure 
19     HRESULT _stdcall executeUnit([out,retval] IControlPlanUnit ** cpu); // return next 

ControlPlanUnit 
20     // HRESULT _stdcall getNextUnit([out,retval]   ControlPlanUnit ** cpu); 
21  
22     HRESULT _stdcall  setActive();    // set when "executing" 
23     HRESULT _stdcall  setInactive();   
24     HRESULT _stdcall  isActive([out, retval] boolean **flag);   // for HMI to determine when 

active 
25  
26     // persistence data a la binary image 
27     HRESULT _stdcall  save([in] BSTR file); 
28     HRESULT _stdcall  restore([in] BSTR file); 
29  
30     // persistence data in neutral format (pre-configuration) 
31     HRESULT _stdcall  saveNeutral([in] BSTR file); 
32     HRESULT _stdcall  restoreNeutral([in] BSTR file); 
33 }; 
34  
35 [ 
36     uuid(68B85C49-E86E-11d2-AAB1-00C04FA375A6), 
37     version(1.0), 
38     helpstring("Enumerated ControlPlan Interface") 
39 ] 
40 interface IEnumControlPlans : IUnknown 
41 { 
42     typedef [unique] IControlPlanUnit *LPENUMCONTROLPLANUNIT; 
43  
44     [local] 
45     HRESULT Next( 
46         [in] ULONG celt, 
47         [out] IControlPlanUnit **rgelt, 
48         [out] ULONG *pceltFetched); 
49  
50     [call_as(Next)] 
51     HRESULT RemoteNext( 
52         [in] ULONG celt, 
53         [out, size_is(celt), length_is(*pceltFetched)] 
54         IControlPlanUnit **rgelt, 
55         [out] ULONG *pceltFetched); 
56  
57     HRESULT Skip( 
58         [in] ULONG celt); 
59  
60     HRESULT Reset(); 
61  
62     HRESULT Clone( 
63         [out] IControlPlanUnit **ppenum); 
64 }; 
65  
66  
67  
68 const unsigned long E_SEQUENCERUNNING = 0x8004F001; 
69  
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70 const unsigned long E_RERUN = 0x8004F002; 
71 const unsigned long E_RESET = 0x8004F003; 
72  
73 const long EF_ABORT_PLAN            = 0x000000F0; 
74 const long EF_PRODUCT_PLAN        = 0x000000F1; 
75 const long EF_STEP_UNASSIGNABLE    = 0x000000F2; 
76 const long EF_STEP_EXECUTING        = 0x000000F3; 
77  
78 typedef enum _StepStatus 
79 { 
80     step_waiting        = 0x00, 
81     step_ready            = 0x01, 
82     step_executing        = 0x02 
83 } StepStatus; 
84  
85  
86 typedef enum _SequencerState 
87 { 
88     uninitialized, 
89     dying, 
90     idle, 
91     running, 
92     halting, 
93     halted 
94 }SequencerState; 
95  
96 //    IOperation interface 
97  
98 [ 
99     uuid(ea6695e0-88af-11d2-a281-006097839e22), 
100     helpstring("IOperation Interface"), 
101     pointer_default(unique), 
102     dual 
103 ] 
104 interface IOperation : IDispatch 
105 { 
106     [helpstring("method Execute")]  
107     HRESULT Execute( [in, out] VARIANT *vaData); 
108 } 
109  
110  
111 [ 
112     object, 
113     uuid(C59C4BAD-EDBB-11d2-AAB1-00C04FA375A6), 
114     dual, 
115     helpstring("ISequence Interface"), 
116     pointer_default(unique) 
117 ] 
118 interface ISequence : IDispatch 
119 { 
120     [helpstring("method InsertStep")] 
121     HRESULT InsertStep( 
122         [in] IOperation* pOperation, 
123         [in] BSTR strStepID, 
124         [in] VARIANT *vaData 
125         ); 
126  
127     [helpstring("method AddFollower")] 
128     HRESULT AddFollower( 
129         [in] BSTR strStepID, 
130         [in] HRESULT retVal, 
131         [in] BSTR strFollowerID, 
132         [in] IOperation* pFollowerOp, 
133         [in] VARIANT *vaFollowerData 
134         ); 
135  
136     [helpstring("method SetFollower")] 
137     HRESULT SetFollower( 
138         [in] BSTR strStepID, 
139         [in] HRESULT retVal, 
140         [in] BSTR strFollowerID 
141         ); 
142     [helpstring("method ClearSteps")] 
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143     HRESULT ClearSteps(); 
144  
145     [helpstring("method GetStepCount")] 
146     HRESULT GetStepCount( 
147         [out] ULONG* pnCount 
148         ); 
149  
150     [helpstring("method EnumerateSteps")] 
151     HRESULT EnumerateSteps( 
152         [out] VARIANT *pSteps, 
153         [out] ULONG* pnReturnedCount 
154         ); 
155     [helpstring("method GetStepStatus")] 
156     HRESULT GetStepStatus( 
157             [in] BSTR strStepID, 
158             [out] StepStatus* pStatus 
159             ); 
160  
161     [helpstring("method GetPredecessorCount")] 
162     HRESULT GetPredecessorCount( 
163             [in] BSTR strStepID, 
164             [out] ULONG* pnCount 
165             ); 
166     [helpstring("method EnumPredecessors")] 
167     HRESULT EnumPredecessors( 
168             [in] BSTR strStepID, 
169             [out] VARIANT *pPredecessors, 
170             [out] ULONG* pnReturnedCount 
171             ); 
172  
173     [helpstring("method GetSuccessorCount")] 
174     HRESULT GetSuccessorCount( 
175             [in] BSTR strStepID, 
176             [out] ULONG* pnCount 
177             ); 
178  
179     [helpstring("method EnumSuccessors")] 
180     HRESULT EnumSuccessors( 
181             [in] BSTR strStepID, 
182             [out] VARIANT *pSuccessors, 
183             [out] VARIANT *pResults, 
184             [out] ULONG* pnReturnedCount 
185             ); 
186  
187     [id(1), helpstring("method EnumWaitingSteps")]  
188     HRESULT EnumWaitingSteps([out] VARIANT *steps,  
189         [out] ULONG *pnReturnedCount); 
190  
191     [id(2), helpstring("method AddPrecondition")]  
192     HRESULT AddPrecondition(BSTR step, BSTR preStep, HRESULT condition); 
193          
194     [id(3), helpstring("method GetPreconditionCount")]  
195     HRESULT GetPreconditionCount([in] BSTR stepID, [out] ULONG *pnCount); 
196  
197     [id(4), helpstring("method EnumPreconditions")]  
198     HRESULT EnumPreconditions([in] BSTR strStepID,  
199         [out] VARIANT *pPreconditions, 
200         [out] VARIANT *pConditions,  
201         [out] ULONG *pnReturnedCount); 
202 }; 
203  
204  
205     [ 
206         object, 
207         uuid(ea6695e3-88af-11d2-a281-006097839e22), 
208         dual, 
209         helpstring("ISequencer Interface"), 
210         pointer_default(unique) 
211     ] 
212     interface ISequencer : IDispatch 
213     { 
214         [helpstring("method SetProductSequence")] 
215         HRESULT SetProductSequence( [in] ISequence* pProductPlan); 
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216      
217         [helpstring("method GetProductSequence")] 
218         HRESULT GetProductSequence( [out] ISequence** ppProductPlan); 
219      
220         [helpstring("method SetAbortSequence")] 
221         HRESULT SetAbortSequence( [in] ISequence* pAbortPlan); 
222      
223         [helpstring("method GetAbortSequence")] 
224         HRESULT GetAbortSequence( [out] ISequence** ppAbortPlan); 
225      
226         [helpstring("method Go")] 
227         HRESULT Go(); 
228      
229         [helpstring("method Step")] 
230         HRESULT Step( [in] BSTR step); 
231      
232         [helpstring("method Stop")] 
233         HRESULT Stop(); 
234      
235         [helpstring("method Abort")] 
236         HRESULT Abort(); 
237  
238         [id(1), helpstring("method RunThruStep")]  
239         HRESULT RunThruStep([in] BSTR step); 
240  
241         [id(2), helpstring("method StartAt")]  
242         HRESULT StartAt([in] BSTR step); 
243  
244         [id(3), helpstring("method Reset")]  
245         HRESULT Reset(); 
246          
247         [id(4), helpstring("method Rerun")]  
248         HRESULT Rerun(); 
249          
250         [id(5), helpstring("method SetName")]  
251         HRESULT SetName([in] BSTR name); 
252          
253         [id(6), helpstring("method GetState")]  
254         HRESULT GetState([out] SequencerState *pState); 
255     }; 
256          
257  
258  
259 [ 
260     uuid(134A0283-E101-11d2-B512-AEC041D2957B), 
261     version(1.0), 
262     helpstring("ControlPlanModule 1.0 Type Library") 
263 ] 
264 library CONTROL_PLAN_MODULE_Lib 
265 { 
266     importlib("stdole32.tlb"); 
267     importlib("stdole2.tlb"); 
268  
269     [ 
270         uuid(134A0284-E101-11d2-B512-AEC041D2957B), 
271         helpstring("ControlPlanUnit Class") 
272     ] 
273     coclass ControlPlanUnit 
274     { 
275         [default] interface IControlPlanUnit; 
276     }; 
277     [ 
278         uuid(134A0285-E101-11d2-B512-AEC041D2957B), 
279         helpstring("Enumerated Control Plans Class") 
280     ] 
281     coclass EnumControlPlans 
282     { 
283         [default] interface IEnumControlPlans; 
284     }; 
285  
286     interface IOperation; 
287  
288     [ 
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289         uuid(ea6695e7-88af-11d2-a281-006097839e22), 
290         helpstring("Sequence component") 
291     ] 
292     coclass Sequence 
293     { 
294         [default] interface ISequence; 
295     }; 
296  
297  
298     [ 
299         uuid(ea6695e9-88af-11d2-a281-006097839e22), 
300         helpstring("Sequencer component") 
301     ] 
302     coclass Sequencer 
303     { 
304         [default] interface ISequencer; 
305     }; 
306  
307 }; 
308  
309  
310 #endif 
311  
312  
313  
314  
 

 

B.8 CAPABILITY 
1 // CapabilityModule.idl : IDL source for CapabilityModule.dll 
2 #ifndef _Capability 
3 #define _Capability 
4   
5 import "oaidl.idl"; 
6 import "ocidl.idl"; 
7 import "OmacModule.idl"; 
8  
9 // Each capablity is an FSM and types of capabilities include: manual, auto, estop, etc. 
10 // FIXME: What is the relationship of manual to auto and any to estop? 
11 // Internally the capbility is a FSM. 
12 [ 
13     object, 
14     uuid(134A0281-E101-11d2-B512-AEC041D2957B), 
15  
16     helpstring("Capability Control Plan Interface"), 
17     pointer_default(unique) 
18 ] 
19 interface ICapability : IUnknown 
20 { 
21   HRESULT _stdcall  start(); 
22   HRESULT _stdcall  execute(); 
23   HRESULT _stdcall  updateCap(); //update() can call updateCap() 
24   HRESULT _stdcall  stop(); 
25   HRESULT _stdcall  abort(); 
26   HRESULT _stdcall  throwExecption(); 
27   HRESULT _stdcall  resolveExecption(); 
28   HRESULT _stdcall  isDone(); 
29   HRESULT _stdcall  isActive();   
30 }; 
31  
32 [ 
33     object, 
34     uuid(FDEC2BF7-E3AE-11d2-AAB0-00C04FA375A6), 
35  
36     helpstring("Capability Control Plan Interface"), 
37     pointer_default(unique) 
38 ] 
39 interface IEnumCapabilities : IUnknown 
40 { 
41  
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42     typedef [unique] ICapability *LPENUMCAPABILITY; 
43  
44     [local] 
45     HRESULT Next( 
46         [in] ULONG celt, 
47         [out] ICapability **rgelt, 
48         [out] ULONG *pceltFetched); 
49  
50     [call_as(Next)] 
51     HRESULT RemoteNext( 
52         [in] ULONG celt, 
53         [out, size_is(celt), length_is(*pceltFetched)] 
54         ICapability **rgelt, 
55         [out] ULONG *pceltFetched); 
56  
57     HRESULT Skip( 
58         [in] ULONG celt); 
59  
60     HRESULT Reset(); 
61  
62     HRESULT Clone( 
63         [out] ICapability **ppenum); 
64 }; 
65  
66 [ 
67     uuid(134A0286-E101-11d2-B512-AEC041D2957B), 
68     version(1.0), 
69     helpstring("Capability CPU Module 1.0 Type Library") 
70 ] 
71 library CAPABILITY_MODULE_Lib 
72 { 
73     importlib("stdole32.tlb"); 
74     importlib("stdole2.tlb"); 
75  
76     [ 
77         uuid(134A0287-E101-11d2-B512-AEC041D2957B), 
78         helpstring("Capability CPU Class") 
79     ] 
80     coclass Capability 
81     { 
82         [default] interface ICapability; 
83     }; 
84 }; 
85 #endif 
86  

