Request for Information

Computing security has moved from a niche primarily of interest to the Government to a concern of high importance for commercial systems in general. There is a requirement for all critical and safety related systems (no matter where they are) to be made secure. As systems become increasingly connected to one another, attacks on systems have become more commonplace, requiring that more thought be given to reducing the susceptibility of computing systems to malicious use and exploitation. The purpose of this Request for Information (RFI) is to solicit recommendations from the Real-Time Operating Systems (RTOS) community for mechanisms that would allow incorporation of security features into their operating systems for building secure applications, and to provide a stable and robust core on which to build such applications. Mandating systems to be secure will not make them secure without adequate methods and means to provide security.
The target domain is real-time and resource constrained systems, including process control and real-time, embedded systems. Therefore, the kinds of systems under consideration range from standard desktop or enterprise-level computing systems with real-time requirements, to systems that have stringent, hard real-time timing requirements, and execute in resource constrained environments (e.g. limited memory, no file system, only custom I/O). However, since security issues for most desktop and enterprise level systems are covered by, or can be leveraged from the “General Purpose / non real-time” Operating System community, our focus is on the resource constrained systems. Due to the wide spectrum represented by the domain, the expectation is that a “one size fits all” Application Program Interface (API) approach will not be suitable. Rather, an approach that is scalable and tailorable is sought to ensure that only as much security as needed is engendered for any particular real-time domain (e.g. process control systems, avionics systems, and automotive control systems). We need an approach that is extensible. The application developers need the flexibility to add to RTOS security capabilities in addition to those provided by vendors. It is assumed that users can configure the RTOS (assuming the RTOS is modular and configurable) and possible for application developers to add to the RTOS security capability provided “out of the box.”

An extensibility mechanism is expected to allow the basic security capabilities of an RTOS to be extended to create project specific security capabilities. For instance, a specific RTOS may not implement access control lists for all system objects; however, the building blocks for providing that capability may reside within the functionality of the RTOS. What is needed is a regular way to access such functionality in a manner that is supported by RTOS suppliers (i.e. an interface mechanism that is supported in on-going releases, and NOT simply modifying the source code of the operating system.)
In summary, we are inviting comments and suggestions for extending RTOS security capabilities in these three key areas:

1. Robustness (resilience to exploitation or errors) features of the Operating kernel

2. A tailorable set of security capabilities, (which could be implemented as APIs)
3. A consistent “extension mechanism” for incorporating security capabilities (APIs)
Attachment 1: Initial proposed idea
Kernel Robustness Attributes:

Single process system (POSIX 51/53) is not a robust kernel: Ideas are needed to identify possible approaches to security policy implementations for these types of systems. In the past security has been provided by physical isolation and/or controlled accessibility to the systems. Times have changed and we need better methods/means to insure security. Input is requested in response to the RFI on how the RTOS can be managed to help resolve this problem.
Multiprocessing system (POSIX 52/54) require the following attributes:

 Memory Protection

 Process Management and Creation capability

 Process Privilege Control

No unknown service call

 Context switching discipline

Clean registers

Clean memory

 Provide ‘hooks’ to report Intrusions

 Provide Files system security as extensions (for POSIX 54)

 Robust Network Protocol Stack (Not defined as a POSIX profile, may be we should someday)

Resistant to malicious packets
The list provided is the minimum set of features that need to be incorporated within the operating system kernel. (Except file system Security, which could be provided as an extension of the file system). Since we expect them to be built-in features, we need comments and suggestions/ideas for keeping their overhead to a minimum. We also welcome suggestions of additional essential robustness features that we missed.

Security Services / Capabilities Extensions beyond the kernel:

 Process / Data security functions

File System Integrity

File system privacy

Labeling support

 Network Security functions

 Encryption / Decryption functions

 Authentication functions

 Biometrics functions

 PKI Support Function

 Security logging:

Intrusion Detection reporting

Security Logging

 Intrusion Detection Function
We are requesting input on methods and/or means to provide those controls that can be standardized across the various RTOS implementations.
Extensibility mechanism:

We are requesting that all communities especially Vendor communities input comments and suggestions in this area. Suggestions and approaches for providing extensibility are requested. There is a great need to provide a common accepted approach to give the development/user communities the methods and means for controlling applied security in the operating environments. Your response is important and will be given serious consideration.
Definitions:
OS Vendors -- Those who are in the business of selling RTOS, having the primarily responsibility of ensuring kernel robustness and providing an extension mechanism.

Application Developers -- Those who develop application software on top of the OS provide by the above. Shall have the reasonability of selecting and invoking security features required by the application, using the extension mechanism provided.

End User -- Those who use the application. Ultimately, they are the beneficiaries of security work done by the above. Knowledgeable end users are invaluable in providing security requirement inputs to the above two groups, from the users' perspective.

