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ABSTRACT: We describe an approach to evaluating 
algorithmic and human performance in directing UAV-based 
surveillance.  Its key elements are a decision-theoretic framework 
for measuring the utility of a surveillance schedule and an 
evaluation testbed consisting of 243 scenarios covering a well-
defined space of possible missions.  We apply this approach to two 
example UAV-based surveillance methods, an algorithms called 2-
opt and a human-directed approach, then compare them to identify 
general strengths and weaknesses of each method. 
 
UAV-based Surveillance 
Aerial reconnaissance, surveillance, and other observation 
tasks have been primary aircraft applications since the early 
days of powered flight. They remain key activities in 
domains from military and security operations to land 
management and scientific research.  However, airborne 
observation is typically a deadly dull process that strains the 
vigilance and morale of human pilots and makes poor use of 
their costly, hard-won skills.  Thus, following the rule of 
“dull, dirty or dangerous,” it is considered an excellent 
application for autonomous vehicles.  Unmanned aerial 
vehicles (UAVs) have been employed in this capacity for 
decades, though almost exclusively for reconnaissance (DoD 
2002).  Technological improvements combined with 
increasing investment and interest in UAVs promise to 
increase their capabilities and availability, thus enabling 
more diverse and demanding missions.  Of particular interest 
to several operational communities are missions using UAVs 
to maintain “situation awareness” by continuous or periodic 
surveillance.  

Autonomous surveillance of spatially separated sites 
raises issues beyond those related to reconnaissance at a 
single site.  In particular, since a given UAV can only be at 
one place at a time, it must be treated as a limited resource 
that needs to be allocated as effectively as possible.  
Effectiveness, in this case, means providing the best possible 
information to the user at the best possible time – i.e. 
maximizing the value of returned information.  For any 
surveillance agent, airborne or otherwise, this entails a 
variety of interlinked choices about which sites to visit over 
the course of a mission, how often to visit each site, what 
paths to take, how long to spend observing, and what kind of 
measurements to take (cf. Sacks (2003) for a related 
discussion on police patrol, Carbonell (1969) regarding 
human visual scanning of instruments and Koopman (1956) 
regarding submarine-based search).   

Factors specific to aerial vehicles affect what kind 
of algorithms can most effectively make these decisions.  For 

instance, Massios et al. (2001) have studied the problem of 
optimizing surveillance for autonomous ground vehicles 
(UGVs) operating inside buildings.  In this case, the problem 
of deciding where to go next is highly constrained by the 
structure of the building while the problem of how to get to a 
location not immediately adjacent requires path-planning.  
With UAVs, the situation is reversed.  Sites of interest may 
all be accessible by a direct path, reducing the need for path-
planning but leaving the problem of where to go next 
physically unconstrained.  A second factor, wind, usually has 
little effect on UGVs, but has a large effect on UAVs, 
increasing or reducing required traverse time between almost 
any two sites.  Algorithms for UAV-based surveillance 
should thus treat expected wind conditions (including 
variability) as a central parameter and should adapt 
dynamically to changes in wind speed or direction.   

Differences in vehicle mobility and vantage 
together create a third significant difference between UGV- 
and UAV-based surveillance. Because of its altitude, a UAV 
will frequently be able to observe a site from a distance 
without obstruction and thus may not have to travel the full 
distance to that site.  And, due to the low friction on an air 
vehicle in aerodynamic flight, a UAV making fast-time 
observations may be able to retain most of its speed when 
transitioning between approach to one site and approach to 
the next.  A surveillance algorithm that takes advantage of 
these aviation-specific factors should perform significantly 
better than one that does not. 

Our work on UAV-based surveillance represents 
one part of a larger project to develop a practical and flexible 
UAV observation and data-delivery platform. The 
Autonomous Rotorcraft Project (Whalley et al. 2003) is an 
Army/NASA collaborative effort combining advanced work 
on avionics, telemetry, sensing, and flight control software in 
addition to software for high-level autonomous control.  The 
base platform selected for the project, a Yamaha RMAX 
helicopter, has been enhanced in a variety of ways that 
increase its potential effectiveness as a surveillance vehicle.  
Flight control software allowing it to fly aerodynamically 
extends the vehicle’s speed and improves its fuel-efficiency, 
thus extending both operating range and base flight duration 
(60 minutes hovering with full payload).  The vehicle 
includes a range of sensors and the capacity to integrate and 
control additional sensors as demanded by particular 
missions.  Its high-level autonomy component, Apex (Freed 
1998), incorporates reactive planning and scheduling 
capabilities needed for mission-level task execution, 
navigation, response to health/safety contingencies and 



interaction with human users.  To enable the system to 
become highly effective for surveillance, scheduling 
capabilities must be extended based on algorithms of 
demonstrated effectiveness in diverse mission scenarios 
relevant to the Army and to NASA. 

