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ABSTRACT 
In this paper, we have described a technique for terrain traversability 
assessment modeling of mobile robots operating in natural terrain 
and presented a fast near-optimum algorithm for autonomous 
navigational path planning of mobile robots in rough terrain 
environments.  The proposed method is based on visual sensing of 
terrain salient features and analysis of geo-location coordinates of the 
salient features.  Using an algorithmic image processing technique, 
both free and obstacles spaces are differentiated and multiple 
candidate terrain paths are generated for optimization of trajectory 
terrain path of the robot. The algorithm uses a fuzzy logic terrain 
classifier to categories different salient features of the terrain.  A 
virtual simulation is developed for terrain perception modeling and 
verification of generated trajectory path plans of the robot.  The 
developed path-planning algorithm is computationally efficient, and 
suitable for implementation onboard autonomous robotic systems.  
Several different terrain conditions have been tested to validate the 
proposed approach.   
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1. INTRODUCTION 
Autonomous navigation of outdoor terrain in an active pursuit 
of department of defense in battlefield reconnaissance and 
surveillance military operations and NASA in exploration of 
remote planetary surfaces by robotic rovers.  There are a 
number of challenging issues with outdoor terrain navigation.  
A robot must have the ability to operation autonomously and 
intelligently on unstructured terrain with minimal interaction 
with remote human operators.  Robot navigation system must 
provide sufficient onboard intelligence for long-range traverse 
in sanding, muddy, rocky, and poorly structured natural 
terrain, without jeopardizing the robot health and mission 
failure.  
This paper focuses, in particular, on the terrain visual sensing 
and terrain salient features recognition and characterization.  
We have described a method for terrain salient features 
detection using imaging technique and proposed a method for 
terrain rocks formation modeling.  Furthermore, we have 
presented a method for near optimum visual path planning of 
mobile robots in natural terrain similar to the planet Mars 
surface.   Section 2 addresses some of the challenges with 
terrain navigation.  Section 3 presents a method for visual  

 
terrain sensing and salient feature extraction and recognition.  
Section 4 discusses a near optimum method for navigation 
path planning of the robot. Section 5 presents our 
experimental setup. Finally, section 6 presents the conclusion 
of this research effort.    

2. TERRAIN NAVIGATION 
Robot navigation in natural terrain is challenging due to 
uncertainty in recognition of salient features of the 
environment.  Natural terrain is deceiving, superficial, and 
complex.  Without a good perception model of the 
environment, a robot cannot reliably navigate a terrain and 
traverse to its goal successfully.   Terrain traversability and 
path planning of all-terrain robots have been addressed by a 
number of researchers.  Howard et. al., [1]  presented a 
technique for terrain traversability assessment learning for 
outdoor mobile robot navigating. Using human-embedded 
logic in real-time, they demonstrated a technique for 
development of terrain perception based on features extracted 
from imagery data.  In their method, they introduced a fuzzy 
logic framework and vision algorithms for analysis of terrain.  
Golda et. al., [2] presented a probabilistic modeling technique 
suitable for analysis of high-speed rough-terrain mobile 
robots.  They have experimentally shown that their model can 
accurately predict robot performance in simple, well-known 
terrain, however, in unstructured environment, their stochastic 
method performance was degraded.  A combination of terrain 
complexity and unaccountable uncertainty measures were 
found as leading causes in degradation of their predictive 
terrain assessment model.   

For long-range terrain navigation, accurate maps of the terrain 
are critical for robot navigation system.  Without such maps, a 
robot may spend much time and energy venturing along what 
turns out to be a dead end.  Olson et. al. [4] developed a 
method based on visual terrain mapping of Mars rovers.  
Using a visual stereo imaging fusion technique, they have 
demonstrated a reliable method for high fidelity terrain 
mapping and robot world perception modeling.   By compiling 
terrain map images using a system that unified multi-
resolution models, they were able to integrate Mars descent 
and orbital images to obtain 3D terrain maps used by rovers 
for navigational purposes.   



Autonomous robot navigation in natural terrain can be divided 
into three closely related tasks:  (1) Route Planning, (2) 
Navigation Planning, and (3) Mobility Planning.  As 
illustrated in Figure 1, in Route Planning, objective is that of 
assessment of the terrain in bulk from a large distance away 
and deciding on feasible terrain courses that maximize 
traversability potential of the robot as well as its safety and 
health.  Another objective is to identify pertinent intermediate 
landmarks.  The landmarks are used as waypoints that robot 
can easily identify along its path and localize itself with 
respect to them if necessary.   A typical route path plan may 
consist of many waypoints laid out on either an aerial map or a 
landscape image captured from a ground level, or a series of 
global position coordinates defined manually.  Typical range 
of applicability of route planning ranges from 10 to 1000’s 
feet or higher.   