B.9 IO 
1 // IOModule.idl : IDL source for IO Points.dll 
2   
3 #ifndef __IOModule__IDL 
4 #define __IOModule__IDL 
5 import "oaidl.idl"; 
6 import "ocidl.idl"; 
7 import "OmacModule.idl"; 
8 import "DataRepresentation.idl"; 
9  
10 //typedef unsigned char byte; 
11  
12 // Level 1 
13 [ 
14     object, 
15     uuid(252BD0E9-EDB6-11d2-AAB1-00C04FA375A6), 
16  
17     helpstring("IO Base Class Interface"), 
18     pointer_default(unique) 
19 ] 
20 interface IIOPt : IOmac 
21 { 
22   // Metadata 
23     typedef [v1_enum] enum tag_TYPE { 
24        DONTCARE, 
25        R_ONLY, 
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26        W_ONLY, 
27        RW 
28     } TYPE; 
29  
30     HRESULT _stdcall setType([in] TYPE value); 
31     HRESULT _stdcall getType([out, retval] TYPE ** value); 
32     HRESULT _stdcall setUnits([in] UNITS value); 
33     HRESULT _stdcall getUnits([out, retval] UNITS ** value); 
34     HRESULT _stdcall set([in] VARIANT value); 
35     HRESULT _stdcall get([out, retval] VARIANT ** value);    
36     HRESULT _stdcall setUpperBound([in]VARIANT value); 
37     HRESULT _stdcall getUpperBound([out,retval]VARIANT ** value); 
38     HRESULT _stdcall setLowerBound([in]VARIANT value); 
39     HRESULT _stdcall getLowerBound([out,retval]VARIANT ** value); 
40     HRESULT _stdcall enableBoundsChecking([in] boolean value); 
41  
42 }; 
43  
44 [ 
45     object, 
46     uuid(2CD39DE5-EDB6-11d2-AAB1-00C04FA375A6), 
47     helpstring("IOPtlong Interface"), 
48     pointer_default(unique) 
49 ] 
50 interface IOPtlong : IIOPt 
51 { 
52   HRESULT _stdcall getValue([out, retval] long ** value); 
53   HRESULT _stdcall setValue([in] long value); 
54  
55 }; 
56  
57 [ 
58     object, 
59     uuid(37B6BADF-EDB6-11d2-AAB1-00C04FA375A6), 
60     helpstring("IOPtshort Interface"), 
61     pointer_default(unique) 
62 ] 
63 interface IOPtshort : IIOPt 
64 { 
65   HRESULT _stdcall getValue([out, retval] short ** value); 
66   HRESULT _stdcall setValue([in] short value); 
67  
68 }; 
69  
70 [ 
71     object, 
72     uuid(42EAE7CD-EDB6-11d2-AAB1-00C04FA375A6), 
73     helpstring("IOPtbyte Interface"), 
74     pointer_default(unique) 
75 ] 
76 interface IOPtbyte : IIOPt 
77 { 
78   HRESULT _stdcall  getValue([out,retval] byte ** value); 
79   HRESULT _stdcall  setValue([in] byte value); 
80  
81 }; 
82  
83 [ 
84     object, 
85     uuid(4D9BF365-EDB6-11d2-AAB1-00C04FA375A6), 
86     helpstring("IOPtboolean Interface"), 
87     pointer_default(unique) 
88 ] 
89 interface IOPtboolean : IIOPt 
90 { 
91   HRESULT _stdcall getValue([out,retval] boolean ** value); 
92   HRESULT _stdcall setValue([in] boolean value); 
93  
94 }; 
95  
96 [ 
97     object, 
98     uuid(644BD3CD-EDB6-11d2-AAB1-00C04FA375A6), 
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99  
100     helpstring("IOPtdouble Interface"), 
101     pointer_default(unique) 
102 ] 
103 interface IOPtdouble : IIOPt 
104 { 
105   HRESULT _stdcall getValue([out,retval] double ** value); 
106   HRESULT _stdcall setValue([in] double value); 
107  
108 }; 
109  
110 [ 
111     object, 
112     uuid(6D8B52E7-EDB6-11d2-AAB1-00C04FA375A6), 
113  
114     helpstring("IOPtfloat Interface"), 
115     pointer_default(unique) 
116 ] 
117 interface IOPtfloat : IIOPt 
118 { 
119   HRESULT _stdcall  getValue([out,retval]  float ** value); 
120   HRESULT _stdcall setValue([in] float value); 
121  
122 }; 
123  
124 [ 
125     uuid(770B317F-EDB6-11d2-AAB1-00C04FA375A6), // New GUID 
126     helpstring("ISubjectObserver Interface"), 
127     pointer_default(unique) 
128 ] 
129 interface ISubjectObserver : IUnknown 
130 { 
131     [helpstring("method SubscribeByID")]  
132     HRESULT SubscribeByID([in] DWORD dwSubjectID,  
133         [in] long lFlags,  
134         [in] long lNotificationFilter); 
135  
136     [helpstring("method SubscribeByName")]  
137     HRESULT SubscribeByName([in] BSTR strname,  
138         [in] long lFlags,  
139         [in] long lNotificationFilter,  
140         [in, out] long *plSubscriptions); 
141         [helpstring("method Unsubscribe")]  
142     HRESULT Unsubscribe([in]DWORD dwSubjectID,[in]BOOL bAllSubjects); 
143  
144     [helpstring("method IsSubscribed")] 
145     HRESULT IsSubscribed(DWORD dwSubjectID); 
146  
147     [helpstring("method GetCountSubscriptions")]  
148     HRESULT GetCountSubscriptions([out] long *lCount); 
149  
150     [helpstring("method GetCountSubscribers")]  
151     HRESULT GetCountSubscribers([out] long *lCount); 
152  
153     [helpstring("method Notify")]  
154     HRESULT Notify([in] long lSizeNotification,  
155         [in, size_is(lSizeNotification)] [ptr] byte* pNotification, 
156         [in] long lDataType, [in] long lNotificationType,  
157         [in] long lExtra); 
158  
159     [helpstring("method GetIDFromName")]  
160     HRESULT GetIDFromName([in] BSTR strname,[out]DWORD * dwObjectID); 
161  
162     [helpstring("method GetObjectID")]  
163     HRESULT GetObjectID([out]DWORD * dwID); 
164  
165     [helpstring("method GetName")]  
166     HRESULT GetName([out, retval]BSTR *strName); 
167  
168     [helpstring("method GetNameFromID")]  
169     HRESULT GetNameFromID([in] DWORD dwID, [out, retval]BSTR *pbstrName); 
170  
171     [helpstring("method SetName")]  
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172     HRESULT SetName([in, string] BSTR bstrName); 
173  
174     [helpstring("method GetError")]  
175     HRESULT GetError([out, retval] BSTR *pbstrError); 
176 }; 
177 [ 
178     uuid(17A90B20-8221-11d2-9AD6-00C0D15709A3), 
179  
180     helpstring("IObserverNotification Interface"), 
181     pointer_default(unique) 
182 ] 
183 interface IObserverNotification: IUnknown 
184 { 
185     [helpstring("method OnNotify")]  
186     HRESULT OnNotify([in] VARIANT *pObj); 
187  
188     //[helpstring("method OnNotify")] HRESULT OnNotify([in] DWORD  
189     // dwSubjectSender,[in] long  
190     // nSizeNotification,[in,size_is(nSizeNotification)] [ptr] byte*  
191     // pNotification); 
192  
193     [helpstring("method OnNotifySubjectBroken")]  
194     HRESULT OnNotifySubjectBroken([in] DWORD dwSubjectID); 
195 }; 
196  
197  
198  
199 #ifdef IGNORE_THIS  
200     OPC  has defined this sort of interface 
201 typedef sequence<IOPt> IOvalues; 
202 typedef sequence<string> IOnames; 
203 typedef sequence<string> IOmetadata; 
204  
205 // Or should this just be an array of IOPts? 
206 interface IOgroup 
207 { 
208   IOvalues getValues(); 
209   void setValues(in IOvalues values); 
210  
211   void addIoPtlong(in IOPtlong io); 
212   void addIoPtshort(in IOPtshort io); 
213   void addIoPtboolean(in IOPtboolean io); 
214   void addIoPtdouble(in IOPtdouble io); 
215   void addIoPtfloat(in IOPtfloat io); 
216   IOnames getNames(); 
217   IOmetadata getMetadata(); 
218 }; 
219  
220 interface IOsystem 
221 { 
222   void addIoGroup(in IOgroup aIOgroup); 
223   IOgroup getIoGroup(in string name); 
224   // FIXME: how do you do this in IDL? 
225   // IOPt getIoPt(char * name); 
226 }; 
227 #endif 
228  
229 [ 
230     uuid(134A02A3-E101-11d2-B512-AEC041D2957B), 
231     version(1.0), 
232     helpstring("ControlPlanGenerator Module 1.0 Type Library") 
233 ] 
234 library IO_MODULE_Lib 
235 { 
236     importlib("stdole32.tlb"); 
237     importlib("stdole2.tlb"); 
238  
239     [ 
240         uuid(903B079F-EDB8-11d2-AAB1-00C04FA375A6), 
241         helpstring("IO Point Class") 
242     ] 
243     coclass IOPt 
244     { 
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245         [default] interface IIOPt; 
246     }; 
247  
248  
249  
250     [ 
251         uuid(71CB82B7-EDB8-11d2-AAB1-00C04FA375A6), 
252         helpstring("SubjectObserver Class") 
253     ] 
254     coclass SubjectObserver 
255     { 
256         [default] interface ISubjectObserver; 
257         [default,source] interface IObserverNotification; 
258     }; 
259  
260 }; 
261  
262 // Level 2: Hierarchy of Common IO Points - for type checking 
263 // See IO API Document for further details 
264 #endif 
265  

B.10 TASK COORDINATOR 
1 // TaskCoordinatorModule.idl : IDL source for TaskCoordinator.dll 
2   
3 #ifndef TaskCoordinator__IDL 
4 #define TaskCoordinator__IDL 
5 import "oaidl.idl"; 
6 import "ocidl.idl"; 
7 import "OmacModule.idl"; 
8 import "CapabilityModule.idl"; 
9  
10 [ 
11  object, 
12  uuid(134A0280-E101-11d2-B512-AEC041D2957B), 
13  
14  helpstring("TaskCoordinator Interface"), 
15  pointer_default(unique) 
16 ] 
17  
18 // Task Coordinator accepts one capability from a list of capabilities.  
19 interface ITaskCoordinator : IOmac /*UPDATABLE*/ 
20 { 
21  
22    HRESULT _stdcall  update();  //can be inherited from UPDATER 
23  
24   // Capability List Management 
25    HRESULT _stdcall addToList([in] ICapability * cap); 
26    HRESULT _stdcall removeFromList([in] ICapability * cap); 
27    HRESULT _stdcall getList([out, retval] IEnumCapabilities **cap); 
28  
29   // Current Capability Management 
30    HRESULT _stdcall getCurrentCapability([out, retval] ICapability **cap); 
31    HRESULT _stdcall setCurrentCapability([in] ICapability * cap); 
32 }; 
33  
34 [ 
35  uuid(134A0288-E101-11d2-B512-AEC041D2957B), 
36  version(1.0), 
37  helpstring("Task Coordinator Module 1.0 Type Library") 
38 ] 
39 library TASK_COORDINATOR_MODULE_Lib 
40 { 
41  importlib("stdole32.tlb"); 
42  importlib("stdole2.tlb"); 
43  
44  [ 
45   uuid(134A0289-E101-11d2-B512-AEC041D2957B), 
46   helpstring("Task Coordinator Class") 
47  ] 
48  coclass TaskCoordinator 
49  { 
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50   [default] interface ITaskCoordinator; 
51  }; 
52 }; 
53 #endif 
54  

 

B.11 DISCRETE LOGIC 
1 // 
2 // DiscreteLogic.idl 
3 // 
4 #ifndef DiscreteLogic__idl 
5 #define DiscreteLogic__idl 
6  
7 import "oaidl.idl"; 
8 import "ocidl.idl"; 
9  
10 import "OmacModule.idl"; 
11 import "ControlPlanModule.idl"; 
12  
13 interface IDiscreteLogicUnit; 
14  
15 // Discrete Logic Module contains a list of logic units. A PLC like scan 
16 // goes down the list and executes each logic unit if it is on. Logic units 
17 // will be executed as often as its posted scan rate indicates. 
18 // Internally each discrete logic unit is an FSM. 
19 // Discrete Logic Units (DLUs) are grouped by scan rates. 
20  
21 [ 
22     object, 
23     uuid(134A028C-E101-11d2-B512-AEC041D2957B), 
24  
25     helpstring("Discrete Logic Interface"), 
26     pointer_default(unique) 
27 ] 
28 interface IDiscreteLogic : IOmac 
29 { 
30  
31   // Logic Units Management 
32     HRESULT _stdcall createDiscreteLogicUnit([out, retval] IDiscreteLogicUnit ** d); 
33     HRESULT _stdcall addLogicUnit([in] IDiscreteLogicUnit * dlu); 
34     HRESULT _stdcall removeLogicUnit([in] IDiscreteLogicUnit * dlu); 
35     HRESULT _stdcall enableLogicUnit([in] IDiscreteLogicUnit * dlu); 
36     HRESULT _stdcall disableLogicUnit([in] IDiscreteLogicUnit * dlu); 
37 }; 
38  
39 // Derived from ControlPlanUnit, see: part program translator 
40 [ 
41     object, 
42     uuid(134A028D-E101-11d2-B512-AEC041D2957B), 
43  
44     helpstring("Discrete Logic Interface"), 
45     pointer_default(unique) 
46 ] 
47 interface IDiscreteLogicUnit: IControlPlanUnit 
48 { 
49   HRESULT _stdcall setInterval([in] long aInterval);     
50   HRESULT _stdcall getInterval([out,retval] long ** val); 
51  
52   HRESULT _stdcall start(); 
53   HRESULT _stdcall scanUpdate(); 
54   HRESULT _stdcall stop(); 
55   HRESULT _stdcall isOn([out,retval] boolean ** flag); 
56   HRESULT _stdcall turnOn([out,retval] boolean ** flag); 
57   HRESULT _stdcall turnOff([out,retval] boolean ** flag); 
58 }; 
59  
60 [ 
61     uuid(134A028E-E101-11d2-B512-AEC041D2957B), 
62     version(1.0), 
63     helpstring("DiscreteLogicModule 1.0 Type Library") 
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64 ] 
65 library DISCRETE_LOGIC_MODULE_Lib 
66 { 
67     importlib("stdole32.tlb"); 
68     importlib("stdole2.tlb"); 
69  
70     [ 
71         uuid(134A028F-E101-11d2-B512-AEC041D2957B), 
72         helpstring("DiscreteLogic Class") 
73     ] 
74     coclass DiscreteLogic 
75     { 
76         [default] interface IDiscreteLogic; 
77     }; 
78     [ 
79         uuid(134A0290-E101-11d2-B512-AEC041D2957B), 
80         helpstring("DiscreteLogicUnit Class") 
81     ] 
82     coclass DiscreteLogicUnit 
83     { 
84         [default] interface IDiscreteLogicUnit; 
85     }; 
86 }; 
87 #endif 
88  