The diversity of possible surveillance missions 
poses particular challenges.  First, an algorithm that performs 
well in certain kinds of missions may perform poorly in 
others.  For instance, an algorithm that does well optimizing 
observations for a small number of closely spaced sites may 
not scale well to missions involving a large number of sites 
spread out over a wide area.  Similarly, an algorithm that 
assumes that information obtained at different sites becomes 
obsolete at equal rates or that the value of making an 
observation at one site necessarily equals that at another will 
not perform well when such assumptions do not hold.  It is 
not yet well-understood which attributes are most significant 
in distinguishing one mission from another.  While the 
number of sites to be observed is clearly an important factor, 
the importance of other factors, e.g. the centrality of the 
takeoff/land location with respect to the set of target sites, is 
less clear.  Finally, for a single system to provide 
autonomous surveillance capability for a broad range of 
missions requires  an underlying theory of surveillance.  If 
users need to communicate mission goals in terms of that 
theory, its generality is likely to pose difficulties for most 
users (Freed et al. 2004).  For instance, a theoretical 
foundation based on mathematics unfamiliar to most users 
(as will be described below) may require them to specify the 
mission in terms of seemingly exotic mathematical 
parameters.  

To meet these challenges requires: (1) developing 
methods for measuring the effectiveness of a given algorithm 
and for comparing the performance of an algorithm to that of 
human operators (i.e. to current practice); (2) creating 
planning and scheduling algorithms that perform surveillance 
effectively in significant parts of the space of possible 
missions; and (3) addressing issues of usability in the 
specification of missions by non-expert users.  In this paper, 
we describe our work in the first of these areas to create a 
framework for evaluating algorithm performance and human 
performance at surveillance tasks.  We then illustrate the 
application of the framework using two example surveillance 
techniques – a modified 2-opt  algorithm and human-directed 
surveillance.  
 
Measuring Surveillance Performance 
The first issue in devising an evaluation framework is to 
define what it means to do a good job at surveillance.  
Intuitively, the purpose of surveillance is to return 
information on a set of targets to some user or set of users.  
Performance at the surveillance task will depend on the 
information’s quantity, accuracy, importance and timeliness.   
As will be discussed, there are many variations on the 
general problem.  To accommodate the diversity of 

surveillance missions, we start with a very general, decision-
theoretic formulation of the overall goal: to maximize the 
utility of returned information over a defined interval.   

Like Massios et al. (2001), we characterize 
information value in the negative – i.e. in terms of the cost of 
not having observed a target for a given interval rather than 
the benefit of having observed the target at a given time.  
Consider the example of maintaining surveillance over a set 
of buildings, any of which might catch fire at any time.  
Observing the building allows us to call the fire department 
if necessary, and thus limit the amount of damage.  The 
longer we go without observing, the more likely it is that a 
fire will have occurred (though the probability may still be 
very small) and the more damage any such fire is likely to 
have inflicted.  Thus, the expected cost of not observing the 
building (and thus remaining ignorant of its state) for a given 
interval depends on the fire’s probability and expected cost 
of occurrence. Specifically, the expected cost of ignorance 
(ECI) for having not observed a target τ during the interval t1 
to t2 is: 
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where p(t) is probability density function for the occurrence 
of some cost-imposing event E (e.g. a fire breaking out) and 
cost(d) is a function describing the expected cost imposed by 
E as a function of the time from occurrence to intervention.  
In other words, the cost of ignorance is the sum, for all points 
in the interval, of the probability of the event occurring at 
that point1 times the expected cost if it occurs at that point.  
If more than one kind of event can occur at a target, and the 
event-types are uncorrelated, the expected cost of ignorance 
is simply the sum of the ECI values for each. 
 Over the course of a surveillance mission, an 
interval running from tstart to tend, expected cost accumulates 
at each target2.  If the target is never observed during that 
period, the total mission ECI for that target is determined by 
the above equation for ECI τ with t1=tstart and t2=tend.  
Otherwise, observations divide the target’s mission timeline 
into a sequence of intervals I τ where the target’s total 
mission ECI equals the sum of ECIs for each interval. 
 