Navigation planning, on the other hand, can be considered as 
localization of obstacles, treacherous, hills, and slopes, 
positive and negative objects.  Typical range of applicability 
of navigational planning varies from 2 to 12 feet for a slow 
moving robot and to a higher range for a fast speed robot.   In 
navigation planning a set of short traverse path segments from 
current robot location to next intermediate landmark or the 
goal are decided.  Navigational planning and following are 
coupled and achieved by means of a map or some model of 
environment.  Localization and navigational error recovery is 
critical at this phase, in order to keep the robot as close as 
possible to its designated path or model frame of reference 
between its intermediate landmarks.  Due to loss of 
environmental details in the field of view, navigational 
certainty in correct recognition of landmarks tends to diminish 
with the distance of landmarks from the robot.  To keep the 
navigational certainty under control, typically the range of 
effectiveness of localization is within a few feet radius from 
the robot.  Depending on the navigational speed of the robot, 
terrain intricacy, and sensory reliability, this range can be 
adjusted appropriately.   

 

The purpose of Mobility planning is that of describing a set of 
low-level drive actions that moves the robot through its 
obstacle terrain while negotiating and/or avoiding obstacles 
along its path.   An important consideration in this phase is the 
dynamic interaction of the robot with its environment, in 
particular, detection of robot wheel traction losses during 
steering while avoiding wheel traps, wheel supports, and tip 
over states [6].  Another consideration is optimization of 
robot’s safety, energy, and reliability [5].  Typical range of 
applicability of mobility planning is from a few inches to a 
few feet depending on physical ability (i.e., wheel diameter) of 
the robot, and complexity of the terrain.  In [6], dynamic 
modeling of robot and environment is shown reliable for 
simple, well-characterized terrain.   However, on rough 
terrain, unknown terrain, model fidelity degrades due to 
imprecise knowledge of terrain parameters. 

For terrain navigation, it is very difficult if not possible to 
obtain a precise mathematical model of the robot's interaction 
with its environment.  Even if the dynamics of the robot itself 
can be described analytically, the environment and its 
interaction with the robot through sensors and actuators are 
difficult to capture in a mathematical sense.  The lack of 
precise and complete knowledge about the environment limits 
the applicability of conventional control system to the domain 
of autonomous robotics.   If one draws an analogy to 
navigational skills of animals and humans in nature terrain, 
they both perform route, navigation, and mobility planning 
simultaneously and intelligently without getting trapped in the 
middle of terrain obstacles.  Vision plays the most critical role, 
though physical mobility ability plays an equal important role 
in achieving navigational mobility objective.  This observation 
motivated what it follows here.  In this paper, we have 
presented an approach that solely relies on visual terrain 
characterization and intelligent path planning based on 
localization of salient features of the environment.   

 

 

Figure 1. Three Stages of Navigational Path Planning in Natural Terrain
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3. TERRAIN PATH PLANNING  
The proposed visual navigational path-planning scheme is 
comprised of three phases.   In the first phase, an image of 
natural terrain is obtained for detection of salient features of 
the environment.  Using imaging techniques, the salient 
features are isolated and characterized.  The environment 
features we are interested about include: obstacle free areas, 
rocks formations, sand piles, hills, and slopes.  By salient 
features analysis, we can determine measures characterizing 
the environment surroundings and classify them appropriately.  
Furthermore, additional information such as rocks density and 
geolocation distribution, instable sand piles, and high risks 
ground conditions (i.e., hills, and slopes) for mobility can be 
discovered and avoided during navigational path planning of 
the mobile robot.  In the second phase, our algorithm 
generates a number of waypoints that mark out a near 
optimum traversable trajectory path for the robot to follow 
toward its specified target location.  In the last phase, a virtual 
model of the terrain is constructed based on geo-location 
coordinates and physical attributes of the salient features of 
the environment.  The terrain model serves the robot as a 
reference model that embeds the robot's state of perception of     
its surroundings.  The terrain model is applicable for 
simulation verification of robot's generated path plans; in 
particular, it is appropriate to give the operator tele-presence 
sense of robot's situation in the remote terrain.   Figure 2 
presents an example of a rough terrain that our algorithm has 
analyzed along with the salient features that it has 
characterized.  It also shows a generated world perception 
model of the rough terrain.  The followings present details of 
this visual terrain traversability assessment technique. 