B.12 CONTROL PLAN GENERATOR 
1 // 
2 // ControlPlanGenerator.idl 
3 // 
4 #ifndef ControlPlanGenerator__idl 
5 #define ControlPlanGenerator__idl 
6  
7 import "DataRepresentation.idl"; 
8 import "ControlPlanModule.idl"; 
9  
10 // Level 1 assuming simple File Manipulation 
11 [ 
12  object, 
13  uuid(134A02A2-E101-11d2-B512-AEC041D2957B), 
14  
15  helpstring("Control Plan Generator Interface"), 
16  pointer_default(unique) 
17 ] 
18 interface IControlPlanGenerator :IUnknown 
19 { 
20     HRESULT _stdcall setProgramName([in] BSTR s); 
21     HRESULT _stdcall getProgramName([out,retval] BSTR **name ); 
22  
23     HRESULT _stdcall checkSyntax([out,retval] boolean **flag); 
24  
25    //get error codes or returns file name or file pointer? 
26     HRESULT _stdcall getErrorCodes([out,retval] BSTR ** results); 
27  
28     // complete translation into ControlPlan 
29     HRESULT _stdcall  translate([out,retval] IEnumControlPlans ** cp); 
30  
31     // step by step translation 
32     HRESULT _stdcall  getNextControlPlanUnnit([out,retval] IControlPlanUnit ** cpu);  
33 };  
34  
35 [ 
36  uuid(134A02A3-E101-11d2-B512-AEC041D2957B), 
37  version(1.0), 
38  helpstring("ControlPlanGenerator Module 1.0 Type Library") 
39 ] 
40 library CONTROL_PLAN_GENERATOR_MODULE_Lib 
41 { 
42  importlib("stdole32.tlb"); 
43  importlib("stdole2.tlb"); 
44  
45  [ 
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46   uuid(134A02A4-E101-11d2-B512-AEC041D2957B), 
47   helpstring("Control Plan Generator Class") 
48  ] 
49  coclass ControlPlanGenerator 
50  { 
51   [default] interface IControlPlanGenerator; 
52  }; 
53 }; 
54  
55 #endif 
56  

B.13 AXIS GROUP 

There are some inconsistencies within the Axis Group module API. The major remaining problem is 
to resolve the use of the axis group velocity profile generator (VPG) versus having the VPG 
embedded within a motion segment. 
1 #ifndef AxisGroup__IDL 
2 #define AxisGroup__IDL 
3  
4 import "DataRepresentation.idl" 
5 import "OmacModule.idl" 
6 import "Kinematics.idl" 
7 import "ControlPlan.idl" 
8  
9 //+ add accel mode - use instead of enum - windows problem 
10 typedef long ACCMode; 
11 #define  SCURVE 1 
12 #define  TRAPEZOIDAL 2 
13  
14 interface                  IAxisGroup; 
15 interface                  IMotionSegment; 
16 interface                  IRate; 
17 interface                  IVelocityProfileGenerator; 
18 typedef   long             AccDecProfile; 
19 struct  _CoordinatedAxes { 
20     double axis[10];  
21 } CoordinatedAxes; 
22  
23 struct  _CRCMODE         { /* FIXME */ } CRCMODE; 
24  
25 [ 
26     object, 
27     uuid(134A0292-E101-11d2-B512-AEC041D2957B),  
28  
29     helpstring("Axis Group Interface"), 
30     pointer_default(unique) 
31 ] 
32 interface IAxisGroup : IOmac 
33 { 
34 //+  enum { ERROR, HELD, HOLDING, STOPPED, STOPPING,  
35 //          PAUSED, PAUSING, RESUME, EXECUTING, IDLE }; 
36  
37   // STATE LOGIC 
38   // ============================================= 
39  
40   HRESULT _stdcall  hardStopAxes();  // Stop at max deceleration rate (abort) 
41   HRESULT _stdcall  pauseAxes();      // stop on path 
42   HRESULT _stdcall  holdAxes();       // stop at end of segment 
43   HRESULT _stdcall  resumeAxes();     // Resumes motion from current point 
44  
45 //  HRESULT _stdcall     updateAxes(); 
46   HRESULT _stdcall     update();       //+ changed for consistent interface 
47  
48   HRESULT _stdcall getCurrentState([out,retval] long **value); 
49   HRESULT _stdcall  getCurrentStateName(BSTR statename); 
50   HRESULT _stdcall  isOk(boolean **flag); 
51   HRESULT _stdcall  isExecuting([out,retval] boolean **flag); 
52   HRESULT _stdcall  isHeld([out,retval] boolean **flag); 
53   HRESULT _stdcall  isHolding([out,retval] boolean **flag); 
54   HRESULT _stdcall  isPaused([out,retval] boolean **flag); 
55   HRESULT _stdcall  isPausing([out,retval] boolean **flag); 
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56   HRESULT _stdcall  isStopping([out,retval] boolean **flag); 
57   HRESULT _stdcall  isStopped([out,retval] boolean **flag); 
58  
59   // These methods could be operator Control Plan Unit 
60   HRESULT _stdcall  jogAxis([in] long axisNo,  
61   [in] Velocity speed ); 
62  
63   HRESULT _stdcall  homeAxis([in] long axisNo,  
64   [in] Velocity speed ); 
65  
66   HRESULT _stdcall  moveAxisTo([in] long axisNo,  
67   [in] Velocity speed,  
68   [in] Length  toPosition); 
69  
70   HRESULT _stdcall  incrementAxis([in] long axisNo,  
71   [in] Velocity speed,  
72   [in] Length increment); 
73  
74   // BUFFERING MANAGEMENT 
75   //=============================================== 
76   HRESULT _stdcall  setNextMotionSegment([in] IMotionSegment block);  
77   // MotionSegment getCurrentMotionBlock( );  //hazardous to your controller’s health 
78   HRESULT _stdcall  getMaxqsize( [out,retval] long ** val);     // largest queue size possible=n 
79   HRESULT _stdcall  setQlength([in] long value); // maximum number of queue members=(1..n) 
80   HRESULT _stdcall  getQlength([out,retval] long ** val);     
81   HRESULT _stdcall  getCurrentQsize([out,retval] long ** val);     // number of items in queue=i 
82   HRESULT _stdcall  isFull([out,retval] boolean **flag);           // number of items = n 
83   HRESULT _stdcall  isEmpty([out,retval] long ** val);          // number or items = 0 
84  
85   HRESULT _stdcall  flush();                // flush all segments 
86   HRESULT _stdcall  skip();                 // skip to next segment          
87   HRESULT _stdcall  saveQContext();       // save current queue 
88   HRESULT _stdcall  restoreQContext();    // restore saved queue 
89  
90   // FIXME: possibly more queue mgt functions (accessor, query, ... ) 
91  
92   // CONVENIENCE FUNCTIONS TO ACCESS MOTION SEGMENT DATA  
93   //=============================================== 
94   HRESULT _stdcall getNeighborhood([out,retval] Length ** dval); 
95   HRESULT _stdcall getFeedrate([out,retval] LinearVelocity  ** dval); 
96   HRESULT _stdcall getTraverserate([out,retval] Velocity ** dval); 
97   HRESULT _stdcall getFeedrateOverride([out,retval] double ** val); 
98   HRESULT _stdcall getSpindleRateOverride([out,retval] double ** val); 
99   HRESULT _stdcall getJerkLimit([out,retval] LinearJerk ** lj); 
100   HRESULT _stdcall getInPosition([out,retval] boolean ** flag); 
101   HRESULT _stdcall setInPosition([in] boolean value); /* privapte method*/ 
102  
103   // See Note 1  
104   HRESULT _stdcall getActualAxisPosition([in] long axisNo, [out,retval] Measure **value ); 
105   HRESULT _stdcall getActualAxesPositions([out, retval] OacVector ** vector); 
106   HRESULT _stdcall getXformedActualPositions([out,retval] CoordinateFrame ** coord ); 
107   HRESULT _stdcall getCommandedAxisPosition([in] long axisNo, [out,retval]  Measure ** dVal ); 
108   HRESULT _stdcall getCommandedAxesPositions([out,retval] OacVector ** vector ); 
109   HRESULT _stdcall  getXformedCommandedPositions([in] OacVector axisPositions, [out,retval] 

CoordinateFrame ** cf ); 
110  
111   HRESULT _stdcall  getAccmode([out,retval] ACCMode ** accmode); 
112  
113   // KINEMATIC INFORMATION 
114   //=============================================== 
115   // Axis under control 
116   HRESULT _stdcall getCoordinatedAxes([out,retval] CoordinatedAxes ** ca); 
117   HRESULT _stdcall getKinstructure([out,retval] IKinStructure ** kin ); 
118   HRESULT _stdcall setKinstructure([in] IKinStructure value); 
119   HRESULT _stdcall getToolTransform([out,retval] Transform ** t); 
120   HRESULT _stdcall getBaseframe([out,retval] Transform ** t); 
121   HRESULT _stdcall setBaseframe([in] CoordinateFrame value); 
122  
123   // recovery from fault error, sharing 
124   HRESULT _stdcall inhibitAxis([in]  long axisNo, [in] boolean inhibit ); 
125   HRESULT _stdcall axisInhibitd([in] long axisNo, [out,retval] boolean ** flag ); 
126   HRESULT _stdcall inhibitSpindle([in] boolean inhibit ); 
127   HRESULT _stdcall spindleInhibitd([out,retval] boolean ** flag); 
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128  
129   // TRAJECTORY INFORMATION 
130   //=============================================== 
131   HRESULT _stdcall setBlending([in] boolean flag);      // TRUE=ON, FALSE=OFF 
132   HRESULT _stdcall setSingleStep([in] boolean flag);   // TRUE=ON, FALSE=OFF 
133  
134   // HRESULT _stdcall  setVpg([in] IVelocityProfileGenerator vpg); 
135   // VelocityProfileGenerator getVpg(); 
136  
137   // Timing is now a reference to another object 
138   // timeMeasure getAxisupdateinterval() const; 
139   // HRESULT _stdcall  setAxisupdateinterval(timeMeasure value); 
140     //  attribute Time timing; 
141  
142   HRESULT _stdcall setPhysicalLimits([in] Rate limits); //+ 3-Jun-1997 
143   HRESULT _stdcall getPhysicalLimits([out,retval] Rate ** r );        //+ 
144 }; 
145  
146 // NOTES 
147 // 1. There is a problem in JAVA with returning data type. 
148 // Storing into calling parameter as a side effect Side  
149 // instead of 
150 //       OacVector getCommandedAxesPositions( );  
151 // use 
152 //       getCommandedAxesPositions( OacVector positions );  
153 // It is possible to redo above in this signature style. 
154 // 2. Issue: There are issues as to maximum acceleration of device 
155 // versus Control Plan Unit (Motion Segment)  
156  
157 // Control Plan Class Definitions- Motion Segments 
158  
159  
160 [ 
161     object, 
162     uuid(134A0293-E101-11d2-B512-AEC041D2957B), 
163  
164     helpstring("Path Node Interface"), 
165     pointer_default(unique) 
166 ] 
167  
168 interface IPathNode  
169 { 
170   HRESULT _stdcall  getControltransform([out,retval] Transform ** t); 
171   HRESULT _stdcall  setControltransform(Transform value); 
172 }; 
173 [ 
174     object, 
175     uuid(134A0294-E101-11d2-B512-AEC041D2957B), 
176  
177     helpstring("PathElement Interface"), 
178     pointer_default(unique) 
179 ] 
180 interface IPathElement :  IKinematicPath   
181 { 
182   HRESULT _stdcall initAccDecProfile([in] LinearVelocity vel); 
183   HRESULT _stdcall setStartPoint([in] IPathNode startPoint ); // axgroup sets 
184   HRESULT _stdcall getStartPoint([out,retval] IPathNode ** pn ); 
185   HRESULT _stdcall getEndPoint([out,retval] IPathNode ** pn );     // axgroup sets 
186   // HRESULT _stdcall  setEndPoint([in] IPathNode endPoint);    // ppt or internal use 
187   HRESULT _stdcall getDistanceToGo([out,retval] LengthMeasure ** len); 
188   HRESULT _stdcall isPathComplete([out,retval] boolean ** flag); 
189   HRESULT _stdcall pathLength([out,retval] LengthMeasure ** len ); 
190   // LengthMeasure pathLength(XYZ xyz); // what is this 
191 }; 
192  
193  
194 [ 
195     object, 
196     uuid(134A0295-E101-11d2-B512-AEC041D2957B), 
197  
198     helpstring("Rate Interface"), 
199     pointer_default(unique) 
200 ] 
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201 interface IRate 
202 { 
203   HRESULT _stdcall setNominalFeedrate([in] double vnom); 
204   HRESULT _stdcall setCurrentFeedrate([in] double vmax, [out,retval] long ** pplVal );      // 

