Refactored Characteristics of Intelligent Computing Systems

Christopher Landauer, Kirstie L. Bellman
Aerospace Integration Science Center, The Aerospace Corporation
cal @aero.org, bellman@aero.org

Abstract

We have discussed the following measurable characteristics of intelli-
gent behavior in computing systems: (1) speed and scope of adaptibil-
ity to unforeseen situations; (2) rate of effective learning of observa-
tions; (3) accurate modeling and prediction of the relevant external
environment; (4) speed and clarity of problem identification and for-
mulation; (5) effective association and evaluation of disparate infor-
mation; (6) identification of more important assumptions and prereq-
uisites; (7) creation and use of symbolic language.

In this paper, we isolate some common underlying capabilities
for these characteristics, and show how they can all be produced using
those capabilities. We describe the architecture of a system that has
all of these underlying capabilities, using our Wrapping integration
infrastructure to coordinate and organize a large collection of models
and other computational resources. In particular, these models include
complete models of the system’s resources and processing strategies,
and therefore a model of its own behavior, which it can use to affect
that behavior.

Key Phrases. cComputationally Reflective Infrastructure,
Constructed Complex Systems, Intelligent Autonomous Systems,
Knowledge-Based Polymorphism, Layers of Symbol Systems, Prob-
lem Posing Interpretation

1 Introduction

In an earlier paper [28], we described some important charac-
teristics of intelligent computing systems, and discussed how
to make measurements of those characteristics for performance
assessment. In this paper, we find some common themes under-
lying our earlier list of capabilities, and show how the new list
of more fundamental characteristics can be used to implement
the more operational capabilities. This “refactoring” is an ex-
ample of our principle of layers of symbol systems [8] [27] [29],
which reflects our observation that biological systems overlay
functionality in complex ways, at least partly due to their op-
portunistic exploitation of side effects. These overlays do not
remove the lower level functionalities; they merely supersede
them in appropriate contexts.

Intelligence is difficult to measure, because it is thought
to be an intrinsic property of systems, like a potential capabil-
ity or competence, whereas the only things that can be mea-
sured are actual performances under various kinds of condi-

tions. This problem has plagued the evaluators of human intel-
ligence since the beginning, to the point that they have gener-
ally concentrated on measuring some postulated corresponding
performance characteristics [13].

In our opinion, intelligence metrics can only be based
on observed system behavior (though the observations can, of
course, measure internal processes from an internal perspec-
tive, since we often have some kinds of internal access). Suc-
cess in a particular task is not by itself the right criterion. Mea-
suring performance to infer competence, even of externally ob-
servable behavior, is problematic, since we cannot make the
measurements over a sufficiently wide range of situations.

Similarly, the intelligence or even genius that invents and
develops good models for physical phenomena is not always
adequately (or even correctly) assessed by fitting the theory to
the data: Copernicus’ model of the solar system was much less
accurate than Ptolemy’s for many years after it was first for-
mulated; the latter fit the observations far better. It wasn’t until
Kepler decided to use ellipses instead of circles, and Brahe pro-
vided much more and much more accurate data, that the sun-
centered model became dominant. This very long-term, par-
tially social, comparison and evaluation process is not how we
want to assess the intelligence of systems that we build.

2 Autonomy, Intelligence, Creativity

Intelligence is much more mundane than programs playing
hard symbolic games or proving theorems. It is also much
more remarkable. The ability for an organism to exist in the
world, to move around, interact with its environment, and make
experience-dependent decisions, is one of the deepest myster-
ies of life. These things that most living things can do (at least
for a while) are much more interesting and difficult than the
things only humans can do, and the things most humans can
do “without thinking” are much more interesting and difficult
than the things a few humans can only do after much study or
training.

We view intelligence as sitting in a collection of related
qualities that include autonomy and creativity. We take auton-
omy to be a kind of lower bound for intelligence and creativity
to be a kind of upper bound, without actually assuming that
any of them implies the other. We frequently use postulated or
speculative explanations of autonomous, intelligent, and cre-



ative human behavior as a guide to what can be done, and as a
source for our study of what computer programs can be made
to do.

There are really only two classes of requirements for effec-
tive autonomy (both are difficult): robustness and timeliness.
Robustness means graceful degradation in increasingly hostile
environments, which to us implies a requirement for adaptabil-
ity, and timeliness means that situations are recognized “well
enough” and “soon enough”, and that “good enough” actions
are taken “soon enough”. There is never any optimization here,
since it takes too much time and produces non-robust solutions.