ECI τ-mission  = ECI τ(tstart, tend) =  ∑
τI

i
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1  Here we assume expected detectability latency l0 = 0 and refer to 
the time of occurrence of an event rather the time it becomes 
detectable.  Values of l0 > 0 can be accommodated by integrating 
from max(0 , t1 - l0) rather than from t1.  
2 Time tstart represents a reference start time at which costs begin 
accruing.   
 



The effect of observation occurring at t2 is to reduce the 
maximum expected cost of an event occurring at t < t2 from 
cost(tend – t) to cost (t2 –t).  This reduces the total mission 
ECI and also constrains its maximum.  For example, cost(t) 
may asymptote at $5M, corresponding in our example to the 
building burning to the ground.  If, e.g., the building is 
observed every 30 minutes and cost(30 minutes) is $1M, the 
ECI over the course of the mission for that target cannot 
exceed $1M. 
 With this way of determining the mission ECI for a 
target, the total mission ECI can be defined simply as the 
sum of mission ECIs for all surveillance targets.  The 
performance of a surveillance algorithm in a given mission is 
thus measured by its success in minimizing this total 
expected cost.  We define ECImax as the total mission ECI if 
no targets are observed during the course of a given mission 
and ECI<method> as the total mission ECI resulting from an 
observation schedule generated by a particular method.  
Thus:  
 
value<method> = ECImax – ECI<method>  
 
Modeling a Mission 
The choice of what probability function and what cost 
function to use to model ignorance cost at a given target 
depends on the kind of cost-imposing event(s) that may 
occur there.  Some events are once-only, meaning that we 
assume they can occur at most once during the course of a 
mission (e.g. theft of an item).  Others can re-occur serially 
(e.g. a security gate left open which can be closed and then 
left open again) or in parallel (e.g. an individual entering an 
area illegally).  Event probability may vary with some 
regular event (e.g. rush hour, night time), contingent upon 
some other event (e.g. rain) or may remain constant.  For the 
work described here, we have assumed that all events are 
once-only and that occurrence probability is constant 
assuming no prior occurrence.  Thus, the exponential 
function 1- e-at describes the probability that event E has 
occurred by time t (assuming the start of the mission tstart = 
0); its derivative yields the probability density function p(t) 
= ae-at. 
 The cost function combines a number of factors.  
Most important is how the physical process initiated by an 
event unfolds and how cost accrues as a result.  For instance, 
a building fire may start out slowly, at some point begin 
increasing rapidly in intensity, then eventually taper off as 
flammable material runs out and the cost of the fire 
approaches the total value of the building.  This suggests an 
s-shaped cost function such as a sigmoid.  Other factors 
include the initial cost c0 of the event (e.g. from an explosion 
that causes a fire), the maximum cost m that may accrue 
from an event (e.g. the cost of the building plus fire cleanup 
costs), the expected intervention latency l1 (e.g. how much 
time it takes firefighters to get to the site and put out the fire) 
and expected reporting latency l2 (e.g. how long it takes to 

get in range to alert firefighters).  The work described here 
assumes that all events are modeled using a sigmoid 
normalized to intercept the y-axis (cost) at c0 and to 
asymptote at m. 
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Multiplying the probability and cost functions with initial-
cost and latency factors factored out for simplicity (c0 = l1 = 
l2 = 0), we get the ECI equation below for evaluating the 
expected cost of not observing a specified target (associated 
with parameters a, k and m) during the interval t1 to t2 (each 
a displacement from the mission start time t0=0).3 
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From this framework, a clear process emerges for 

how a user can specify mission parameters, apply a 
surveillance decision method and then evaluate the output of 
that method with respect to the mission.  The first step is to 
specify the mission.  This involves defining a start/end 
location, mission duration, surveillance vehicle (with range, 
kinematics, sensors and other characteristics) and set of 
target locations.   Each target is associated with one or more 
events, and each event with parameterized probability 
density and cost functions.  Given our previously described 
assumptions about these functions, users would specify three 
parameters for each event: a, k and m.  The value m is simply 
the maximum (asymptotic) cost of the event.  To determine 
the probability rate parameter a, a user should specify some 
reference probability interval for the event.  For instance, the 
user may specify that the probability of the event is 0.2 
during a 60 minute interval.  Solving for a yields the value 
.00372.  To determine the cost rate parameter k, the user 
should specify a reference cost interval such as $1M during 
the first 30 minutes following occurrence.  Solving for k 
yields the value .0135. 
 Second, after specifying all elements of the mission, 
this information is made available to the algorithm or person 
responsible for generating a surveillance schedule.  The 
algorithm or person’s output may take the form of a 
repeatable sequence that must be translated into a schedule.  
For example, the sequence ABCAB denotes that targets A, B 
and C will be visited repeatedly and in order, skipping C on 
alternate circuits and breaking off just in time to return to the 
start location before the mission end time.  A schedule 