includes override 
205   HRESULT _stdcall setMaximumAcceleration([in] double amax, [out,retval] long **pplVal); 
206   HRESULT _stdcall setMaximumJerk([in] double jmax, [out,retval] long **value); 
207  
208   HRESULT _stdcall getNominalFeedrate([out,retval] double ** ppdVal); 
209   HRESULT _stdcall getCurrentFeedrate([out,retval] double ** ppdVal);              // includes 

override 
210   HRESULT _stdcall getMaximumAcceleration([out,retval] double ** ppdVal); 
211   HRESULT _stdcall getMaximumJerk([out,retval] double ** ppdVal); 
212  
213   HRESULT _stdcall getCurrentVelocity([out,retval] double ** val); 
214   HRESULT _stdcall setCurrentVelocity([in] double vcur); 
215  
216   HRESULT _stdcall getFinalVelocity([out,retval] double  ** val ); 
217   HRESULT _stdcall setFinalVelocity([in] double vcur); 
218  
219   HRESULT _stdcall getCurrentAcceleration([out,retval]  double ** val); 
220   HRESULT _stdcall setCurrentAcceleration([in] double acur); 
221  
222   HRESULT _stdcall getAccState([out,retval] long **value); 
223   HRESULT _stdcall setAccState([in] long val); 
224   HRESULT _stdcall isDone([out,retval] boolean ** flag); 
225   HRESULT _stdcall isAccel([out,retval] boolean ** flag); 
226   HRESULT _stdcall isConst([out,retval] boolean ** flag); 
227   HRESULT _stdcall isDecel([out,retval] boolean ** flag); 
228  
229   HRESULT _stdcall setNominalSpindleSpeed([in] double spd); // why here? 
230   HRESULT _stdcall getNominalSpindleSpeed([out,retval] double ** val ); 
231 }; 
232 [ 
233     object, 
234     uuid(134A0296-E101-11d2-B512-AEC041D2957B), 
235  
236     helpstring("Kinematic Info Interface"), 
237     pointer_default(unique) 
238 ] 
239 interface  IKinematicInfo 
240 { 
241   HRESULT _stdcall  setToolCenter([in] Length effectiveDisplacement,  
242              [in] CRCMODE cutterRadiusCompensation); 
243  
244   HRESULT _stdcall getCurrentFrame([out,retval] Transform ** tr); 
245   HRESULT _stdcall setCurrentFrame([in] Transform currentFrame ); 
246  
247   HRESULT _stdcall getKinematics([out,retval] IKinMechanism ** kin); 
248   HRESULT _stdcall setKinematics ([in] IKinMechanism kin); 
249 }; 
250  
251 [ 
252     object, 
253     uuid(134A0297-E101-11d2-B512-AEC041D2957B), 
254  
255     helpstring("VelocityProfileGenerator Interface"), 
256     pointer_default(unique) 
257 ] 
258 interface IVelocityProfileGenerator  
259 { 
260   HRESULT _stdcall getAccdecprofile([out,retval]  AccDecProfile ** accdec); 
261   HRESULT _stdcall setAccdecprofile([in] AccDecProfile value); 
262  
263   HRESULT _stdcall setBlendingPointDistance([in] double distance ); 
264   HRESULT _stdcall getBlendingPointDistance([out,retval]  double ** val); 
265  
266   HRESULT _stdcall getSamplingTime([out,retval] Time ** t); 
267   HRESULT _stdcall  setSamplingTime([in] Time value); 
268   /* New  3-Jun-1997 */ 
269   HRESULT _stdcall  holdSegment(); 
270   HRESULT _stdcall  pauseSegment(); 
271   HRESULT _stdcall  resumeSegment(); 
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272 }; 
273 // Base Class for Motion Segment 
274 // Derived from ControlPlanUnit  - see part program translator 
275 [ 
276     object, 
277     uuid(134A0298-E101-11d2-B512-AEC041D2957B), 
278  
279     helpstring("MotionSegment Interface"), 
280     pointer_default(unique) 
281 ] 
282 interface IMotionSegment  : IControlPlanUnit 
283 { 
284   HRESULT _stdcall getKinematicInfo (KinematicInfo **kin); 
285   HRESULT _stdcall setKinematicInfo (KinematicInfo kin); 
286  
287   HRESULT _stdcall setVpg([in] IVelocityProfileGenerator  aVPG); 
288   HRESULT _stdcall getVpg([out,retval]  IVelocityProfileGenerator ** vpg); 
289  
290   HRESULT _stdcall setTranslationalRate([in] IRate rate); 
291   HRESULT _stdcall getTranslationalRate([out,retval]  IRate ** rate ); 
292  
293   HRESULT _stdcall setOrientationRate([in] Rate rate); 
294   HRESULT _stdcall getOrientationRate([out,retval]  Rate ** rate); 
295  
296   HRESULT _stdcall setAngularRate([in] IRate rate); // does this belong in axis group? 
297   HRESULT _stdcall getAngularRate([out,retval]  IRate ** rate); 
298  
299   // if internal velocity profile generation supply this interface 
300   HRESULT _stdcall setBlendingPointDistance([in] double distance ); 
301   HRESULT _stdcall getBlendingPointDistance([out,retval]  double **val); 
302    
303   HRESULT _stdcall calcDistanceRemaining([out,retval]  Length **l); // axes 
304  
305   HRESULT _stdcall getIncrementalDistance([out,retval] OacVector **vector ); 
306   HRESULT _stdcall getLengthsRemaining([out,retval]  OacVector ** vector );  // per axis 
307   HRESULT _stdcall calcNextIncrement([in] double feedOverride, 
308                 [in] double spindleOverride, 
309                 [out,retval] OacVector ** vector 
310                 ); 
311   HRESULT _stdcall  startNextSegment([out,retval] boolean ** flag); //? what does this mean init? 
312 //?  int init(double cycleTime); //+ 3-Jun-1997 
313   HRESULT _stdcall pauseSegment(); 
314   HRESULT _stdcall holdSegment();  /* new */ 
315   HRESULT _stdcall stopSegment();  /* new 3-Jun-1997 set motion to done */ 
316   HRESULT _stdcall resumeSegment(); 
317   HRESULT _stdcall isPaused([out,retval] boolean ** flag); 
318   HRESULT _stdcall isHeld([out,retval] boolean ** flag); 
319  
320 #ifdef SKIPTHIS 
321  
322   // Program information (file, line number, block) and signals(active)  
323   HRESULT _stdcall  setPpb( PartProgramBlock ppb ); 
324   HRESULT _stdcall  segmentStarted(); 
325   HRESULT _stdcall  segmentFinished(); 
326 #endif 
327 }; 
328 //NOTES:   
329 // 1. Handling Termination Condition: 
330 // a. Exact Stop = blending distance=0 
331  
332 [ 
333     uuid(134A0299-E101-11d2-B512-AEC041D2957B), 
334     version(1.0), 
335     helpstring("Axis Group Module 1.0 Type Library") 
336 ] 
337 library AXIS_GROUP_MODULE_Lib 
338 { 
339     importlib("stdole32.tlb"); 
340     importlib("stdole2.tlb"); 
341  
342     [ 
343         uuid(134A029A-E101-11d2-B512-AEC041D2957B), 
344         helpstring("Axis Group Class") 
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345     ] 
346     coclass AxisGroup 
347     { 
348         [default] interface IAxisGroup; 
349         interface IOmac; 
350     }; 
351     [ 
352         uuid(134A029B-E101-11d2-B512-AEC041D2957B), 
353         helpstring("PathNode Class") 
354     ] 
355     coclass PathNode 
356     { 
357         [default] interface IPathNode; 
358     }; 
359  
360     [ 
361         uuid(134A029C-E101-11d2-B512-AEC041D2957B), 
362         helpstring("PathElement Class") 
363     ] 
364     coclass PathElement 
365     { 
366         [default] interface IPathElement; 
367         interface IKinematicPath; 
368     }; 
369  
370     [ 
371         uuid(134A029D-E101-11d2-B512-AEC041D2957B), 
372         helpstring("Rate Class") 
373     ] 
374     coclass Rate 
375     { 
376         [default] interface IRate; 
377     }; 
378  
379     [ 
380         uuid(134A029B-E101-11d2-B512-AEC041D2957B), 
381         helpstring(" KinematicInfo Class") 
382     ] 
383     coclass  KinematicInfo 
384     { 
385         [default] interface IKinematicInfo; 
386     }; 
387  
388     [ 
389         uuid(134A029E-E101-11d2-B512-AEC041D2957B), 
390         helpstring("VelocityProfileGenerator Class") 
391     ] 
392     coclass VelocityProfileGenerator 
393     { 
394         [default] interface IVelocityProfileGenerator; 
395     }; 
396  
397     [ 
398         uuid(134A029F-E101-11d2-B512-AEC041D2957B), 
399         helpstring("MotionSegment Class") 
400     ] 
401     coclass MotionSegment 
402     { 
403         [default] interface IMotionSegment; 
404         interface IControlPlanUnit; 
405     }; 
406  
407 }; 
408  
409  
410 #endif 
411  

 

B.14 AXIS 
1 // AxisModule.idl : IDL source for AxisModule.dll 
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2 // 
3  
4 // This file will be processed by the MIDL tool to 
5 // produce the type library (AxisModule.tlb) and marshalling code. 
6  
7 import "oaidl.idl"; 
8 import "ocidl.idl"; 
9  
10 import "DataRepresentation.idl"; 
11 import "OmacModule.idl"; 
12 import "ControlLawModule.idl"; 
13  
14 interface IAxis; 
15 interface IAxisAbsolutePos; 
16 interface IAxisAccelerationServo; 
17 interface IAxisCommandedInput; 
18 interface IAxisCommandedOutput; 
19 interface IAxisDyn; 
20 interface IAxisErrorAndEnable; 
21 interface IAxisForceServo; 
22 interface IAxisHoming; 
23 interface IAxisIncrementPos; 
24 interface IAxisKinematics; 
25 interface IAxisJogging; 
26 interface IAxisLimits; 
27 interface IAxisMaintenance; 
28 interface IAxisPositioningServo; 
29 interface IAxisRates; 
30 interface IAxisSensedState; 
31 interface IAxisSetup; 
32 interface IAxisVelocityServo; 
33  
34 typedef double AxisAccelCmd; 
35 typedef double AxisForceCmd; 
36 typedef double AxisPositionCmd; 
37 typedef double AxisVelocityCmd; 
38  
39 // {9C56BEC5-07CB-11d3-AAB2-00C04FA375A6} 
40 cpp_quote("const CATID CATID_AxisModule = { 0x9c56bec5, 0x7cb, 0x11d3, { 0xaa, 0xb2, 0x0, 0xc0, 

0x4f, 0xa3, 0x75, 0xa6 } };") 
41  
42 //const GUID CATID_ControlLawModule = 

{0xE1D6F9F1,0xB1FE,0x11D2,{0xAA,0xA8,0x00,0xC0,0x4F,0xA3,0x75,0xA6}}; 
43  
44 // Example: This CLSID  is specific for one vendor, (i.e., NIST) Control Law Server 
45 // {803B45C1-07CB-11d3-AAB2-00C04FA375A6} 
46 cpp_quote("const CLSID CLSID_NISTAxisModuleServer = { 0x803b45c1, 0x07cb, 0x11d3, { 0xaa, 0xb2, 

0x0, 0xc0, 0x4f, 0xa3, 0x75, 0xa6 } };") 
47  
48  [ 
49   object, 
50   uuid(0A70EBB0-06D9-11D3-AAB2-00C04FA375A6), 
51    
52   helpstring("IAxisModuleClassFactory Interface"), 
53   pointer_default(unique) 
54  ] 
55  interface IAxisModuleClassFactory : IUnknown 
56  { 
57   HRESULT _stdcall CreateModule([in] BSTR name, [in] REFIID riid, [out, iid_is(riid)] void 

** ppvObj); 
58  }; 
59  
60 [ 
61   
62  uuid(AA03FCE5-FF08-11D2-AAB2-00C04FA375A6), 
63   
64  helpstring("IAxis Interface"), 
65  pointer_default(unique) 
66 ] 
67 interface IAxis : IOmac 
68 { 
69   // Get Reference Objects 
70   HRESULT _stdcall getAbsolutePos([out,retval] IAxisAbsolutePos ** val); 