In the previous paper [28], we concentrated on the mea-
surement problem instead of the construction problem, though
we mentioned some definite ideas about how to build these in-
teresting programs, based on our Wrapping infrastructure for
Constructed Complex Systems [18] [22] [24]. We discuss some
of them in more detail in Section 7.

3 Computing System Behaviors

We make the assumption that a computing system is designed
to help its users _do_something [14]. That something is a prob-
lem in some subject area, such as, for example, copy a file in
a computer system, produce a document in a legal office, kill
monsters and collect treasures in a computer game, retrieve a
web page for a user, solve an equation in a mathematical sub-
ject area, find patterns in noisy data in a scientific field, coordi-
nate a distributed simulation for a military application, launch
a spacecraft in the aerospace business, collaborate remotely on
a design problem for space systems, etc..

In all of these cases, there is an application domain, which
provides a certain context of use and corresponding terminol-
ogy. Actually, this is more of a domain-specific language, since
it includes more than just vocabulary terms. It also has a set of
abbreviations and conventions about what can remain implicit,
and a set of simplifications (which are fruitful lies about the en-
tities and behaviors in the domain). It is important to note that
these languages might or might not be written symbolically,
since, for example, a computer game is often commanded us-
ing a joystick instead of typed commands, and some immersive
Virtual Environments are commanded by user movement and
gesture (and eventually speech).

What the user wants to do is called the problem, which only
makes sense within the context of interpretation provided by
the domain-specific language of the application domain. These
languages are used to define the problem context or problem
space, which is a specialized context within the application do-
main, in which it makes sense to state a problem.

In other words, it is our opinion that a problem cannot be
even stated properly or sensibly without an agreed upon (more
often, merely assumed) application domain and problem con-
text. Very often, it is mistakes in the common understanding
of this problem context that leads to unexpectedly bizarre or

constricting behaviors on the part of the computing system.

So now we have a well-specified problem defined in a
problem context. We are purposely setting aside creativity for
now, though we believe that this framework can also be applied
in that case, with a problem statement of finding the appropri-
ate well-defined problem (this approach is part of our Problem
Posing paradigm [21]). Explicitly identifying the problem, and
separating it from the possible solutions or required user ac-
tions, is an important aspect of our approach. It allows many
different possible solution methods to be considered. Since NO
one analysis or problem-solving method can deal with all prob-
lems in a complex domain [12] [43] [7], it is important to have
many methods available.

These form the resource space, which contains the compu-
tational and information resources that are available to address
the problem. It is usually implemented as a large set of in-
dependent methods, but we think that more structure here can
help (which is why we call it a space).

A certain configuration of those resources is needed to ad-
dress the particular problem that the user has specified. This
collection is usually much smaller than the total resource space,
so we call it the solution space. Since it contains only those re-
sources required to solve the problem, we would ideally like to
have the computing system find this space quickly.

However, in order to find a solution space, very often a
much larger examination space or discovery space must be
searched.

For example, in trying to prove a theorem (in geometry,
say), the problem space is one in which the assertion can be
made, the solution space is one in which the proof can be made,
and which often involves extra elements constructed just for
the proof. The resource space is the collection of lemmas, the-
orems, inference rules, problem-solving methods, and previ-
ously solved problems, and the solution search space is much
wider, since it has to include many different kinds of construc-
tion and proof discovery methods.

4 Characteristicsof Intelligence

In this Section, we list the measurable characteristics of intelli-
gent systems from [28], and discuss what they require and how
they might be implemented. We expand the characteristics into
their parts and organize them, so we can find a more basic list
of aspects that can produce these ones. \We may or may not be
able to measure these underlying aspects, but we intend to use
them to get some notion of how independent the characteristics
are. Itis clear to us that each of the characteristics above can be
implemented using many of the other characteristics at a lower
level of detail. These details will lead us to an architecture pro-
posal in Section 7. In the next Section, we show how they can
be refactored:

1. speed and scope of adaptibility to unforeseen situations,



2. rate of effective learning,

3. accurate modeling and prediction of the relevant external
environment,

4. speed and clarity of problem identification and formula-
tion,

5. effective association and evaluation of disparate informa-
tion,

6. identification of assumptions and prerequisites, and
7. creation and use of symbolic language.