                                                 
3 Though, we implemented a closed-form solution for the integral, 
we found that simple numeric approximation methods provide 
equivalent speed and accuracy. 
 



specifying at what times each target is observed over the 
course of the mission can be generated by simulation based 
on vehicle characteristics, weather and map information.  
The resulting schedule is then used to compute value<method> 
as described in the previous section, providing a 
measurement of the expected benefit of performing 
surveillance using a given method.   
 
Comparative Evaluation Testbed 
In the previous section, we addressed the question of how to 
measure the performance of a surveillance method in a given 
mission.  The next step is to make it possible to compare 
different methods so as to learn their relative strengths and 
weaknesses.  Such comparisons serve two important 
practical purposes.  First, the process of developing and 
refining surveillance algorithms depends on knowing what 
weaknesses should be addressed and on being able to 
measure the effect of intended improvements.  Second, this 
kind of analysis might allow a system to automatically select 
the best method for a newly defined mission by matching to 
the most appropriate method. 
 Comparative analysis requires testing surveillance 
methods against a set of significantly different mission types.  
This raises the question of what features are likely to 
differentially affect the performance of different methods.  A 
set of such features would provide a basis for classifying 
missions into different types and thus for creating a stable 
testbed mission set.  Unfortunately, it is not altogether clear 
which are important.  It is not clear, for example, what 
features should be considered at all, what tradeoffs exist in 
the design of algorithms that are likely to impact sensitivity 
to a given feature and what features tend to vary significantly 
in missions arising in real operations.  

We have created an initial testbed mission set 
consisting of 243 missions based on 5 feature types 
(dimensions), each with 3 values.  Feature types include: N, 
the number of targets to be observed, with possible values 4, 
8 and 16; spatial scale, representing the size of the map in 
which the mission takes place, with possible values .002, .02 
and 0.2 of the range of the vehicle; spatial distribution, the 
degree to which targets are clustered, with possible values of 
uniform, globular and 2-cluster; maxcost distribution, 
representing the variability across targets of the parameter m, 
with possible values of fixed, uniform, and 2-cluster; and 
cost rate distribution, the variability across targets of the 
cost rate parameter k,4 with possible values fixed, uniform, 
and 2-cluster.  All missions use the mission modeling 
framework described above and all have the following 
features in common: mission duration is fixed at 60 minutes 
(the worst-case flight duration of our RMAX helicopter); 

                                                 
4  Specific values of m are {10,20,30,40} with 30 used when 
maxcost distribution = fixed.  Specific values of k are based on 
{20,40,60,80} minutes to reach .9 maxcost with 60 minutes used 
when cost rate distribution = fixed. 

start/end point is located at the centroid of mission targets; 
the probability of occurrence of all events is fixed at .2 per 
hour; and initial cost (c0) = detection latency (l0) = response 
latency (l1) = reporting latency (l2) = 0.   
 Because we expect to enlarge and refine the testbed 
repeatedly as our understanding of user needs and algorithm 
design tradeoffs grows, we have created software that lets us 
easily create and modify testbeds, and run evaluation 
experiments with both algorithms and human subjects. The 
software includes a model of the flight characteristics of the 
RMAX, allowing us to accurately compute travel time 
between targets.  This is likely to be especially important for 
evaluating the impact of spatial scale, particularly where 
targets are relatively near one another, since turn rate in 
aerodynamic flight, acceleration to cruise speed and other 
UAV characteristics are likely to have large and varying 
effects on travel time. 
 