THE OMAC API SET WORKING DOCUMENT 

 VERSION 0.16 

  OCTOBER 12, 1999  91

71   HRESULT _stdcall getAccelerationServo([out,retval] IAxisAccelerationServo ** a); 
72   HRESULT _stdcall getCommandedInput([out,retval] IAxisCommandedInput ** a); 
73   HRESULT _stdcall getCommandedOutput([out,retval] IAxisCommandedOutput** a); 
74   HRESULT _stdcall getDynamics([out,retval] IAxisDyn ** val); 
75   HRESULT _stdcall getErrorAndEnable([out,retval] IAxisErrorAndEnable** a); 
76   HRESULT _stdcall getForceServo([out,retval] IAxisForceServo **a); 
77   HRESULT _stdcall getHoming([out,retval] IAxisHoming **  a); 
78   HRESULT _stdcall getIncrementPosition([out,retval] IAxisIncrementPos ** a); 
79   HRESULT _stdcall getJogging([out,retval] IAxisJogging ** a); 
80   HRESULT _stdcall getKinematics([out,retval] IAxisKinematics ** val); 
81   HRESULT _stdcall getLimits([out,retval] IAxisLimits ** val); 
82   HRESULT _stdcall getMaintenance([out,retval] IAxisMaintenance ** val); 
83   HRESULT _stdcall getPositioningServo([out,retval] IAxisPositioningServo ** a); 
84   HRESULT _stdcall getSensedState([out,retval] IAxisSensedState ** a); 
85   HRESULT _stdcall getSetup([out,retval] IAxisSetup ** val); 
86   HRESULT _stdcall getVelocityServo([out,retval] IAxisVelocityServo ** a); 
87  
88   HRESULT _stdcall setAbsolutePos([in] IAxisAbsolutePos * val); 
89   HRESULT _stdcall setAccelerationServo([in] IAxisAccelerationServo * val); 
90   HRESULT _stdcall setCommandedInput([in] IAxisCommandedInput * val); 
91   HRESULT _stdcall setCommandedOutput([in] IAxisCommandedOutput * val); 
92   HRESULT _stdcall setErrorAndEnable([in] IAxisErrorAndEnable * val); 
93   HRESULT _stdcall setForceServo([in] IAxisForceServo * val); 
94   HRESULT _stdcall setHoming([in] IAxisHoming * val);    
95   HRESULT _stdcall setIncrementPosition([in] IAxisIncrementPos * val);    
96   HRESULT _stdcall setJogging([in] IAxisJogging * val);    
97   HRESULT _stdcall setKinematics([in] IAxisKinematics * val); 
98   HRESULT _stdcall setLimits([in] IAxisLimits * val); 
99   HRESULT _stdcall setMaintenance([in] IAxisMaintenance * val); 
100   HRESULT _stdcall setPositioningServo([in] IAxisPositioningServo * val);    
101   HRESULT _stdcall setSensedState([in] IAxisSensedState * val);    
102   HRESULT _stdcall setSetup([in] IAxisSetup * val); 
103   HRESULT _stdcall setVelocityServo([in] IAxisVelocityServo * val); 
104  
105   HRESULT _stdcall setPositionControlLaw([in] IControlLaw * val); 
106   HRESULT _stdcall setVelocityControlLaw([in] IControlLaw * val); 
107   HRESULT _stdcall setAccelerationControlLaw([in] IControlLaw * val); 
108   HRESULT _stdcall getPositionControlLaw([out,retval] IControlLaw ** a); 
109   HRESULT _stdcall getVelocityControlLaw([out,retval] IControlLaw ** a); 
110   HRESULT _stdcall getAccelerationControlLaw([out,retval] IControlLaw ** a); 
111    
112       
113   HRESULT _stdcall processServoLoop( ); // the primary function.    
114   HRESULT _stdcall checkPreconditions([out, retval] long * val); //  checked at every servo loop.  
115  
116     // State transition methods and state queries    
117   HRESULT _stdcall disableAxis();            // DISABLEEvent    
118   HRESULT _stdcall enableAxis();             // ENABLEEvent   
119   HRESULT _stdcall followCommandedPosition(); // FOLLOWPositionEvent    
120   HRESULT _stdcall followCommandedTorque();   // FOLLOWTorqueEvent    
121   HRESULT _stdcall followCommandedVelocity(); // FOLLOWVelocityEvent    
122   HRESULT _stdcall followCommandedForce();    // FOLLOWForceEvent    
123   HRESULT _stdcall home([in] double velocity);  // STARTHomeEvent    
124   HRESULT _stdcall jog([in] double velocity);   // STARTJogEvent    
125   HRESULT _stdcall resetAxis();              // RESETEvent    
126   HRESULT _stdcall stopMotion();             // CANCELEvent    
127   HRESULT _stdcall estop();     // 

ESTOPEvent    
128   HRESULT _stdcall updateAxis();             // UPDATEEvent 
129      
130     // Instead of: 
131     // int currentState(); 
132     //  DISABLED                =  1, 
133     //  ENABLED                 =  2, 
134     //  EStopped               =  3, 
135     //  FOLLOWINGPosition      =  4, 
136     //  FOLLOWINGTorque        =  5, 
137     //  FOLLOWINGVelocity      =  6, 
138     //  HOMING                  =  7, 
139     //  JOGGING                 =  8, 
140     //  STOPPING                =  9;  // Use accessor functions so there is no confusion about 

numbering 
141     // Also inherit state queries from OMAC Base Module 
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142        
143   HRESULT _stdcall isFollowingAcceleration([out,retval] boolean * b);     
144   HRESULT _stdcall isFollowingForce([out,retval] boolean * b);     
145   HRESULT _stdcall isFollowingPosition([out,retval] boolean *  b);     
146   HRESULT _stdcall isFollowingVelocity([out,retval] boolean *  b);     
147   HRESULT _stdcall isHoming([out,retval] boolean * b);     
148   HRESULT _stdcall isIncrementingPosition([out,retval] boolean * b);     
149   HRESULT _stdcall isJogging([out,retval] boolean * b);     
150   HRESULT _stdcall isMovingto([out,retval] boolean * b); 
151  
152   HRESULT _stdcall isReset([out,retval] boolean * b); 
153   HRESULT _stdcall isInited([out,retval] boolean * b); 
154   HRESULT _stdcall isEnabled([out,retval] boolean * b); 
155   HRESULT _stdcall isDisabled([out,retval] boolean * b); 
156   HRESULT _stdcall isReady([out,retval] boolean * b); 
157   HRESULT _stdcall isEstopped([out,retval] boolean * b); 
158   
159  // Add isStopping() which includes any stopping? 
160     // Returns a ASCII readable string 
161   HRESULT _stdcall currentStateName([out,retval] BSTR * name); 
162  
163 }; 
164  
165 [ 
166   
167  uuid(50B62B8D-4513-11d3-AABB-00C04FA375A6), 
168   
169  helpstring("IAxisAccelerationServo Interface"), 
170  pointer_default(unique) 
171 ] 
172 interface IOmacAxis : IOmac 
173 {  HRESULT _stdcall setAxisContainer([in] IAxis * a); 
174 }; 
175  
176 [ 
177   
178  uuid(AA03FCE7-FF08-11D2-AAB2-00C04FA375A6), 
179   
180  helpstring("IAxisAccelerationServo Interface"), 
181  pointer_default(unique) 
182 ] 
183 interface IAxisAccelerationServo : IOmacAxis 
184 { 
185   // All invoked by Axis FSM 
186   HRESULT _stdcall stopFollowingAccelerationAction(); 
187   HRESULT _stdcall estopFollowingAccelerationAction(); 
188   HRESULT _stdcall startFollowingAccelerationAction(); 
189   HRESULT _stdcall updateFollowingAccelerationAction(); 
190  
191   HRESULT _stdcall isDone([out,retval] boolean * b); 
192   HRESULT _stdcall isFollowingAccelerationError([out,retval] boolean * b); 
193  
194  
195 }; 
196 [ 
197   
198  uuid(AA03FCE9-FF08-11D2-AAB2-00C04FA375A6), 
199   
200  helpstring("IAxisCommandedInput Interface"), 
201  pointer_default(unique) 
202 ] 
203 interface IAxisCommandedInput : IOmacAxis 
204 { 
205   HRESULT _stdcall getPositionCmdInput([out,retval] AxisPositionCmd * a);     
206   HRESULT _stdcall getVelocityCmdInput([out,retval] AxisVelocityCmd * a);     
207   HRESULT _stdcall getAccelerationCmdInput([out,retval] AxisAccelCmd * a);     
208   HRESULT _stdcall getForceCmdInput([out,retval] AxisForceCmd * a);     
209   HRESULT _stdcall setPositionCmdInput([in] AxisPositionCmd  positioningCmd );     
210   HRESULT _stdcall setVelocityCmdInput([in] AxisVelocityCmd  velocityCmd );     
211   HRESULT _stdcall setAccelerationCmdInput([in] AxisAccelCmd accelerationCmd );     
212   HRESULT _stdcall setForceCmdInput([in] AxisForceCmd  forceCmd );   
213   HRESULT _stdcall updateCommandedInput();  // updates using connections to IO 
214  
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215 }; 
216  
217 [ 
218   
219  uuid(AA03FCEB-FF08-11D2-AAB2-00C04FA375A6), 
220   
221  helpstring("IAxisCommandedOutput Interface"), 
222  pointer_default(unique) 
223 ] 
224 interface IAxisCommandedOutput : IOmacAxis 
225 { 
226   HRESULT _stdcall getPositionCmdOutput([out,retval] AxisPositionCmd * a);     
227   HRESULT _stdcall getVelocityCmdOutput([out,retval] AxisVelocityCmd * a);     
228   HRESULT _stdcall getAccelerationCmdOutput([out,retval] AxisAccelCmd * a);     
229   HRESULT _stdcall getForceCmdOutput([out,retval] AxisForceCmd * a);     
230   HRESULT _stdcall setPositionCmdOutput([in] AxisPositionCmd  positioningCmd );     
231   HRESULT _stdcall setVelocityCmdOutput([in] AxisVelocityCmd  velocityCmd );     
232   HRESULT _stdcall setAccelerationCmdOutput([in] AxisAccelCmd accelerationCmd );     
233   HRESULT _stdcall setForceCmdOutput([in] AxisForceCmd  forceCmd );   
234   HRESULT _stdcall updateCommandedOutput();  // updates using connections to IO 
235  
236 }; 
237 [ 
238   
239  uuid(AA03FCED-FF08-11D2-AAB2-00C04FA375A6), 
240   
241  helpstring("IAxisDyn Interface"), 
242  pointer_default(unique) 
243 ] 
244 interface IAxisDyn : IOmacAxis 
245 { 
246   HRESULT _stdcall getAccelerationLimit([out, retval] LinearAcceleration *pVal); 
247   HRESULT _stdcall getAxmass([in] Mass newVal); 
248   HRESULT _stdcall getBacklash([out, retval] Length *pVal); 
249   HRESULT _stdcall getDamping([out, retval] Force *pVal); 
250   HRESULT _stdcall getDeadband([out, retval] Length *pVal); 
251   HRESULT _stdcall getDecelerationLimit([out, retval] LinearAcceleration *pVal); 
252   HRESULT _stdcall getInertia([out, retval] Mass *pVal); 
253   HRESULT _stdcall getJerkLimit([out, retval] LinearJerk *pVal); 
254   HRESULT _stdcall getLoadedCaseSpringRate([out, retval] LinearStiffness *pVal); 
255   HRESULT _stdcall getMaxVelAccLim([out, retval] LinearAcceleration *pVal); 
256   HRESULT _stdcall getOvershootStepInput([out, retval] Length *pVal); 
257   HRESULT _stdcall getQuasiStaticLoadLimit([out, retval] Force *pVal); 
258   HRESULT _stdcall getRisingTimeStepInput([out, retval] Time *pVal); 
259   HRESULT _stdcall getRunFriction([out, retval] Force *pVal); 
260   HRESULT _stdcall getStaticFriction([out, retval] Force *pVal); 
261   HRESULT _stdcall getTimeConstant([out, retval] Time *pVal); 
262   HRESULT _stdcall getWorstCaseSpringRate([out, retval] LinearStiffness *pVal); 
263   HRESULT _stdcall getZeroVelAccLim([out, retval] LinearAcceleration *pVal); 
264  
265   HRESULT _stdcall setAccelerationLimit([in] LinearAcceleration newVal); 
266   HRESULT _stdcall setAxmass([out, retval] Mass *pVal); 
267   HRESULT _stdcall setBacklash([in] Length newVal); 
268   HRESULT _stdcall setDamping([in] Force newVal); 
269   HRESULT _stdcall setDeadband([in] Length newVal); 
270   HRESULT _stdcall setDecelerationLimit([in] LinearAcceleration newVal); 
271   HRESULT _stdcall setInertia([in] Mass newVal); 
272   HRESULT _stdcall setJerkLimit([in] LinearJerk newVal); 
273   HRESULT _stdcall setLoadedCaseSpringRate([in] LinearStiffness newVal); 
274   HRESULT _stdcall setMaxVelAccLim([in] LinearAcceleration newVal); 
275   HRESULT _stdcall setOvershootStepInput([in] Length newVal); 
276   HRESULT _stdcall setQuasiStaticLoadLimit([in] Force newVal); 
277   HRESULT _stdcall setRisingTimeStepInput([in] Time newVal); 
278   HRESULT _stdcall setRunFriction([in] Force newVal); 
279   HRESULT _stdcall setStaticFriction([in] Force newVal); 
280   HRESULT _stdcall setTimeConstant([in] Time newVal); 
281   HRESULT _stdcall setWorstCaseSpringRate([in] LinearStiffness newVal); 
282   HRESULT _stdcall setZeroVelAccLim([in] LinearAcceleration newVal); 
283  
284 }; 
285  
286 [ 
287   
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288  uuid(AA03FCF2-FF08-11D2-AAB2-00C04FA375A6), 
289   
290  helpstring("IAxisForceServo Interface"), 
291  pointer_default(unique) 
292 ] 
293 interface IAxisForceServo : IOmacAxis 
294 { 
295   // All invoked by Axis FSM 
296  
297   HRESULT _stdcall stopFollowingForceAction(); 
298   HRESULT _stdcall estopFollowingForceAction(); 
299   HRESULT _stdcall startFollowingForceAction(); 
300   HRESULT _stdcall updateFollowingForceAction(); 
301  
302   HRESULT _stdcall isDone([out,retval] boolean * b); 
303   HRESULT _stdcall isFollowingForceError([out,retval] boolean * b); 
304  
305 }; 
306 [ 
307   
308  uuid(AA03FCF4-FF08-11D2-AAB2-00C04FA375A6), 
309   
310  helpstring("IAxisErrorAndEnable Interface"), 
311  pointer_default(unique) 
312 ] 
313 interface IAxisErrorAndEnable : IOmacAxis 
314 { 
315   HRESULT _stdcall resetAxisAction(); 
316   HRESULT _stdcall disableAxisAction(); 
317   HRESULT _stdcall enableAxisAction(); 
318   HRESULT _stdcall estopAxisAction(); 
319 }; 
320  
321 [ 
322   
323  uuid(AA03FCF6-FF08-11D2-AAB2-00C04FA375A6), 
324   
325  helpstring("IAxisHoming Interface"), 
326  pointer_default(unique) 
327 ] 
328 interface IAxisHoming : IOmacAxis 
329 { 
330   HRESULT _stdcall  startHomingAction([in] double startVelocity ); // prepares homing 
331   HRESULT _stdcall  updateHomingAction();           // called each servo cycle 
332   HRESULT _stdcall  stopHomingAction();             // stops homing before completion 
333   HRESULT _stdcall  estopHomingAction();           // On transition from homing to E-stopped 
334   HRESULT _stdcall  completedHomingAction();          // On transition from homing to disabled 
335   HRESULT _stdcall isDone([out,retval] boolean * b);                     // signals when homing 