We make no claim that these are all the important characteris-
tics; discovering others is the point of our research program in
this area.

By far the most commonly expressed attribute of intelli-
gence is adaptibility, which for us means the speed and scope
of adaptibility to unforeseen situations, including recognition
(of the unforeseen situation), assessment, proposals (for react-
ing to it), selection (of an activity), and execution. Accurate
prediction of effects is even better (and more successful), but
we save that one for a later Section.

To adapt, a system needs many flexibilities, ways of de-
ciding that change is needed, and ways to effect that change.
In particular, a very large number of computational resources,
many ways to use them (i.e., many different ways to map prob-
lems into applications of them), and a strong ability to decide
how to use them.

Another common attribute of intelligence is learning,
which for us is the rate of effective learning of observations,
behavior patterns, facts, tools, methods, etc. [37].

To learn, a system needs to be able to abstract a situation
into a representation of it, to identify the important parts, and
to change its processes to improve the performance. This im-
provement process is more than adjusting performance towards
an evaluation criterion, it is also at least partly about inventing
the appropriate criteria.

An important way to be less surprised at environmental
phenomena is predictive modeling, which for us means accu-
rate modeling and prediction of the relevant external environ-
ment. This kind of modeling includes the ability to make more
effective abstractions (which is treated below in a later Section).
Since a system cannot know everything about its environment,
we assume that there will be multiple models carried in paral-
lel, with new data interpreted into information using the model
as an interpretive context, and each model adjusted, assessed,
and ranked for likelihood continually.

To build models, a system needs to be able to identify the
important features and processes of a phenomenon in an envi-
ronment, and to represent them in an explicit model in a con-
ceptual space. It also needs to be able to compute abstractions
and evaluate their appropriateness.

The best way to respond to problems quickly is to iden-
tify them quickly, which requires speed and clarity of problem

identification and formulation. In our opinion, speed of prob-
lem solution is secondary. Even if a problem is specified as
a constrained search, humans seem to construct search spaces
and algorithms that are very problem-specific, often extremely
intricate, constructed using the constraints directly (i.e., not by
searching a large encompassing space, and masking or other-
wise ignoring the parts outside the constraints).

To identify problems (and situations), a system needs to be
able to abstract the situation into some explicit representation,
to compare it to previously identified or encountered problems
and situations, and determine which aspects of those earlier sit-
uations are important for or relevant to the current one.

One of the clearest signs of intelligence is the wide scope
and effectiveness of associations, and the corresponding evalu-
ation of disparate information for inclusion into a decision pro-
cess. Discovery and explanation of new associations is even
frequently associated with creativity.

To compute associations, a system needs to have appropri-
ate representations of phenomena in many conceptual spaces,
and processes that examine and compare elements in those
spaces. These comparison processes underlie all grouping and
clustering of elements.

A perennial problem with reasoning in systems, and partic-
ularly with deduction, is the mis-identification and conflation
of assumptions. It is important that a system can identify its
more important assumptions and prerequisites, which includes
the ability to widen a context (by removing some of the as-
sumptions).

To identify assumptions, a system needs to be able to ex-
amine its own reasoning processes, infer missing assumptions
from coverage failures in the implicit context, and discover
gaps in what can be represented and how it can be processed.
This process of discovering what is missing is one of the hardest
ones, since it requires the system to have some kind of notion of
entities and processes outside its own representational systems.

Perhaps the most important property of all, in our opin-
ion, is the use of symbolic language for explicit representa-
tions, including the range and use of analogies and metaphors
(this is about identification of similarities), and the invention of
symbolic language, which includes creating effective notations
for internal representation. This property is not altogether un-
challenged, but despite the “behavior-based” intelligence work
[38], we believe representation to be essential at all levels of
autonomy and intelligence [8], especially for computing sys-
tems.

To use symbol systems and symbolic methods, a system
needs to base its entire processing on explicit representations,
and at the same time be able to change those representations
in part or entirely, based on internal assessments of success or
failure.

It is for this reason that we want these systems to have
complete models of their own processing [35], which we have
shown is not only not very hard, but is actually fairly straight-
forward when we allow multiple component resources that can



apply to the same problems in appropriate contexts. These self-
models are directly connected to the behavior of the system,
either through compilation or interpretation, so that changing
the models changes the behavior. The models may be written
using wrex [21] [23], together with any other notations that the
system can interpret.