Case Study: 2-opt vs. Human Performance 
To illustrate the described evaluation framework, we 
describe its application to two surveillance methods.  The 
first method is based on a 2-opt exchange algorithm (Reinelt 
1994) for the Traveling Salesman Problem (TSP).  The 
algorithm has been modified in a number of ways in order to 
(a) generate a repeating cycle of visits that start and end on a 
given location but do not visit it in the interim and (b) make 
use of a flight dynamics model requiring that travel time 
between locations is not a constant, but instead varies with 
initial speed, initial turn angle and end turn angle.  It is 
important to note that while these modifications make the 2-
opt algorithm applicable to our surveillance problem, any 
TSP-based approach is likely to perform well only in those 
parts of the space of possible missions where TSP-like 
assumptions hold – e.g. where there are fixed value 
distributions for cost-rate and maxcost.  In general, we 
expect different algorithmic approaches to perform well in 
different parts of the mission space. 
 Second, we evaluated human-decision making in 
directing surveillance, the method corresponding to current 
practice.   A human subject selected surveillance paths for 
each of the 243 mission scenarios in our testbed.  Each 
mission was represented graphically as a map showing all 
relevant dimensions.  Targets were represented as icons 
colored to indicate cost rate (urgency) and with shape varied 
to represent maximum cost (importance).  The start/end 
(home) point was displayed as a distinctive icon and spatial 
scale as a circle centered on the home point whose radius 
represented .002 of the vehicle’s specified flight range.  The 
subject used a mouse to select and modify a route and were 
allowed as much time as they wished on each mission. In 
contrast to the 2-opt method which always attempted to visit 
all targets, humans were allowed to exclude targets from the 
surveillance route if they wished. 
 



Pct. Adv. N Spatial
4 8 16

Scale Rate Cost 2-Cluster Globular Uniform 2-Cluster Globular Uniform 2-Cluster Globular Uniform
0.002 Fixed Fixed 0 0 0 0 14 0 6 31 -3

Clustered 0 0 0 0 16 5 7 29 7
Uniform 0 0 -1 42 24 5 2 10 10

Clustered Fixed 0 0 0 0 0 11 0 0 11
Clustered 0 0 0 0 0 0 0 0
Uniform 0 0 0 0 0 0 0 0

Uniform Fixed 143 47 0 130 19 47 10 93 4
Clustered 22 28 23 0 12 6 3 8 0
Uniform 61 20 -2 0 18 7 2 5 9

0.02 Fixed Fixed 0 0 0 1 1 0 0 1
Clustered 0 0 0 1 1 0 0 1
Uniform 0 0 0 1 1 0 1 2

Clustered Fixed 0 0 0 1 0 0 1 6
Clustered 0 0 0 1 0 0 0 9
Uniform 0 0 0 1 16 0 0 6 0

Uniform Fixed 0 0 0 1 0 0 2 2
Clustered 0 0 0 1 0 0 2 2
Uniform 0 0 0 1 0 0 0 2

0.2 Fixed Fixed 1 0 0 0 -1 0 -2 -22 4
Clustered 1 0 0 -1 5 -10 -6 -15 3
Uniform 0 0 -1 -2 4 -8 -5 -19 4

Clustered Fixed 0 0 0 8 0 14 9 -1
Clustered 0 0 0 9 -1 -11 11 -14 5
Uniform 0 0 -1 16 8 3 5 -10 4

Uniform Fixed 3 0 23 14 -7 22 2 -7 10
Clustered 16 0 23 9 -3 -12 9 -16 8
Uniform 23 0 31 15 4 2 -3 -26 5

1
1
7

0
0
0
0
1

0
1
1
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Table 1.  Percentage difference in performance between 2-opt and human-directed surveillance 
 
 Our initial expectations were that performance 
would vary significantly between the methods based on 
certain strengths and weaknesses.  In particular, the 2-opt 
method, with a computer’s advantages in speed and 
precision, would presumably do well on small scale maps 
where aerodynamic factors would favor complex paths that 
minimize turn angle rather than (only) distance between 
targets.  It would likely perform poorly on maps with varying 
max-cost and rate parameters since it could not reason about 
that information.  Humans, with natural visual-spatial 
capabilities that exceed any computer-based technique, 
might perform well when targets are spatially grouped.  And, 
allowed to exclude targets from the surveillance schedule, 
people would likely perform well on maps where non-fixed 
distributions of max-cost and rate make some targets worth 
skipping and on large scale maps where the importance of 
being selective is especially great. 
 Table 1 shows data for all 243 missions. Data 
entries represent the percentage difference in performance 
between the two methods, with positive values indicating 2-
opt advantage and negative values human advantage.  Values 
outside the range -10% to 10% are in boldface to indicate 
where the greatest differences in performance lie. 
 Overall performance was comparable, with 2-opt 
doing 4.9% better on average.  In the human best case, the 
subject outperformed TSP by 26%, whereas the best 2-opt 