is completed 
336   HRESULT _stdcall isStopping([out,retval] boolean * b); 
337   HRESULT _stdcall isHomingError([out,retval] boolean * b);                // true if error has 

occurred during homing 
338 }; 
339 [ 
340   
341  uuid(AA03FCF8-FF08-11D2-AAB2-00C04FA375A6), 
342   
343  helpstring("IAxisJogging Interface"), 
344  pointer_default(unique) 
345 ] 
346 interface IAxisJogging : IOmacAxis 
347 { 
348   HRESULT _stdcall  completedJoggingAction(); 
349   HRESULT _stdcall  estopJoggingAction(); 
350   HRESULT _stdcall  startJoggingAction([in] double targetVelocity ); 
351   HRESULT _stdcall  stopJoggingAction(); 
352   HRESULT _stdcall  updateJoggingAction(); 
353   HRESULT _stdcall  updateJoggingStoppingAction(); 
354  
355   HRESULT _stdcall  isDone([out,retval] boolean * b); 
356   HRESULT _stdcall  isStopping([out,retval] boolean * b); 
357   HRESULT _stdcall  isJoggingError([out,retval] boolean *  b); 
358  
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359 }; 
360 [ 
361   
362  uuid(AA03FCFA-FF08-11D2-AAB2-00C04FA375A6), 
363   
364  helpstring("IAxisKinematics Interface"), 
365  pointer_default(unique) 
366 ] 
367 interface IAxisKinematics : IOmacAxis 
368 { 
369   HRESULT _stdcall getKs([out, retval] double *pVal); 
370   HRESULT _stdcall setKs([in] double newVal); 
371   HRESULT _stdcall getPosFeedBackGain([out, retval] double *pVal); 
372   HRESULT _stdcall setPosFeedBackGain([in] double newVal); 
373   HRESULT _stdcall getVelFeedBackGain([out, retval] double *pVal); 
374   HRESULT _stdcall setVelFeedBackGain([in] double newVal); 
375   HRESULT _stdcall getUpperKinematicModel([out, retval] UpperKinematicModel *pVal); 
376   HRESULT _stdcall setUpperKinematicModel([in] UpperKinematicModel newVal); 
377   HRESULT _stdcall getLowerKinematicModel([out, retval] LowerKinematicModel *pVal); 
378   HRESULT _stdcall setLowerKinematicModel([in] LowerKinematicModel newVal); 
379   HRESULT _stdcall getPlacement([out, retval] CoordinateFrame *pVal); 
380   HRESULT _stdcall setPlacement([in] CoordinateFrame newVal); 
381  
382 }; 
383 [ 
384   
385  uuid(AA03FCFD-FF08-11D2-AAB2-00C04FA375A6), 
386   
387  helpstring("IAxisLimits Interface"), 
388  pointer_default(unique) 
389 ] 
390 interface IAxisLimits : IOmacAxis 
391 { 
392   HRESULT _stdcall getCutOffPosition([out, retval] Length *pVal); 
393   HRESULT _stdcall getFollowingErrorViolationLim([out, retval] Length *pVal); 
394   HRESULT _stdcall getFollowingErrorWarnLim([out, retval] Length *pVal); 
395   HRESULT _stdcall getHardFwdOTravelLim([out, retval] Length *pVal); 
396   HRESULT _stdcall getHardRevOTravelLim([out, retval] Length *pVal); 
397   HRESULT _stdcall getJerkLimit([out, retval] LinearJerk *pVal); 
398   HRESULT _stdcall getMaxForceLimit([out, retval] Force *pVal); 
399   HRESULT _stdcall getMaxVelocity([out, retval] LinearVelocity *pVal); 
400   HRESULT _stdcall getOvershootViolationLim([out, retval] Length *pVal); 
401   HRESULT _stdcall getOvershootWarnLevelLimit([out, retval] Length *pVal); 
402   HRESULT _stdcall getSoftFwdOTravelLim([out, retval] Length *pVal); 
403   HRESULT _stdcall getSoftRevOTravelLim([out, retval] Length *pVal); 
404   HRESULT _stdcall getUnderreachViolationLim([out, retval] Length *pVal); 
405   HRESULT _stdcall getUnderreachWarnLevelLimit([out, retval] Length *pVal); 
406   HRESULT _stdcall getUsefulTravel([out, retval] Length *pVal); 
407  
408   HRESULT _stdcall setCutOffPosition([in] Length newVal); 
409   HRESULT _stdcall setFollowingErrorViolationLim([in] Length newVal); 
410   HRESULT _stdcall setFollowingErrorWarnLim([in] Length newVal); 
411   HRESULT _stdcall setHardFwdOTravelLim([in] Length newVal); 
412   HRESULT _stdcall setHardRevOTravelLim([in] Length newVal); 
413   HRESULT _stdcall setJerkLimit([in] LinearJerk newVal); 
414   HRESULT _stdcall setMaxForceLimit([in] Force newVal); 
415   HRESULT _stdcall setMaxVelocity([in] LinearVelocity newVal); 
416   HRESULT _stdcall setOvershootViolationLim([in] Length newVal); 
417   HRESULT _stdcall setOvershootWarnLevelLimit([in] Length newVal); 
418   HRESULT _stdcall setSoftFwdOTravelLim([in] Length newVal); 
419   HRESULT _stdcall setSoftRevOTravelLim([in] Length newVal); 
420   HRESULT _stdcall setUnderreachViolationLim([in] Length newVal); 
421   HRESULT _stdcall setUnderreachWarnLevelLimit([in] Length newVal); 
422   HRESULT _stdcall setUsefulTravel([in] Length newVal); 
423  
424 }; 
425 [ 
426   
427  uuid(AA03FCFF-FF08-11D2-AAB2-00C04FA375A6), 
428   
429  helpstring("IAxisMaintenance Interface"), 
430  pointer_default(unique) 
431 ] 
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432 interface IAxisMaintenance : IOmacAxis 
433 { 
434 }; 
435  
436 [ 
437   
438  uuid(AA03FD01-FF08-11D2-AAB2-00C04FA375A6), 
439   
440  helpstring("IAxisPositioningServo Interface"), 
441  pointer_default(unique) 
442 ] 
443 interface IAxisPositioningServo : IOmacAxis 
444 { 
445   // All invoked by Axis FSM 
446   HRESULT _stdcall stopFollowingPositionAction(); 
447   HRESULT _stdcall estopFollowingPositionAction(); 
448   HRESULT _stdcall startFollowingPositionAction(); 
449   HRESULT _stdcall updateFollowingPositionAction(); 
450  
451   HRESULT _stdcall isDone([out,retval] boolean * b); 
452   HRESULT _stdcall isFollowingPositionError([out,retval] boolean * b); 
453  
454 }; 
455  
456 [ 
457   
458  uuid(AA03FD03-FF08-11D2-AAB2-00C04FA375A6), 
459   
460  helpstring("IAxisRates Interface"), 
461  pointer_default(unique) 
462 ] 
463 interface IAxisRates : IOmacAxis 
464 { 
465   //Specifications of travel capabilities. 
466   //worst-case conditions.  But to take advantage of more 
467   //capability provide a model that describes conditions 
468   //when more capability is available and the corresponding 
469   //values or value-functions. 
470   // FIXME: Problem here with typedef derivative of double, versus real class definition? 
471   HRESULT _stdcall getMaxAcceleration([out, retval] LinearAcceleration *pVal); 
472   HRESULT _stdcall getMaxJerk([out, retval] LinearJerk *pVal); 
473   HRESULT _stdcall getMaxTravel([out, retval] Length *pVal); 
474   HRESULT _stdcall getMaxVelocity([out, retval] LinearVelocity *pVal); 
475   HRESULT _stdcall getPosErrRatioCutMoving([out, retval] Length *pVal); 
476   HRESULT _stdcall getPosErrRatioIdleMoving([out, retval] Length *pVal); 
477   HRESULT _stdcall getPosErrRatioIdleStationary([out, retval] Length *pVal); 
478   HRESULT _stdcall getRepeatability([out, retval] long *pVal); 
479  
480   HRESULT _stdcall setMaxAcceleration([in] LinearAcceleration newVal); 
481   HRESULT _stdcall setMaxJerk([in] LinearJerk newVal); 
482   HRESULT _stdcall setMaxTravel([in] Length newVal); 
483   HRESULT _stdcall setMaxVelocity([in] LinearVelocity newVal); 
484   HRESULT _stdcall setPosErrRatioCutMoving([in] Length newVal); 
485   HRESULT _stdcall setPosErrRatioIdleMoving([in] Length newVal); 
486   HRESULT _stdcall setPosErrRatioIdleStationary([in] Length newVal); 
487   HRESULT _stdcall setRepeatability([in] long newVal); 
488   
489 }; 
490 [ 
491   
492  uuid(AA03FD05-FF08-11D2-AAB2-00C04FA375A6), 
493   
494  helpstring("IAxisSensedState Interface"), 
495  pointer_default(unique) 
496 ] 
497 interface IAxisSensedState : IOmacAxis 
498 { 
499   //if(!hardFwdOTravel) && if(!softFwdOTravel) &&if(!hardRevOTravel) && 
500   //   if(!softRevOTravel) 
501   //then enablingPrecondition = 1; 
502   //else enablingPrecondition = 0; 
503   //   Concurrency: Sequential 
504   HRESULT _stdcall getEnablingPrecondition([out, retval] boolean * b); 
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505   HRESULT _stdcall inPosition([out, retval] boolean * pVal); 
506   HRESULT _stdcall isSoftFwdOTravel([out, retval] boolean *pVal); 
507   HRESULT _stdcall isHardFwdOTravel([out, retval] boolean *pVal); 
508   HRESULT _stdcall isSoftRevOTravel([out, retval] boolean *pVal); 
509   HRESULT _stdcall isHardRevOTravel([out, retval] boolean *pVal); 
510   HRESULT _stdcall isFollowingErrorWarn([out, retval] boolean *pVal); 
511   HRESULT _stdcall isFollowingErrorViolation([out, retval] boolean *pVal); 
512   HRESULT _stdcall isOverShootViolation([out, retval] boolean *pVal); 
513   HRESULT _stdcall isEnablingPrecondition([out, retval] boolean *pVal); 
514  
515   HRESULT _stdcall setAxisContainer([in] IAxis * a); 
516  
517   HRESULT _stdcall getActualPosition([out,retval]  Length * a); 
518   HRESULT _stdcall getActualVelocity([out,retval]  LinearVelocity * a); 
519   HRESULT _stdcall getActualAcceleration([out,retval]  LinearAcceleration * a); 
520   HRESULT _stdcall getActualForce([out,retval]  Force * a); 
521  
522 }; 
523 [ 
524   
525  uuid(AA03FD07-FF08-11D2-AAB2-00C04FA375A6), 
526   
527  helpstring("IAxisSetup Interface"), 
528  pointer_default(unique) 
529 ] 
530 interface IAxisSetup : IOmacAxis 
531 { 
532   // sets the reference to the axis rates for physical limits, software limits. 
533   HRESULT _stdcall getCurrentRates([out, retval] IAxisRates **pVal); 
534   HRESULT _stdcall getDynamicRates([out, retval] IAxisDyn **pVal); 
535   HRESULT _stdcall getPhysicalLimits([out, retval] IAxisRates **pVal); 
536   HRESULT _stdcall setCurrentRates([in] IAxisRates * newVal); 
537   HRESULT _stdcall setDynamicRates([in] IAxisDyn * newVal); 
538   HRESULT _stdcall setPhysicalLimits([in] IAxisRates * newVal); 
539  
540 }; 
541  
542 [ 
543   
544  uuid(AA03FD09-FF08-11D2-AAB2-00C04FA375A6), 
545   
546  helpstring("IAxisVelocityServo Interface"), 
547  pointer_default(unique) 
548 ] 
549 interface IAxisVelocityServo : IOmacAxis 
550 { 
551   // All invoked by Axis FSM 
552   HRESULT _stdcall stopFollowingVelocityAction(); 
553   HRESULT _stdcall estopFollowingVelocityAction(); 
554   HRESULT _stdcall startFollowingVelocityAction(); 
555   HRESULT _stdcall updateFollowingVelocityAction(); 
556  
557   HRESULT _stdcall isDone([out,retval] boolean * b); 
558   HRESULT _stdcall isFollowingVelocityError([out,retval] boolean * b); 
559  
560 }; 
561 [ 
562   
563  uuid(AA03FD0B-FF08-11D2-AAB2-00C04FA375A6), 
564   
565  helpstring("IAxisAbsolutePos Interface"), 
566  pointer_default(unique) 
567 ] 
568 interface IAxisAbsolutePos : IOmacAxis 
569 { 
570   HRESULT _stdcall  completedAbsolutePosAction(); 
571   HRESULT _stdcall  estopAbsolutePosAction(); 
572   HRESULT _stdcall  startAbsolutePosAction([in] double targetVelocity ); 
573   HRESULT _stdcall  stopAbsolutePosAction(); 
574   HRESULT _stdcall  updateAbsolutePosAction(); 
575  
576   HRESULT _stdcall  isDone([out,retval] boolean * b); 
577   HRESULT _stdcall  isStopping([out,retval] boolean * b); 
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578   HRESULT _stdcall  isAbsolutePosError([out,retval] boolean *  b); 
579 }; 
580  
581 [ 
582  object, 
583  uuid(AA03FD0D-FF08-11D2-AAB2-00C04FA375A6), 
584  helpstring("IAxisIncrementPos Interface"), 
585  pointer_default(unique) 
586 ] 
587 interface IAxisIncrementPos : IOmacAxis 
588 { 
589   HRESULT _stdcall  completedIncrementingAction(); 
590   HRESULT _stdcall  estopIncrementingAction(); 
591   HRESULT _stdcall  startIncrementingAction([in] double targetVelocity ); 
592   HRESULT _stdcall  stopIncrementingAction(); 
593   HRESULT _stdcall  updateIncrementingAction(); 
594  
595   HRESULT _stdcall  isDone([out,retval] boolean * b); 
596   HRESULT _stdcall  isStopping([out,retval] boolean * b); 
597   HRESULT _stdcall  isIncrementingError([out,retval] boolean * b); 
598  
599 }; 
600 [ 
601  uuid(AA03FCD8-FF08-11D2-AAB2-00C04FA375A6), 
602  version(1.0), 
603  helpstring("AxisModule 1.0 Type Library") 
604 ] 
605 library AXISMODULELib 
606 { 
607   importlib("stdole32.tlb"); 
608   importlib("stdole2.tlb"); 
609  
610  
611  [ 
612   uuid(0A70EBB1-06D9-11D3-AAB2-00C04FA375A6), 
613   helpstring("AxisModuleClassFactory Class") 
614  ] 
615  coclass AxisModuleClassFactory 
616  { 
617   [default] interface IAxisModuleClassFactory; 
618      interface IOmacModuleClassFactory; 
619  }; 
620  
621   [ 
622    uuid(AA03FCE6-FF08-11D2-AAB2-00C04FA375A6), 
623    helpstring("Axis Class") 
624   ] 
625     coclass Axis 
626     { 
627       [default] interface IAxis; 
628     }; 
629   [ 
630    uuid(AA03FCE8-FF08-11D2-AAB2-00C04FA375A6), 
631    helpstring("AxisAccelerationServo Class") 
632   ] 
633     coclass AxisAccelerationServo 
634     { 
635       [default] interface IAxisAccelerationServo; 
636     }; 
637   [ 
638    uuid(AA03FCEA-FF08-11D2-AAB2-00C04FA375A6), 
639    helpstring("AxisCommandedInput Class") 
640   ] 
641     coclass AxisCommandedInput 
642     { 
643       [default] interface IAxisCommandedInput; 
644     }; 
645   [ 
646    uuid(AA03FCEC-FF08-11D2-AAB2-00C04FA375A6), 
647    helpstring("AxisCommandedOutput Class") 
648   ] 
649     coclass AxisCommandedOutput 
650     { 
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651       [default] interface IAxisCommandedOutput; 
652     }; 
653   [ 
654    uuid(AA03FCEE-FF08-11D2-AAB2-00C04FA375A6), 
655    helpstring("AxisDyn Class") 
656   ] 
657     coclass AxisDyn 
658     { 
659       [default] interface IAxisDyn; 
660     }; 
661   [ 
662    uuid(AA03FCF0-FF08-11D2-AAB2-00C04FA375A6), 
663    helpstring("IAxisErrorAndEnable Class") 
664   ] 
665     coclass AxisErrorAndEnable 
666     { 
667       [default] interface IAxisErrorAndEnable; 
668     }; 
669   [ 
670    uuid(AA03FCF3-FF08-11D2-AAB2-00C04FA375A6), 
671    helpstring("AxisForceServo Class") 
672   ] 
673     coclass AxisForceServo 
674     { 
675       [default] interface IAxisForceServo; 
676     }; 
677   
678   [ 
679    uuid(AA03FCF7-FF08-11D2-AAB2-00C04FA375A6), 
680    helpstring("AxisHoming Class") 
681   ] 
682     coclass AxisHoming 
683     { 
684       [default] interface IAxisHoming; 
685     }; 
686   [ 
687    uuid(AA03FCF9-FF08-11D2-AAB2-00C04FA375A6), 
688    helpstring("AxisJogging Class") 
689   ] 
690     coclass AxisJogging 
691     { 
692       [default] interface IAxisJogging; 
693     }; 
694   [ 
695    uuid(AA03FCFB-FF08-11D2-AAB2-00C04FA375A6), 
696    helpstring("AxisKinematics Class") 
697   ] 
698     coclass AxisKinematics 
699     { 
700       [default] interface IAxisKinematics; 
701     }; 
702   [ 
703    uuid(AA03FCFE-FF08-11D2-AAB2-00C04FA375A6), 
704    helpstring("AxisLimits Class") 
705   ] 
706     coclass AxisLimits 
707     { 
708       [default] interface IAxisLimits; 
709     }; 
710   [ 
711    uuid(AA03FD00-FF08-11D2-AAB2-00C04FA375A6), 
712    helpstring("AxisMaintenance Class") 
713   ] 
714     coclass AxisMaintenance 
715     { 
716       [default] interface IAxisMaintenance; 
717     }; 
718   [ 
719    uuid(AA03FD02-FF08-11D2-AAB2-00C04FA375A6), 
720    helpstring("AxisPositioningServo Class") 
721   ] 
722     coclass AxisPositioningServo 
723     { 
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724       [default] interface IAxisPositioningServo; 
725     }; 
726   [ 
727    uuid(AA03FD04-FF08-11D2-AAB2-00C04FA375A6), 
728    helpstring("AxisRates Class") 
729   ] 
730     coclass AxisRates 
731     { 
732       [default] interface IAxisRates; 
733     }; 
734   [ 
735    uuid(AA03FD06-FF08-11D2-AAB2-00C04FA375A6), 
736    helpstring("AxisSensedState Class") 
737   ] 
738     coclass AxisSensedState 
739     { 
740       [default] interface IAxisSensedState; 
741     }; 
742   [ 
743    uuid(AA03FD08-FF08-11D2-AAB2-00C04FA375A6), 
744    helpstring("AxisSetup Class") 
745   ] 
746     coclass AxisSetup 
747     { 
748       [default] interface IAxisSetup; 
749     }; 
750   [ 
751    uuid(AA03FD0A-FF08-11D2-AAB2-00C04FA375A6), 
752    helpstring("AxisVelocityServo Class") 
753   ] 
754     coclass AxisVelocityServo 
755     { 
756       [default] interface IAxisVelocityServo; 
757     }; 
758   [ 
759    uuid(AA03FD0C-FF08-11D2-AAB2-00C04FA375A6), 
760    helpstring("AxisAbsolutePos Class") 
761   ] 
762     coclass AxisAbsolutePos 
763     { 
764       [default] interface IAxisAbsolutePos; 
765     }; 
766   [ 
767    uuid(AA03FD0E-FF08-11D2-AAB2-00C04FA375A6), 
768    helpstring("AxisIncrementPos Class") 
769   ] 
770     coclass AxisIncrementPos 
771     { 
772       [default] interface IAxisIncrementPos; 
773     }; 
774 }; 
775  