This use of the Problem Posing interpretation of program-
ming languages leads to what we call a Problem Posing Inter-
pretation of behavior: all behavior is applying computational
resources to posed problems, and while biological systems gen-
erally do not have explicit access to those problems, we expect
our Constructed Complex Systems to be more informed. They
will have an active knowledge representation using wrex, and
they will use partial evaluation for situation-dependent local
code improvement [23]. They will use Computational Reflec-
tion to monitor and adjust their own behavior, because they will
be able to examine and alter their own representations.

5 New Abstractions - Refactoring

In this Section, we describe a few properties that are common in
all of these characteristics, which we will identify as enabling
capabilities.

First and foremost is identification of important aspects of
a situation, which depends on the representational scheme in
use at the time. This process is a kind of focussing of attention
that is essential for any kind of intelligent behavior [2] [40].

The next important process is the determination of whether
or not a situation is a problem (and if so, what problem it is).
This process involves comparison to earlier situations, simula-
tion of consequences of internal models of the current situation,
and assessment of their relative likelihood.

Next comes representing the situation in some collection
of conceptual spaces, using modeling spaces and model con-
struction methods that allow models with variables that can be
specified later. This requires computational access to a very
large class of conceptual spaces, as well as to a variety of anal-
yses within and among them.

An important part of limiting the consideration is deciding
what to ignore, that is, assessing the importance or relevance of
aspects of the representation, as well as that of the outstanding
problems at hand.

All of these process imply the ability to retain large num-
bers of these models, with multiplicitous indexing that allows
access in several different ways.

Finally, the system will need continual contemplation of
the models, their efficacy, the symbol systems in which they are
defined, and their efficacy, in order to assess its own adequacy
and the occasional need for re-expression.

To summarize, there are a number of different kinds of
computational resources that are needed to provide the prop-
erties we have listed:

e methaods of abstraction and simplification

methods of evaluation in context

methods of representation (conceptual spaces)

methods of retention and retrieval

methods of comparison and association

In addition, we require mappings from problems to resources
in context, as well as explicit representations of everything (the
contexts and problems, all of the resources, and the processes,
including the mappings and the reasoning methods). Then the
entire system is grounded in its symbol system definitions and
assumptions, which are themselves explicit, so that they can be
changed.

6 Intelligent Systems

These issues affect the design of Constructed Complex Sys-
tems [17], which are artificially constructed systems that are
managed or mediated by computing systems, since it is clear
that they will not have the same kind of experience in the real
world that makes biological systems so remarkable. The suc-
cess or otherwise of the interaction between them and their hu-
man users will determine the usefulness of these systems, and
therefore of these measurements.

A human using a computing system of any kind is pre-
sented with a Virtual World, that is, an environment in which
the user is allowed to perform some limited set of control ac-
tions, and is presented with some limited set of information
displays. The number and variety of available control actions is
almost always very small, and only occasionally determinable.
The number and utility of information displays is almost always
not enough. These appallingly limited worlds are so restrictive
in their scope and so poor in their quality of interaction that
using them proficiently becomes an exercise in excessive focus
on certain details, and can only be performed successfully by a
few people [36]. We would like to build systems that are much
more helpful.

This problem with inflexibility is why we are concerned
with issues of autonomous and intelligent behavior in such sys-
tems, which for us, at least means that the system takes a major
role in selecting and evaluating its own goals [18] [3] [15] [27].
When we expect Constructed Complex Systems to operate au-
tonomously, whether out in the real world or in cyberspace, we
need to incorporate a great deal of flexibility and adaptability
into their design and implementation. We have shown one way
to implement such a system [22] [24], one that also helps avoid
the most common difficulties found in complex computing sys-
tems: rigidity and brittleness.

7 System Architecture

Biological systems have much more flexible and powerful
adaptation properties than most constructed systems [11], and



a careful consideration of their properties provides stringent re-
quirements for the kind of Constructed Complex Systems that
would be able to act autonomously. It also gives us some hints
about the design structures that are needed [39] [18] [34].

