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ABSTRACT

Self-organizing particle systems (“swarms”) consist of numer-
ous autonomous, reflexive agents (“particles”) whose collective
movements through space are determined primarily by local in-
fluences. We are currently extending particle systems so that
they not only move collectively, but also solve simple prob-
lems. This is done by giving the individual particles/agents a
rudimentary intelligence in the form of a limited memory and
a top-down, goal-directed control mechanism. Such enhanced
particle systems are shown to be able to function effectively in
performing simulated search-and-collect tasks. However, mea-
suring the effects on particle collective performance of different
design choices for individual agents proved to be difficult. We
resolved this issue by allowing different agent teams to compete
with one another under a variety of controlled conditions. This
allowed us to demonstrate clearly how different agent features
(independent vs. coordinated movement, exploratory vs. pro-
tective behaviors) impacted the behavior of the collective as a
whole.

1 INTRODUCTION

Recent work creating computational models of coordinated
movements by collections of locally interacting individuals
includes, for example, models of bird flocks [12, 13], fish
schools [6, 16], social insect swarms [2], and self-assembling
molecules [4]. All of these systems consist of numerous
autonomous “particles” (birds, ants, vehicles, etc.) whose
movements through space are governed by primarily lo-
cal “forces” exerted on them by other nearby particles
or the environment. Methodologically-related approaches
such as particle swarms [8], cultural algorithms [3], and
bacterial chemotaxis algorithms [10] have generalized this
idea to abstract, n-dimensional “cognitive spaces”. Here
we will refer to all of these past models as self-organizing
particle systems.

Typically, these systems consist of mainly reactive par-
ticles whose behavior is completely determined by reflex-
ive movement dynamics. Interactions between these par-
ticles result in remarkably complex global behavior which

emerges from the joint actions and relatively simple be-
haviors of the individual particles, thus exhibiting self-
organization. These properties have led to applications
in computer graphics [12, 13], multi-robot team control
[1, 5,11, 17, 18], and numerical optimization [8]. The sim-
plicity of the particles makes their use difficult for tasks
other than the simulation of movement patterns. How-
ever it has been proposed in a few studies that it is possi-
ble to extend the paradigm towards autonomous problem
solving, for example using multi-robot teams for pushing
objects [9] or foraging [7] or more general tasks as the
Robocup competitions [17].

The ultimate goal of our research is to extend particle
systems to act as more general problem-solving entities
that not only move in a coordinated fashion, but also col-
lectively set goals and make decisions, thereby forming a
self-organizing collective intelligence [15, 19]. By this term
we mean a self-organizing particle system where the indi-
vidual particles are no longer mindless, but have at least a
limited goal-driven intelligence and decision making abil-
ity. To achieve this, the low-level movement dynamics used
in past particle systems is complemented by a top-down,
goal-driven control mechanism capable of simple inferences
and of autonomously switching between different formu-
lations of its movement dynamics. Since such enhanced
particles have simple inference abilities that influence their
movements, we will also refer to them as agents that form a
team. In this paper, we describe our first steps in this work:
combining a finite state machine (FSM) control process
that selects goals and switches between alternate move-
ment dynamics as the agent collective solves “search and
collect” problems.

Given the self-organizing and interactive nature of such
systems, measuring the impact of design choices for indi-
vidual agents on the performance of the system as a whole
poses a particularly difficult problem since the contribu-
tion of the individual components to global behavior can-
not be easily determined. We successfully addressed this
problem by systematically varying specific agent features
and comparing the results through a series of competitions
between different agent teams.
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Figure 1: A small section of a 3000 x 3000 continuous
world with a single “mineral deposit” on the right and
two different teams (dark and light arrows) exploiting it.
Teams’ homes are denoted by small solid squares and min-
eral units as spots. The dark team agents are returning
home carrying minerals (spots adjacent to arrows). Most
agents of the light team are returning to the deposit after
unloading minerals at home, but some of them are simply
exploring.