 
 

B.15 CONTROL LAW 
1 // ControlLawModule.idl : IDL source for ControlLawModule.dll 
2 // 
3  
4 // This file will be processed by the MIDL tool to 
5 // produce the type library (ControlLawModule.tlb) and marshalling code. 
6  
7 import "oaidl.idl"; 
8 import "ocidl.idl"; 
9 import "OmacModule.idl"; 
10  
11  [ 
12   object, 
13   uuid(4B179145-BC3B-11D2-AAAA-00C04FA375A6), 
14   
15   helpstring("IControlLaw Interface"), 
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16   pointer_default(unique) 
17  ] 
18  interface IControlLaw : IOmac 
19  { 
20  HRESULT _stdcall getActualOffset([out,retval] double * val); 
21  HRESULT _stdcall getActualPosition([out,retval] double * val); 
22  HRESULT _stdcall getCmdOffset([out,retval] double * val); 
23  HRESULT _stdcall getFollowingError([out,retval] double * val); 
24  HRESULT _stdcall getOutputCommand([out,retval] double * val); 
25  HRESULT _stdcall getOutputOffset([out,retval] double * val); 
26  HRESULT _stdcall getScaleOffset([out,retval] double * val); 
27  HRESULT _stdcall getSetpoint([out,retval] double * val); 
28  HRESULT _stdcall getSetpointDot([out,retval] double * val); 
29  HRESULT _stdcall getSetpointDotDot([out,retval] double * val); 
30  HRESULT _stdcall getSetpointPrime([out,retval] double * val); 
31   
32  HRESULT _stdcall setActualOffset([in] double k); 
33  HRESULT _stdcall setActualPosition([in] double x); 
34  HRESULT _stdcall setCmdOffset([in]  double off) ;  
35  HRESULT _stdcall setOutputCommand([in]  double value); 
36  HRESULT _stdcall setOutputOffset([in]  double k); 
37  HRESULT _stdcall setScaleOffset([in]  double k) ; 
38  HRESULT _stdcall setSetpoint([in] double X); 
39  HRESULT _stdcall setSetpointDot([in]  double Xdot); 
40  HRESULT _stdcall setSetpointDotDot([in] double Xdotdot); 
41  HRESULT _stdcall setSetpointPrime([in] double Xprime); 
42   
43  // This defines an abstract interface  class definition 
44  HRESULT _stdcall calculateOutputCommand(); 
45   }; 
46  
47  [ 
48   object, 
49   
50   uuid(4B179148-BC3B-11D2-AAAA-00C04FA375A6), 
51   
52   helpstring("IPIDControlLaw Interface"), 
53   pointer_default(unique) 
54  ] 
55  
56  
57  interface IPIDControlLaw : IControlLaw 
58  {         
59    
60  HRESULT _stdcall  getCycleTime([out,retval] double * val); 
61  HRESULT _stdcall  getKaf([out,retval] double * val); 
62  HRESULT _stdcall  getKcf([out,retval] double * val); 
63  HRESULT _stdcall  getKd([out,retval] double * val); 
64  HRESULT _stdcall  getKi([out,retval] double * val); 
65  HRESULT _stdcall  getKp([out,retval] double * val); 
66  HRESULT _stdcall  getKvf([out,retval] double * val); 
67  HRESULT _stdcall  getKxprime([out,retval] double * val); 
68  HRESULT _stdcall  getintegrationLimit([out,retval] double * val); 
69   
70  HRESULT _stdcall setKaf([in] double k) ; 
71  HRESULT _stdcall setKcf([in] double k); 
72  HRESULT _stdcall setKd([in] double k); 
73  HRESULT _stdcall setKi([in] double k); 
74  HRESULT _stdcall setKp([in] double k); 
75  HRESULT _stdcall setKvf([in] double k); 
76  HRESULT _stdcall setKxprime([in] double k); 
77  HRESULT _stdcall setIntegrationLimit([in] double integrationLimit); 
78  HRESULT _stdcall setCycleTime([in] double time); 
79  HRESULT _stdcall init(); 
80  HRESULT _stdcall reset(); 
81  HRESULT _stdcall calculateOutputCommand(); 
82  HRESULT _stdcall isConfigured([out,retval] BSTR * str); 
83  HRESULT _stdcall debug(); 
84  HRESULT _stdcall toString([out,retval] BSTR * str); 
85  HRESULT _stdcall configToString([out,retval] BSTR * str); 
86  HRESULT _stdcall configure(BSTR filename, BSTR section);  
87  }; 
88  
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89  
90 // Now add ControlLawClassFactory so that multiple factories 
91 // can exist to create PID, or other control laws. Clients 
92 // look up available control law servers under  CATID_ControlLawModule 
93 // category. Then, the client does a CLSID_IOmacClassFactory query interface on one of the 
94 // ControlLaw module servers.  
95  
96 cpp_quote("const CATID CATID_ControlLawModule = 

{0xE1D6F9F1,0xB1FE,0x11D2,{0xAA,0xA8,0x00,0xC0,0x4F,0xA3,0x75,0xA6}};") 
97  
98 // Example: This CLSID  is specific for one vendor, (i.e., NIST) Control Law Server 
99 cpp_quote("const CLSID CLSID_NISTControlLawServer = { 0x24F48688, 0xE842, 0x11D2, {0xAA, 0xB1, 

0x00, 0xC0, 0x4F, 0xA3, 0x75, 0xA6}};") 
100  
101  [ 
102   object, 
103   // Replace this uuid with vendor-specific uuid 
104   uuid(0A70EBAC-06D9-11D3-AAB2-00C04FA375A6), 
105    
106   helpstring("IControlLawModuleClassFactory Interface"), 
107   pointer_default(unique) 
108  ] 
109  interface IControlLawModuleClassFactory : IOmacModuleClassFactory 
110  { 
111  extern const IID IID_IDL_IPIDControlLaw; 
112  HRESULT _stdcall CreateModule([in] BSTR name, [in] REFIID riid, [out, retval, iid_is(riid)] 

void ** ppvObj); 
113 // HRESULT _stdcall CreatePIDObject([in] BSTR name, [out, iid_is(&IID_IDL_IPIDControlLaw)] void 