Our approach is to define a new kind of architecture [24]
[31] [32], based on our studies of “Integration Science” [9]
[10]. It includes our Wrapping integration infrastructure [23],
which uses Knowledge-based Polymorphism to provide a great
deal of flexibility of component interaction, our Problem Pos-
ing interpretation [21], which is a declarative interpretation of
all programming languages, so that posed problems can be sep-
arated from applicable resources, and our conceptual categories
[16] [26] [30] to provide a flexible representation mechanism
that separates model structures from the roles they play. These
design choices allow our systems to make their own abstrac-
tions [33], and construct their own models.

Our Wrapping architecture provides the required flexibil-
ity by supporting systems that are variable as far down as we
choose to make them (even all the way down through the op-
erating system to the hardware) [41] [17]. One reason that we
want this variability is that we expect to study many different
approaches to any given problem area, and our infrastructure
has to support alternatives for almost every part of every pro-
cess. In fact, one of the principles we have highlighted in our
architecture investigations is that NO one model, language, or
method suffices for a complex system (or environment), so the
variability is not just convenient; it is necessary [12] [43] [7]
[10].

In addition, we take the hypothesized common origin of
language and movement processes [8] as a hint, since the im-
plied layers of symbol systems can be implemented easily in
Constructed Complex Systems using a meta-level architecture
with Wrappings [18] [22] [24] [27].

In addition to the data and processes, we also need a third
style of computation, that of “re-expression”, which allows a
system to re-organize itself when its current organization is not
adequate. What this means for us is that the system can some-
how detect when its own representational mechanisms are not
adequate, and it can use the failures to help invent new ones.

To make things even more interesting, we also want to
have the system decide for itself when it needs to be re-
organized, because its fundamental symbol systems are not ex-
pressive or powerful enough, and then carry out for itself the
re-organization automatically, by defining new symbol systems
and re-expressing itself in the new terms. This behavior is
hard to implement usefully, but we have made some progress in
identifying the important issues. In particular, the “get stuck”
theorems show that any Constructed Complex System, faced
with a complex external environment, will have to analyze and
invent its own symbols and representational mechanisms [20]
[25].

The Wrapping processes give the process structure and the
Wrappings and conceptual categories give the data structure.
The re-expression criteria are implemented as resources that

monitor the system. We describe each of these technical issues
in turn, and then show how they can be used to help construct
the kind of system we want to build.

The essence of computation is interpretation of symbol
systems. The only operations that a digital computer can per-
form are copying and comparison. All arithmetic in digital
computers is via limited-precision explicit models of the cor-
responding integer or real arithmetic. Therefore, we cannot
construct computing systems to do complex or otherwise in-
teresting tasks without many implicit or explicit models of the
kinds of computation, deduction, or analysis required. All of
these models must then be expressed in terms of the operations
that we can implement on these (very) limited computers. It
is far too easy to become constrained by the expressive mech-
anisms used [41], and part of our approach to intelligent com-
puting systems reduces that dependence by making the symbol
system and representational mechanisms variable.

The theorems of Turing, Gddel, and others show that there
are fundamental limits on the expressive and computational
power of computing systems, but ALL of the theorems assume
that the symbol system remains fixed (that is a basic assump-
tion in all of the mathematical proofs), and that the parallelism
can be mapped into interleaved events. Systems that are not
restricted in either of these ways might escape the bounds of
these theorems. This study is one of our current directions of
research in Computational Semiotics [20] [24] [25].

There are several fundamental mathematical questions in-
volved in this study: (1) how self-reference can be made not
only possible but sensibly computable (using the new self-
referential set theory [1] [5] [6]), (2) how formal mathemati-
cal structures can be extended to incorporate more information
about context (using situation theory [4] to capture the con-
text of behaviors [42]), (3) how to move these formal struc-
tures into new contexts and assess the resulting validity (using
our conceptual categories [16]), (4) how to define mathemati-
cal structures before the basic elements are defined (also using
conceptual categories), (5) how to capture more of the mod-
eling process in mathematical structures (using both situation
theory and conceptual categories), (6) how to decide when a
notational system is inadequate (using internally computable
evaluation criteria [20]), and (7) how to fix it.

These questions are part of our New Math Initiative [19],
since we believe that some of these questions require new kinds
of mathematics, or at least new applications of mathematics, in-
stead of the “heroic engineering” and other systematic methods
that we have relied on thus far for building Constructed Com-
plex Systems.