2 METHODS

As a first test of the benefits of collective rather than indi-
vidual problem-solving, we used a resource collection task.
A team of homogeneous agents is initially deployed at a
random location inside a 2D world with periodic bound-
ary conditions (see Figure 1). In this world, units of some
resource that we call minerals (but which could also rep-
resent any other valuable material) are located randomly.
A few areas are heavily dense in mineral, thus serving as
“deposits”, while the rest of the minerals are scattered
throughout the world. The task of the agents is to collect
the minerals and deposit them in a designated “home” lo-
cation. The success of a team is measured in terms of the
amount of minerals accumulated at its home over time,
which advances in small discrete steps. Other teams may
be present in the world, and members of one team can
potentially hinder rival teams by different means, such as
blocking them (agents are not allowed to collide with oth-
ers), or even stealing from their home.

Agents have a two layer architecture. The bottom level
layer (local information plus movement dynamics) controls
the reactive behavior of the agent, making instantaneous

decisions about the actions to be performed. It takes in-
put solely from the local environment at a given instant,
and outputs a corresponding action based on the imme-
diate goals of the agent and current (local) state of the
environment; this is similar to what has been done in past
particle systems. The top layer, not found in past parti-
cle systems, consists of a very limited memory and a fi-
nite state machine (FSM) that directs agent behavior in a
top-down fashion, modifying the movement dynamics used
over time. For example, if the FSM decides that it is time
for the agent to go home, it will switch to the state carry-
ing and provide the bottom layer with the target location
of its home location. The bottom layer will then deter-
mine at each step the steering actions needed to properly
navigate from the current location to the home. Since the
bottom layer is mostly reactive it can temporarily override
the long term goal of going home for a more pressing need,
such as avoiding a competing agent or obstacle.

Other agents and objects in the world are visible to each
agent as long as they are within its local neighborhood.
The neighborhood of an agent is defined as a circular seg-
ment of radius 7 and angle « in front of the agent. An
agent senses the relative position, orientation and current
velocity of every object in its neighborhood, in addition to
its own current position. Although agents from the same
team are homogeneous and interchangeable, they are able
to distinguish between members of their own team and
other agents. Agents may also know the state of members
of their own team in their neighborhood. Agents are able
to pick up, carry and put down a single resource at a time.

At any time, each agent is in one of several possible mu-
tually exclusive states. For example, an agent could be
searching for minerals or carrying minerals home. These
states and the transitions between them are represented
with a finite state machine (FSM). The agent’s current
state determines which set of parameters for the low-level
reactive controller currently drives its movements and be-
havior. Figure 2 shows the FSM employed in the experi-
ments reported here and the corresponding movement be-
haviors associated with each state. Agents are initially in
an idle state. Once they receive a “start signal”, they be-
gin searching for resources. When they find some, they
choose between picking up the minerals or guarding the
deposit from other teams, depending on whether a group
of guarders is already formed. When an agent detects five
or more agents guarding in its neighborhood, it decides
the deposit is already guarded. Agents recognize a deposit
when they detect a certain amount of minerals in their lo-
cal neighborhood. This implies that homes of other teams
are interpreted as deposits given that they have accumu-
lated enough minerals. If the agent succeeds in picking
up a unit of mineral, then it starts carrying the minerals
home. After arriving home with a unit of mineral and de-
positing it, if the home is unprotected agents go to guard-
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Figure 2: FSM of an agent showing its states and the
movement behaviors associated with each state. States
are represented by circles labeled by <State/associated
controller>, while arrows represent transitions labeled by
the triggering event. The initial state is marked by a dou-
ble circle.

ing to protect it, otherwise they return to the last deposit
they were exploiting (returning to deposit). If the flock
arrives at its (unprotected) home, the first five agents will
become guarders and the rest will return to the deposit.
When an agent is guarding, it will remain so unless all of
the mineral in its neighborhood is taken away (the deposit
is exhausted), in which case the agent returns to searching.
When agents are returning to deposit, it could happen that
the deposit is already exhausted, in which case the agent
goes into searching for another deposit, otherwise it tries
picking up more minerals.

Agents have a very simple memory that allows them
to recall the location of the deposits that the agent has
found and the location of the home of the agent. The
precise current goal of the agent is thus represented as a
combination of the current state and the contents of this
memory. For example, the state could determine that the
agent is going back to a deposit to exploit it, while the
memory determines which deposit the agent is to exploit.