case had a 146% advantage.  The latter was almost certainly 
due to human error, as the mission in which it occurred was 
similar to others where the subject performed well.  This 
may indicate a phenomenon favoring algorithmic methods in 
general: human tendency to err when making surveillance 
decisions. 
 Across the five independent variables, scale and 
cost-distribution stood out as especially significant in 
differentiating human from 2-opt performance (standard 
deviations of 6.3 and 5.6 respectively).  In all 9 cases where 
humans outperformed 2-opt by at least 10%, scale was large 
(0.2).  In 24 of 36 (66%) cases where 2-opt was better by at 
least 10%, scale was small (.002).  N was least significant 
(s.d. = 1.3), though 7 of the 9 cases with human advantage 
>= 10% were with N=16.  The ability to exclude least-
important targets is most likely to prove valuable in large 
scale maps with large numbers of targets.  That human 
performance was best in those cases suggests that this ability 
was the principal human advantage. 
 Contrary to expectations, 2-opt performed relatively 
well with non-fixed cost and rate distributions.  It performed 
particularly well when the rate distribution was uniform, 
performing at least 10% better in 24 cases.  Human 
advantage >= 10% occurred with uniform rate in 3 cases.  
Confirming prior expectations, human performance was 
better in cases with spatial structure (globular and 2-cluster), 



especially when N was high – 7 cases with 10% advantage 
vs. 1 for 2-opt.  This suggests a constraint on the conditions 
in which people will be able to judge which targets to 
exclude. 
 This comparative evaluation was intended only to 
test and illustrate our technique.  In particular, the data on 
human-directed surveillance came from a pilot study 
involving only a single subject.  Given the limits of our 
current data, we limit our interpretation of the results to the 
identification of general patterns that deserve further study.  
We are currently running human subjects in a new version of 
the experiment that incorporates training in effective 
surveillance decision-making and provides computational 
decision aids through the UAV control interface.  The new 
data should provide a more reliable measure of human 
performance in a genuine operational context, and thus a 
better baseline against which algorithmic performance can be 
measured. 
 
Next Steps 
As described in the first section, a practical and effective 
UAV-based surveillance capability requires efforts in three 
areas.  The first is to develop means to evaluate and compare 
different surveillance methods.  There are numerous ways to 
improve the presented approach.  The mathematical 
framework should be extended to include more event types 
(e.g. sequentially reoccurring), more event features (e.g. 
detection latencies) and more diverse probability and cost 
functions.  The mission testbed should be refined and 
extended to include additional features and a greater range of 
values for each feature type (e.g. N=100).  And the whole 
framework should be extended to accommodate multiple 
surveillance agents including not only multiple UAVs, but 
also heterogeneous human and robotic observers. 
 The second area of work is to develop new and 
better surveillance algorithms, iteratively refining them 
based on comparative analyses of their strengths and 
weaknesses.  A particularly important class of algorithms are 
those that make and/or modify surveillance decisions at 
execution-time in response to changing conditions (e.g. wind 
shifts, changes in user information needs).  Though our 
framework has been described as a way to evaluate 
surveillance schedules prior to execution and without regard 
to such changes, it applies equally to post-hoc evaluation of 
schedules generated reactively (at execution-time) in 
response to unfolding events.  As significant changes in 
physical conditions and user needs are likely to occur 
frequently in realistic missions, we anticipate that this 
framework will ultimately be more useful for evaluating 
reactive surveillance methods than for methods that schedule 
exclusively in advance.  In particular, we anticipate applying 
it to assess ongoing scheduler enhancements to the 
Autonomous Rotorcraft Project helicopter’s mission-level 
autonomy component (Apex). 

 Finally, these approaches must be made “usable” in 
real operational contexts where limits on time, knowledge 
and user expertise are likely to constrain interactions with the 
surveillance agent.  On issue of particular concern is to 
enable users without a background in decision-theory or 
mathematics to specify mission parameters.  Though users 
may be experts in the operational domain, eliciting the 
required utility and probability knowledge from them is 
notoriously difficult, though useful techniques exist (French 
1986) and continue to emerge (Wang and Boutilier, 2003).  
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