8 Conclusions

We care about measuring intelligence because we want to engi-
neer devices that have some of those characteristics, and with-
out some better measurement processes, we will have no re-



peatable way to evaluate and compare different designs.

We have described some properties that we think are im-
portant, that have driven our research in Constructed Complex
Systems, including a few that have not been extensively used
or identified in the literature. We do not think that they com-
pletely cover the spectrum of what is commonly considered to
be intelligent behavior, but they do cover more of the scope
than simply “adaptability” or “intellect”.

We have identified some fundamental enabling capabilities
that seem to underlie these properties, and described an archi-
tecture that includes all of these enablers, as a way to test our
assertions about the connection between them and intelligent
behavior. We expect that as we build systems with more of
these enablers, the systems will exhibit more of the important
properties we have identified, and at the same time they will
seem more intelligent.

We think that this problem is hard, and that we are on
a right track (we make no assumption about how many right
tracks there may be; the more we collectively explore, the more
likely it is that we will get some of the right answers). We
think that fundamental investigations like these are necessary;
we hope that they are sufficient.

References

[1] Peter Aczel, Non-well-founded Sets, CSLI Lecture Notes
#14, Center for the Study of Language and Information,
Stanford U., U. Chicago Press (1988)

[2] James S. Albus, Alexander M. Meystel, Engineering of
Mind: An Introduction to the Science of Intelligent Sys-
tems, Wiley (2001)

[3] K. S. Barber, C. E. Martin, “Agent Autonomy:
Specification, Measurement, and Dynamic Adjust-
ment”, in Henry Hexmoor (ed.), Proceedings of
Agents’99/ACS’99: Workshop on Autonomy Control
Software, 1 May 1999, Seattle, Washington (1999)

[4] Jon Barwise, The Situation in Logic, CSLI Lecture Notes
No. 17, Center for the Study of Language and Informa-
tion, Stanford U. (1989)

[5] Jon Barwise, John Etchemendy, The Liar: An Essay on
Truth and Circularity, Oxford U. (1987)

[6] Jon Barwise, Lawrence Moss, Vicious Circles, CSLI
Lecture Notes No. 60, Center for the Study of Language
and Information, Stanford U. (1996)

[7] Kirstie L. Bellman, “An Approach to Integrating and
Creating Flexible Software Environments Supporting
the Design of Complex Systems”, pp. 1101-1105 in Pro-
ceedings of WSC’91: The 1991 Winter Simulation Con-
ference, 8-11 December 1991, Phoenix, Arizona (1991);
revised version in Kirstie L. Bellman, Christopher Lan-
dauer, “Flexible Software Environments Supporting the

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Design of Complex Systems”, Proceedings of the Ar-
tificial Intelligence in Logistics Meeting, 8-10 March
1993, Williamsburg, Virginia, American Defense Pre-
paredness Association (1993)

Kirstie L. Bellman and Lou Goldberg, “Common Origin
of Linguistic and Movement Abilities”, American Jour-
nal of Physiology, Volume 246, pp. R915-R921 (1984)

Kirstie L. Bellman, Christopher Landauer, “Integration
Science is More Than Putting Pieces Together”, in Pro-
ceedings of the 2000 IEEE Aerospace Conference (CD),
18-25 March 2000, Big Sky, Montana (2000)

Kirstie L. Bellman, Christopher Landauer, “Towards an
Integration Science: The Influence of Richard Bellman
on our Research”, Journal of Mathematical Analysis and
Applications, Volume 249, Number 1, pp. 3-31 (2000)

Kirstie L. Bellman and Donald O. Walter, “Biological
Processing”, American Journal of Physiology, Volume
246, pp. R860-R867 (1984)

Richard Bellman, P. Brock, “On the concepts of a
problem and problem-solving”, American Mathematical
Monthly, Volume 67, pp. 119-134 (1960)

K. Anders Ericsson, Reid Hastie, “Contemporary Ap-
proaches to the Study of Thinking and Problem Solv-
ing”, Chapter 2, pp. 37-79 in Robert J. Sternberg (ed.),
Thinking and Problem Solving, Academic Press (1994)

Kenneth D. Forbus, Johann de Kleer, Building Problem
Solvers, A Bradford Book, MIT Press (1993)