The low level movement dynamics that guide the agent
through the environment are inspired by earlier work
[12, 13]. Movements are governed by a set of individual
influences (avoiding an obstacle or competing agent, stay-
ing with the flock, keeping the same distance from other
agents from the team, etc.) that produce an instantaneous
acceleration determined by a desired velocity vector. The
individual influences are combined in a non-linear fashion.
By changing which individual influences are combined and
their relative weights (done by the FSM), a large variety
of movement behaviors can be implemented, each one as-
sociated with a different state or goal.

Seven individual influences act on each agent and are
computed based on the position and velocity of neighbor-
ing agents. For instance, a cohesion velocity ¥, tends to
move the agent toward the center of the flock and is com-
puted as

r

c
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where j'is the current position of the agent, p,, is the aver-
age position of its neighbors and ¥y, the maximum speed
of the agent. The direction of this velocity is directly to-
ward the center g, of the agents in its neighborhood, while
its magnitude is a fraction of the maximum velocity that
increases quadratically with the distance from that cen-
ter. The remaining six velocities are explained in more
detail in [15]. An alignment velocity tends to move the
agent in the same direction that its neighbors are mov-
ing. An avoidance velocity tends to move the agent away
from other agents. A separation velocity tends to move
the agent away from neighbors by steering away from the
center of the flock. A seeking velocity influences an agent
to move toward an observed unit of mineral. A clearance
velocity influences an agent to steer toward the side when
there is an agent in front of it and tends to align a group
of agents side by side. Finally, a homing velocity drives
the agent to a point in the space such as the home of the
agent or a remembered deposit. The individual velocity in-
fluences are combined as a weighted sum at each time step
to update each agent’s resulting velocity . The summa-
tion process is prioritized, with the terms being added in a
fixed order, and when the sum exceeds a certain threshold
Umae the term is dropped. Different prioritizations and
weight values are used to produce each specific behavior
of the agent. Once the new velocity of the agent has been
computed, its new position is updated.

By prioritizing and weighting each of the seven velocity
components differently, four different movement behaviors
are implemented. Full details are given in [15]. Briefly,
spreading agents tend to form a flock slightly similar to the
broad, V-shaped formations that migratory birds adopt
(Figure 3a). This formation is ideal for searching for de-
posits, since upon seeing a deposit, an agent will tend to
“pull” the rest of the flock to it via local interactions (Fig-
ure 4). Seeking agents go after a target, for example a
unit of mineral, while avoiding obstacles and other agents
(Figure 3b). Caravaning agents move in a pattern similar
to spreading agents, but they are homing on a particu-
lar point in space (e.g., a previously visited deposit) and
thus have a narrower front (Figure 3c). Finally, guarding
agents patrol a deposit (Figure 3d), distributing them-
selves about evenly through the deposit. The interaction
between nearby guarding agents and even non-guarding
agents make them keep moving, effectively orbiting the
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Figure 3: Collective movements. (a) Spreading agents (ar-
rows), are located roughly side by side. (b) Two seeking
agents head to the closest mineral unit (gray spots). (c)
Caravaning agents tending to align. (d) Two guarding
agents patrolling a deposit.

deposit. Since agents cannot bump into each other, this
helps to keep intruders away by repelling them from the
deposit.

Each computational experiment below consists of let-
ting one or more simulated teams search for the minerals
in the world for a limited time. To compare the effec-
tiveness of collective movement behaviors versus indepen-
dently moving agents, a set of independent agents have
been implemented. These agents follow the same model
explained above, with the important exception that they
do not take into account other agents in their dynamics.
The controllers for these agents replace dependent steer-
ing behaviors (cohesion, alignment, separation, clearance)
with random wandering. Collision is not replaced. Other-
wise the FSM of the non-flocking (independent) agents is
the same as for the collectively moving agents (Figure 2).

The results reported below are the average over 20 runs
for each experiment, using 50 agents per team (unless in-
dicated otherwise) in a continuous world of size 3,000 x
3,000 and one team for every type of agent (described be-
low). During each run, 12 deposits were randomly located
and independently created, each deposit consisting of 80
units of minerals. These parameters were chosen so that
it is valuable for a team to go back to a deposit repeat-
edly. Also, the number of deposits and size of the world
make it easy for agents to find the deposits (and other
agents’ home), but still force agents to compete for the re-
source (minerals). Teams’ homes were also independently
located at random in each run and agents were initially
randomly positioned. In each run, the simulation lasted
40,000 time-steps (iterations), which was adequate for the
average amount of mineral in teams’ home to converge to
some value.