** ppvObj); 
114  
115  }; 
116  
117 [ 
118  uuid(4B179138-BC3B-11D2-AAAA-00C04FA375A6), 
119  version(1.0), 
120  helpstring("ControlLawModule 1.0 Type Library") 
121 ] 
122 library CONTROLLAWMODULELib 
123 { 
124  importlib("stdole32.tlb"); 
125  importlib("stdole2.tlb"); 
126  
127 // extern const GUID CATID_ControlLawModule; 
128 // extern const GUID CLSID_NISTControlLawServer; 
129  
130  [ 
131   uuid(E1D6F9ED-B1FE-11D2-AAA8-00C04FA375A6), 
132   helpstring("ControlLaw Class") 
133  ] 
134  coclass ControlLaw 
135  { 
136   [default] interface IControlLaw; 
137   interface IOmac; 
138  }; 
139 /* [ 
140   uuid(4B179147-BC3B-11D2-AAAA-00C04FA375A6), 
141   helpstring("Omac Class") 
142  ] 
143   
144  coclass Omac 
145  { 
146   [default] interface IOmac; 
147  }; 
148 */ 
149  [ 
150   uuid(E1D6F9F1-B1FE-11D2-AAA8-00C04FA375A6), 
151   helpstring("PIDControlLaw Class") 
152  ] 
153  coclass PIDControlLaw 
154  { 
155   [default] interface IPIDControlLaw; 
156  }; 
157  
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158  [ 
159   uuid(0A70EBAD-06D9-11D3-AAB2-00C04FA375A6), 
160   helpstring("ControlLawModuleClassFactory Class") 
161  ] 
162  coclass ControlLawModuleClassFactory 
163  { 
164   //[default] interface IControlLawModuleClassFactory; 
165      [default] interface IOmacModuleClassFactory; 
166   interface IClassFactory; 
167  }; 
168 }; 
169  
170  
 

 

B.16 HUMAN MACHINE INTERFACE 
1 // HMIModule.idl : IDL source for HMI dll 
2   
3 #ifndef __HMIModule__IDL 
4 #define __HMIModule__IDL 
5 import "oaidl.idl"; 
6 import "ocidl.idl"; 
7 import "OmacModule.idl"; 
8  
9 [ 
10  
11     object, 
12     uuid(134A02A1-E101-11d2-B512-AEC041D2957B), 
13  
14     helpstring("HMI Interface"), 
15     pointer_default(unique) 
16 ] 
17  
18 interface IHMI : IOmac 
19 { 
20   // Presentation Methods 
21   HRESULT _stdcall  presentErrorView(); 
22   HRESULT _stdcall  presentOperationalView(); 
23   HRESULT _stdcall  presentSetupView(); 
24   HRESULT _stdcall  presentMaintenanceView(); 
25  
26   // Events - to alert HMI that something has happened 
27   HRESULT _stdcall  updateCurrentView(); 
28 }; 
29  
30  
31 #endif 
32  

 

B.17 PROCESS MODEL 
33 //  
34 // ProcessModel.idl 
35 // 
36  
37  
38 #ifndef ProcessModel__idl 
39 #define ProcessModel__idl 
40 import "oaidl.idl"; 
41 import "ocidl.idl"; 
42 import "DataRepresentation.idl"; 
43 // Level 1 
44  
45 [ 
46  
47     object, 
48     uuid(134A02A0-E101-11d2-B512-AEC041D2957B), 
49  
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50     helpstring("Process Model  Interface"), 
51     pointer_default(unique) 
52 ] 
53 interface IProcessModel : IUnknown 
54 { 
55   HRESULT _stdcall  getUserCoordinateOffsets([out,retval] OacVector ** offsets); 
56   HRESULT _stdcall  setUserCoordinateOffsets([in] OacVector offsets); 
57  
58  HRESULT _stdcall   getAxesCoordinateOffsets([out,retval] OacVector ** axoff);     // used by 

axes group 
59   HRESULT _stdcall  setAxesCoordinateOffsets([in] OacVector offsets);   // set by sensor process 
60  
61  HRESULT _stdcall   getFeedrateOverrideValue([out,retval] Measure ** m); // used by axisgroup 
62  HRESULT _stdcall   setFeedrateOverrideValue([in] Measure feed);  // used by hmi 
63  HRESULT _stdcall   getSpindleOverrideValue([out,retval] Measure ** m);   // used by axisgroup 
64  HRESULT _stdcall   setSpinldeOverrideValue([in] Measure feed);   // used by hmi 
65 }; 
66  
67 [ 
68     uuid(134A028A-E101-11d2-B512-AEC041D2957B), 
69     version(1.0), 
70     helpstring("Process Model Module 1.0 Type Library") 
71 ] 
72 library PROCESS_MODEL_MODULE_Lib 
73 { 
74     importlib("stdole32.tlb"); 
75     importlib("stdole2.tlb"); 
76  
77     [ 
78         uuid(134A028B-E101-11d2-B512-AEC041D2957B), 
79         helpstring("Process Model Class") 
80     ] 
81     coclass ProcessModel 
82     { 
83         [default] interface IProcessModel; 
84     }; 
85 }; 
86 #endif 
87  

 

B.18 KINEMATICS 
1 #ifndef _KINEMATICS__IDL 
2 #define _KINEMATICS__IDL 
3 import "DataRepresentation.idl"; 
4 // General Agreement: 18-Jun-1997 Sushil Birla, Steve Sorensen 
5  
6  
7 [ 
8  object, 
9  uuid(134A02A5-E101-11d2-B512-AEC041D2957B), 
10   
11  
12  helpstring("Kinematics Interface"), 
13  pointer_default(unique) 
14 ] 
15 interface IKinStructure :IUnknown 
16 { 
17   HRESULT _stdcall getPlacementFrame([out,retval]  CoordinateFrame ** cf); 
18   HRESULT _stdcall setPlacementFrame([in] CoordinateFrame value); 
19  
20   HRESULT _stdcall getBaseframe([out,retval] CoordinateFrame ** cf); 
21   HRESULT _stdcall setBaseframe([in] CoordinateFrame value); 
22 }; 
23  
24 [ 
25  object, 
26  uuid(134A02A6-E101-11d2-B512-AEC041D2957B), 
27   
28  
29  helpstring("Kinematic Connection Interface"), 



THE OMAC API SET WORKING DOCUMENT 

 VERSION 0.16 

  OCTOBER 12, 1999  105

30  pointer_default(unique) 
31 ] 
32 interface IKinConnection :IUnknown 
33 { 
34   HRESULT _stdcall  getFrom([out,retval] IKinStructure ** value); 
35   HRESULT _stdcall  setFrom([in] IKinStructure * value); 
36  
37   HRESULT _stdcall  getTo([out,retval] IKinStructure **value); 
38   HRESULT _stdcall  setTo([in] IKinStructure * value); 
39  
40   HRESULT _stdcall  getPlacement([out,retval] CoordinateFrame ** frame); 
41   HRESULT _stdcall  setPlacement([in] CoordinateFrame value); 
42 }; 
43  
44  
45 [ 
46  object, 
47  uuid(6735BEA5-EDA7-11d2-AAB1-00C04FA375A6), 
48  
49  helpstring("Kinematic Connections Interface"), 
50  pointer_default(unique) 
51 ] 
52 interface IEnumKinConnections : IUnknown 
53 { 
54  
55     typedef [unique] IKinConnection *LPENUMCONNECTION; 
56  
57     [local] 
58     HRESULT Next( 
59         [in] ULONG celt, 
60         [out] IKinConnection **rgelt, 
61         [out] ULONG *pceltFetched); 
62  
63     [call_as(Next)] 
64     HRESULT RemoteNext( 
65         [in] ULONG celt, 
66         [out, size_is(celt), length_is(*pceltFetched)] 
67         IKinConnection **rgelt, 
68         [out] ULONG *pceltFetched); 
69  
70     HRESULT Skip( 
71         [in] ULONG celt); 
72  
73     HRESULT Reset(); 
74  
75     HRESULT Clone( 
76         [out] IKinConnection **ppenum); 
77 }; 
78  
79 interface IEnumKinMechanisms; 
80  
81 [ 
82  object, 
83  uuid(134A02A7-E101-11d2-B512-AEC041D2957B), 
84   
85  
86  helpstring("KinMechanism Interface"), 
87  pointer_default(unique) 
88 ] 
89 interface IKinMechanism :IUnknown 
90 { 
91   HRESULT _stdcall  forwardKinematicTransform([in] IEnumKinConnections * cn); 
92  
93   HRESULT _stdcall  inverseKinematicTransform([in] CoordinateFrame cf,  
94   DWORD size_vector,  
95   [out,retval,size_is(,size_vector)] double ** vector); 
96  
97   HRESULT _stdcall  getConnections([out,retval] IEnumKinConnections ** c); 
98   HRESULT _stdcall  setConnections([in] IEnumKinConnections * value); 
99  
100   HRESULT _stdcall  getKinmechanisms([out,retval] IEnumKinMechanisms ** mechs); 
101   HRESULT _stdcall  setKinmechanisms([in] IEnumKinMechanisms * value); 
102 }; 
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103  
104  
105 // FIXME: A template  would map into IDL sequence 
106 //typedef RWTPtrSlist<KinMechanism> KinMechanisms; 
107 // FIXME: add graph/tree traversal functions 
108  
109  
110 // Notes: 
111 // 1. For various specilizations of inverseKinematicTransform() 
112 // Specialize KinMechanism and extend as needed. 
113 [ 
114  object, 
115  uuid(949F889D-EDA8-11d2-AAB1-00C04FA375A6), 
116  
117  helpstring("Enum Kinematic Mechanisms Interface"), 
118  pointer_default(unique) 
119 ] 
120 interface IEnumKinMechanisms : IUnknown 
121 { 
122  
123     typedef [unique] IKinMechanism *LPENUMKINMECHANISM; 
124  
125     [local] 
126     HRESULT Next( 
127         [in] ULONG celt, 
128         [out] IKinMechanism **rgelt, 
129         [out] ULONG *pceltFetched); 
130  
131     [call_as(Next)] 
132     HRESULT RemoteNext( 
133         [in] ULONG celt, 
134         [out, size_is(celt), length_is(*pceltFetched)] 
135         IKinMechanism **rgelt, 
136         [out] ULONG *pceltFetched); 
137  
138     HRESULT Skip( 
139         [in] ULONG celt); 
140  
141     HRESULT Reset(); 
142  
143     HRESULT Clone( 
144         [out] IKinMechanism **ppenum); 
145 }; 
146 [ 
147  uuid(134A02A8-E101-11d2-B512-AEC041D2957B), 
148  version(1.0), 
149  helpstring("Kinematics Module 1.0 Type Library") 
150 ] 
151 library KINEMATICS_MODULE_Lib 
152 { 
153  importlib("stdole32.tlb"); 
154  importlib("stdole2.tlb"); 
155  
156   [ 
157   uuid(134A02A9-E101-11d2-B512-AEC041D2957B), 
158   helpstring("Kinematics Class") 
159  ] 
160  coclass KinStructure 
161  { 
162   [default] interface IKinStructure; 
163  }; 
164  
165       [ 
166   uuid(134A02AA-E101-11d2-B512-AEC041D2957B), 
167   helpstring("Connection Class") 
168  ] 
169  coclass EnumKinConnection 
170  { 
171   [default] interface IEnumKinConnections; 
172  }; 
173  
174     [ 
175   uuid(134A02AB-E101-11d2-B512-AEC041D2957B), 
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176   helpstring("KinMechanism Class") 
177  ] 
178  coclass KinMechanism 
179  { 
180   [default] interface IKinMechanism; 
181  }; 
182  
183  [ 
184   uuid(EBD7EEBF-EDA9-11d2-AAB1-00C04FA375A6), 
185   helpstring("Kin Mechanisms Collection  Class") 
186  ] 
187  coclass EnumKinMechanisms 
188  { 
189   [default] interface IEnumKinMechanisms; 
190  }; 
191  
192 }; 
193  
194  
195 #endif 
196  
197  

B.19 SCHEDULING UPDATER 
1 import "oaidl.idl"; 
2 import "ocidl.idl"; 
3  
4  
5 [ 
6     object, 
7     uuid(B64988A7-EDC3-11d2-AAB1-00C04FA375A6), 
8  
9     helpstring("TaskCoordinator Interface"), 
10     pointer_default(unique) 
11 ] 
12 interface IUpdatable : IUnknown 
13 { 
14   HRESULT _stdcall getPeriod([out,retval] double ** value); 
15   HRESULT _stdcall setPeriod([in] double aPeriod); 
16   HRESULT _stdcall update();   
17 }; 
18  
19 [ 
20     object, 
21     uuid(E05FAB5D-EDC3-11d2-AAB1-00C04FA375A6), 
22  
23     helpstring("TaskCoordinator Interface"), 
24     pointer_default(unique) 
25 ] 
26 interface IAsynchUpdater : IUnknown 
27 {  
28   HRESULT _stdcall  registerUpdatable([in] IUpdatable * upd); 
29   HRESULT _stdcall  update(); 
30 }; 
31  
32 [ 
33     object, 
34     uuid(134A0280-E101-11d2-B512-AEC041D2957B), 
35  
36     helpstring("TaskCoordinator Interface"), 
37     pointer_default(unique) 
38 ] 
39 interface IPeriodicUpdater : IAsynchUpdater 
40 { 
41    HRESULT _stdcall  getTimingInterval([out, retval] double ** value); 
42 // /*no virtual*/   void update(); 
43 }; 
44  
45  

 