Catriona M. Kennedy, “Distributed Reflective Architec-
tures for Adjustable Autonomy”, in David Kortenkamp,
Gregory Dorais, Karen L. Myers (eds.), Proceedings of
IJCAI-99 Workshop on Adjustable Autonomy Systems, 1
August 1999, Stockholm, Sweden (1999)

Christopher Landauer, “Process Modeling with Con-
ceptual Categories”, Paper dtkmiOl in Proceedings of
HICSS’00: The 33rd Hawaii International Conference
on System Sciences (CD), Track Il: Decision Technolo-
gies for Management, Modeling Knowledge-Intensive
Processes Mini-Track, 4-7 January 2000, Maui, Hawaii
(2000)

Christopher Landauer, Kirstie L. Bellman, “Constructed
Complex Systems: Issues, Architectures and Wrap-
pings”, pp. 233-238 in Proceedings of EMCSR’96: Thir-
teenth European Meeting on Cybernetics and Systems
Research, Symposium on Complex Systems Analysis and
Design, 9-12 April 1996, Vienna, Austria (April 1996)

Christopher Landauer, Kirstie L. Bellman, “Computa-
tional Embodiment: Constructing Autonomous Soft-
ware Systems”, Cybernetics and Systems: An Inter-
national Journal, Volume 30, Number 2, pp. 131-168
(1999)



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Christopher Landauer, Kirstie L. Bellman, “Where’s
the Math? The Need for New Mathematical Founda-
tions for Constructed Complex Systems”, in Proceed-
ings ICC’98: the 15th International Congress on Cyber-
netics, 23-27 August 1998, Namur, Belgium (1998)

Christopher Landauer, Kirstie L. Bellman, “Situation
Assessment via Computational Semiotics”, pp. 712-717
in Proceedings of ISAS’98: the 1998 International Mul-
tiDisciplinary Conference on Intelligent Systems and
Semiatics, 14-17 September 1998, NIST, Gaithersburg,
Maryland (1998)

Christopher Landauer, Kirstie L. Bellman, “Problem
Posing Interpretation of Programming Languages”, Pa-
per eteccO7 in Proceedings of HICSS’99: The 32nd
Hawaii Conference on System Sciences, Track IlI:
Emerging Technologies, Engineering Complex Comput-
ing Systems Mini-Track, 5-8 January 1999, Maui, Hawaii
(1999)

Christopher Landauer, Kirstie L. Bellman, “Computa-
tional Embodiment: Agents as Constructed Complex
Systems”, Chapter 11, pp. 301-322 in Kerstin Dauten-
hahn (ed.), Human Cognition and Social Agent Technol-
ogy, Benjamins (2000)

Christopher Landauer, Kirstie L. Bellman, “Generic Pro-
gramming, Partial Evaluation, and a New Programming
Paradigm”, Chapter 8, pp. 108-154 in Gene McGuire
(ed.), Software Process Improvement, Idea Group Pub-
lishing (1999)

Christopher Landauer, Kirstie L. Bellman, “Architec-
tures for Embodied Intelligence”, pp. 215-220 in Pro-
ceedings of ANNIE’99: 1999 Artificial Neural Nets and
Industrial Engineering, Special Track on Bizarre Sys-
tems, 7-10 November 1999, St. Louis, Mo. (1999)

Christopher Landauer, Kirstie L. Bellman, “Symbol Sys-
tems in Constructed Complex Systems”, pp. 191-197 in
Proceedings of ISIC/ISAS’99: International Symposium
on Intelligent Control, 15-17 September 1999, Cam-
bridge, Massachusetts (1999)

Christopher Landauer, Kirstie L. Bellman, “Relation-
ships and Actions in Conceptual Categories”, pp. 59-72
in G. Stumme (Ed.), Working with Conceptual Struc-
tures - Contributions to ICCS 2000, Auxiliary Proceed-
ings of ICCS’2000: The 8th International Conference on
Conceptual Structures, 14-18 August 2000, Darmstadt,
Shaker Verlag, Aachen (August 2000)

Christopher Landauer, Kirstie L. Bellman, “Reflective
Infrastructure for Autonomous Systems”, pp. 671-676,
\Volume 2 in Proceedings of EMCSR’2000: The 15th Eu-
ropean Meeting on Cybernetics and Systems Research,
Symposium on Autonomy Control: Lessons from the
Emotional, 25-28 April 2000, Vienna (April 2000)