Multiple teams of agents were often used in an exper-

imental run, with each team being of a different type.
Which teams were involved could vary from experiment
to experiment. The six different types are:

e Full-guarding flock. Collectively moving agents which
guard home and any deposits that they find.

e Home-guarding flock. These agents will not guard a
deposit, but will still guard their own home.

e Non-guarding flock. These agents are the same as
above except they do not have a guarding state.

e Full-guarding, home-guarding and non-guarding in-
dependent teams. These three types of agents cor-
respond respectively to the three types of flock-
ing agents above, but do not undertake collective
movements; they move independently. They search
through random wandering and see other agents only
as obstacles to be avoided.

3 RESULTS

In the first experiment, a team is present in the world
without any other competing teams. The experiment was
repeated for each team. Figure 5 shows the amount of
minerals collected over time, averaged over 20 runs. After
20,000 iterations most teams have succeeded in collecting
almost all of the minerals available in the world, with the
exception of the full-guarding teams that are still slowly
collecting resources. This is due to the fact that after
the full-guarding teams split off members to guard every
deposit found, not enough agents remain to collect the
minerals rapidly. The non-guarding flocking team seems
to be the fastest in collecting minerals, which is consistent
with the fact that all team members are actively searching
for and collecting minerals, and that in the absence of
other teams, guarding mineral deposits has no value. In
this world where agent teams do not need to compete with
other teams, there is no clear difference between the other
four teams.

In the second experiment, all six types of agents (one
team per type) are present simultaneously in the same
simulation. The number of agents per team was decreased
to 30 to avoid overcrowding. Figure 6 shows the amount
of minerals in each teams’ home over time, averaged over
20 runs. Most striking is that the home-guarding, flock-
ing team’s collected resources increase monotonically, with
this team clearly outperforming all others. Early in sim-
ulations (during the first 5,000 iterations), both this and
the non-guarding flocking team collect minerals faster than
any other team. After the first few thousand iterations, the
explored area of each team is wide enough for teams to find
each others’ homes. Accordingly, the amount of minerals
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Figure 4: Agents in a flock being pulled toward a deposit. The number on top of each agent represents its current state
(0 for Searching for a deposit, 1 for Picking up). Only agents in state 1 actually detect the deposit. At a, only two
agents have located the deposit, while the rest of the flock moves northward. At b and ¢, agents that are near the deposit
but that do not yet see it turn toward those agents that have seen the deposit and are already going toward it. From d
to f, the whole flock gradually turns toward the deposit and collects minerals. Such behavior indicates an advantage of
collective movements in recruiting other agents to carrying a resource when it is discovered by just a few.
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Figure 5: Mineral collected over time by each team alone.
ff: Full-guarding flocking, hf: home-guarding flocking,
nf: non-guarding flocking, fi:full-guarding independent,
hi:home-guarding ind., ni: non-guarding ind.

decreases in subsequent iterations for most teams, espe-
cially the non-flocking teams. The differences in the mean
amount of collected minerals by each team after 40,000 it-
erations over 20 runs are statistically significant at the
level of 95% according to a two-way ANOVA, both in
sociality (flocking vs independent) and guarding strategy
(full-guarding, home-only and none). These data suggest
two main hypotheses. First, teams of collectively moving
agents are more effective at this task than corresponding
teams of independently moving agents. With collectively
moving agents, whenever a deposit was discovered by an
agent, numerous other agents were immediately nearby
and thus pulled in by local inter-agent influences to help
collect the discovered minerals (e.g., see Figure 4). Sec-
ond, for both collectively and independently moving agent
teams, agents that guarded only their home did better
than non-guarding agents, who in turn did better than full-
guarding agents. Presumably allocating agents to guard
resources, especially multiple deposits, has a large cost:
it removes these agents from collecting minerals, and this
loss is not adequately compensated for by any protective
influences they exert through their blocking actions.

The impact of collective versus independent movements
on agent teams can be clarified by varying just that factor
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Figure 6: Mineral present in teams’ home per unit of time
when all teams compete simultaneously in a single world.

between two competing teams. Figure 7 shows the mean
amount of mineral saved at home over time for pairwise
competitions of collectively moving versus independently
moving teams of agents. These results are significant at the
level of 95%. It is clear that the flocking teams are always
faster in accumulating minerals. Even more striking, the
independently moving teams are not sufficiently effective
in protecting its home from being looted by the flocking
team, and their collected minerals considerably decrease
during the following iterations.

Finally, experiments to compare the matched pairs of
guarding versus non-guarding teams were performed. Fig-
ure 8 shows the mean amount of mineral saved at each
team’s home over time. Results are significant at the level
of 95%. Early on in the simulation (about iteration 5,000)
pairwise teams have similar performance, but after this
guarding teams show a clear advantage, as their amount of
minerals saved at home keep increasing, while the amount
of minerals in the home of non-guarding teams decreases,
probably as it is taken by the opposite team. Again, home-
guarding teams perform better than full-guarding teams.

4 DISCUSSION

In this paper, we have examined the question of whether
self-organizing particle systems can be extended to exhibit
behaviors more general than just collective movements.
Specifically, our hypothesis was that by giving the nor-
mally purely reflexive agents found in particle systems a
few behavioral states, a simple finite state transition graph
that governs state changes, and a simple memory of the
locations of significant objects that are encountered, the
resulting agent team would have the ability to collectively
solve resource locate-and-collect problems. Individual be-
haviors are implemented by letting each state of an agent
be associated with both a different goal and with a cor-
responding set of parameters that influence the agent’s
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Figure 7: Mean mineral collected over time by full-
guarding teams. (a) ff: full-guarding flocking versus fi:
full-guarding independent agents. (b) hf: home-guarding
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Figure 8: Mineral present in teams’ homes per unit of time. (a) ff: full-guarding flocking versus hf:home-guarding

flocking.

(b) hf: home-guarding flocking versus nf:non-guarding flocking.

(c) fi: full-guarding independent versus

hi:home-guarding independent. (d) hi: home-guarding independent versus ni:non-guarding independent.

movements. This effectively couples the collectives’ goals
to different movement dynamics. Under such conditions,
where state changes are triggered by environmental events
and the states of other nearby agents in a way that re-
tains the local nature of information processing in particle
systems, one would anticipate the emergence of problem-
solving abilities by an agent team as a whole.

The simulation results presented in this paper and our
earlier work [15, 19] provide substantial support for our hy-
pothesis. As state changes occurred and spread through-
out a collection of agents via local interactions, the group’s
motion as a whole was influenced and shifted to provide
collective problem-solving. An agent team could routinely
search for, collect, and return discovered resources to a
predetermined home location, all the while retaining move-
ment as a “fock” of individuals. Further, it was found in
simulations that a team of agents that moved collectively
was more effective in solving search and collect problems
than very similar agents that moved independently. This
was because when one or a few agents on a collectively-
moving team discovered a site with plentiful resources,
they would automatically pull other team members toward
that site, greatly expediting the acquisition of the discov-

ered resource. Thus, a benefit of underlying collective
movements of particle systems which, to our knowledge,
has not been appreciated in past work, is that they have
the potential to automatically recruit additional agents to
complete a task when one agent detects the necessity of
that task.

We also undertook computational experiments in which
multiple teams with somewhat different behaviors simul-
taneously competed to find and collect the resources that
were present. Regardless of whether the teams competed
two at a time or all at once, we found consistently that
collectively moving agents were superior to independently
moving teams of matched agents in collecting resources.
Further, and regardless of whether agents moved as a team
or independently, we found that those that were allowed
to guard only their home base did best, those that tried to
guard both home and discovered resources did worst, and
those that guarded nothing were in between. This find-
ing reflects a kind of exploration/exploitation trade off:
guarding has a protective value for preserving located and
collected resources, but also a cost in that fewer agents
are available to continue searching for and collecting new
resources. Most importantly, these simulations exhibited



group-level decisions not just about which type of move-
ments to make, but also about when it was appropriate
to split into groups, with one smaller group remaining to
guard resources. They exhibited decentralized cooperation
without explicit coordination, such as when a wandering
agent would follow another agent that knew the location
of uncollected resources, simply because wandering agents
tended to follow other agents. Our results, as well as re-
lated ongoing work [19], show that the reflexive agents of
contemporary particle systems can readily be extended to
successfully support goal-directed problem solving while
still retaining their collective movement behaviors.
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