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Christopher Landauer, Kirstie L. Bellman, “Some Mea-
surable Characteristics of Intelligence”, Paper WP 1.7.5,
Proceedings of SMC’2000: The 2000 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics
(CD), 8-11 October 2000, Nashville Tennessee (2000)

Christopher Landauer, Kirstie L. Bellman, “Symbol Sys-
tems and Meanings in Virtual Worlds”, Proceedings of
VWsim’01: The 2001 Virtual Worlds and Simulation
Conference, WMC’2001: The 2001 SCS Western Mul-
tiConference, 7-11 January 2001, Phoenix, SCS (2001)

Christopher Landauer, Kirstie L. Bellman, “Concep-
tual Modeling Systems: Active Knowledge Processes in
Conceptual Categories”, pp. 131-144 in Guy W. Mineau
(Ed.), Conceptual Structures: Extracting and Repre-
senting Semantics, Contributions to ICCS’2001: The
9th International Conference on Conceptual Structures,
30 July-03 August 2001, Stanford University (August
2001)

Christopher Landauer, Kirstie L. Bellman, “Intelligent
System Architectures with Wrappings”, in Proceedings
of CASYS’2001: The Fifth International Conference on
Computing Anticipatory Systems, 13-18 August 2001,
Liege, Belgium (2001)

Christopher Landauer, Kirstie L. Bellman, “Architec-
tures for Autonomous Computing Systems”, Proceed-
ings of ANNIE’2001: The 2001 Artificial Neural Nets
and Industrial Engineering Conference, Special Track
on Bizarre Systems, 4-7 November 2001, St. Louis, Mis-
souri (2001)

Christopher Landauer, Kirstie L. Bellman, “Abstraction
Based Software System Design”, Proceedings of AN-
NIE’2001: The 2001 Artificial Neural Nets and Indus-
trial Engineering Conference, 4-7 November 2001, St.
Louis, Missouri (2001)

Christopher Landauer, Kirstie L. Bellman, “Computa-
tional Infrastructure for Experiments in Cognitive Lever-
age”, in Proceedings of CT’2001: The Fourth Interna-
tional Conference on Cognitive Technology: Instruments
of Mind, 6-9 August 2001, Warwick, U.K. (2001)

Christopher Landauer, Kirstie L. Bellman, “Self-
Modeling Systems”, (to appear) in R. Laddaga, H.
Shrobe (eds.), “Self-Adaptive Software”, Springer Lec-
ture Notes in Computer Science (2002)

Thomas K. Landauer®, The Trouble with Computers,
MIT (1995)

Pat Langley, Elements of Machine Learning, Morgan-
Kaufmann (1996)

Maja J. Mataric, “Behavior-Based Control: Main Prop-
erties and Implications”, pp. 46-54 in Proceedings IEEE

lno relation



[39]

[40]

[41]

[42]

[43]

International Conference on Robotics and Automation,
Workshop on Architectures for Intelligent Control Sys-
tems, May 1992, Nice, France (1992)

Maja J. Mataric, “Studying the Role of Embodiment in
Cognition”, pp. 457-470 in Cybernetics and Systems,
special issue on Epistemological Aspects of Embodied
Artificial Intelligence, Volume 28, Number 6 (July 1997)

Alexander M. Meystel, James S. Albus, Intelligent Sys-
tems: Architecture, Design, and Control, Wiley (2002)

Mary Shaw, William A. Wulf, “Tyrannical Languages
still Preempt System Design”, pp. 200-211 in Proceed-
ings of ICCL’92: The 1992 International Conference on
Computer Languages, 20-23 April 1992, Oakland, Cal-
ifornia (1992); includes and comments on Mary Shaw,
William A. Wulf, “Toward Relaxing Assumptions in
Languages and their Implementations”, ACM SIGPLAN
Notices, Volume 15, No. 3, pp. 45-51 (March 1980)

Lucy A. Suchman, Plans and Situated Actions: The
problem of human-machine communication, Cambridge
U. Press (1987)

Donald O. Walter, Kirstie L. Bellman, “Some Issues
in Model Integration”, pp. 249-254 in Proceedings of
the SCS Eastern MultiConference, 23-26 April 1990,
Nashville, Tennessee, Simulation Series, Volume 22(3),
SCS (1990)