Initially, we divide an image of terrain captured by the robot 
into a matrix of smaller sub-windows and apply an adaptive 
binarization technique on each sub-window.  This adaptive 
binarization method locally selects an optimum threshold for 
binarizing of each sub-window.  The resultant binary image is 
a nonlinear map of geo-location of obstacles in the image 
frame and thresholds small rocks that are of insignificant size 
from the background.  We explained the non-linearity issue of 
obstacles geo-location map in next paragraph.  The resultant 
image can now be thought of a binary image where center of 
each black pixel represents the location of the obstacle centers 
in the original image.  Next, a weight factor is assigned to 
each black pixels of the resultant binary image.  By 
convoluting the compressed binary image, each black blob 
cell corresponds to an obstacle center is assigned a weight 
proportional on number of black blob cells surrounding it.   
This operation results obstacles appearing farther away from 
central obstacle receive less or equal weight depending on 
number of obstacle cell surrounding it.  The result of this 
convolution operation is a hilly field map of the terrain 
environment.  Note that obstacles relative gap from one 
another in the image frame is not linear.  This is due to the fact 
that obstacles farther away from camera appear compressed in 
the depth of view.  The depth perception diminishes rather 

with the square distance of obstacle from the camera.  This 
fact is obvious by observation of Figure 2a.  Much wider area 
of terrain is apparent in the upper part of image than in the 
lower part of image.  Prior to analysis of the image field map, 
therefore, we map image coordinates of each sub-window to 
the 3D world coordinate using a camera calibration method 
described in [7].                           

Next, we apply a generic algorithm to obtain a free path for 
the robot among the obstacles.  In the generic algorithm, size 
of the robot is assumed the same size as the width of diagonal 
distance of terrain area covered by the sub-window in the 
bottom row of the obstacle geo-location map.  Note that 
physical area represented by image sub-window at upper rows 
is greater than that of image sub-window at the first row.  The 
generic algorithm is a fast divide-and-conquer approach that 
searches the obstacle geo-location map row by row.  It starts at 
a row above the first row and at the column where the robot is 
located.  In that row, it searches left and right free spaces to 
the robot and measures a risk factor for each free space that is 
proportional to summation of obstacle centers around it.   The 
algorithm determines the most suitable waypoint that 
minimizes the traveling distance of the robot progressively 
from start to goal.  In an essence, it finds the safest waypoint 
in the current row that is closest to a straight path connecting 
the position of the robot to its desirable target location.  This 
optimization method further attempts to intelligently choose a 
waypoint that is away from any major obstacle along its path.  
The multi-valued optimization process is carried out layer-by-
layer and at each layer through this process a new waypoint is 
designated for the robot to follow.   
Navigation planning is crucial for short-range robot steering.  
Due to close proximity of robot camera to ground very useful 
details about salient features of the terrain can be detected at 

Figure 2.  (a) A Rough Terrain, (2) Obstacles Geo-Location 
Map 
 (c) Generated Free Path, (d) Close-up View of Generated Free 
Path



this stage and characterized with higher degree of confidence.   
As a robot traverses natural terrain, images may be 
periodically acquired for traversability assessment.  In each 
period, condition of the terrain can be classified based on the 
relevant features extracted from the images.  One good 
method of embedding human knowledge is to apply fuzzy 
logic classification system.   Human knowledge can be 
integrated in terms of knowledge base (i.e., fuzzy rule sets and 
membership functions).   One method also for terrain 
condition assessment is to perform object surface texture 
analysis.  Objects in different natural terrain have certain 
distinctive texture properties.  The common surface texture 
attributes include: contrast, variance, energy, entropy, and 
homogeneity.   Image texture is basically due to arrangement 
of pixel intensities variations that form certain repeated 
pattern(s).  Image repeated patterns are caused by physical 
surface properties of terrain objects, such as rocks roughness, 
sand piles waviness, and so on. They could be result of light 
reflectance from surface of an object.  One reliable way to 
classify textures is to apply quantitative statistics.   

An image is a matrix of pixel intensities, Ii,j.  We can define 
co-occurrence of image matrix as Pi,j such as every entry in 
co-occurrence matrix, Pdi,j, is difference in intensity between 
a pair of image pixels(i and j), that are distance d pixels apart 
in original image in a given direction.   With this notation, the 
Energy associated with an image that is a measure of textural 
uniformity of an image is defined as: 

Image Energy reaches its highest value when its image pixel 
intensity level distribution has either a constant or a periodic 
form.   Furthermore, Image Entropy is a measure of disorder 
of an image and achieves its largest strength when all elements 
in the P are equal.   Entropy is inversely proportional to 
Energy and is defined as: 

Image contrast, on the other hand, is a difference of the P and 
it measures the amount of local variation of an image.  The 
image contrast is measured by: 

Image homogeneity is inverse different moment measures of 
image and achieves its largest value when image pixel 
intensity repetitions are concentrated near the main occurrence 
matrix diagonal.  The image homogeneity is defined as:   
In order to minimize the computation requirement, we choose 

the contrast, variance, and energy texture attributes as basis 
for terrain surface texture analysis.  They provide reliable 
statistical assessment of a terrain object surface texture, in 
particular, when small image window are analyzed to assess 
the terrain condition.   

In our approach, we divide a full size terrain image into 
hundreds of finite (small) sub-windows. For each finite image 
sub-window, we perform surface texture analysis and apply 
fuzzy logic rules for classification of the terrain. This process 
is analogous to stress state analysis of a loaded mechanical 
part when subjected to Finite Element Analysis (FEA).  In a 
FEA process, stress state of each finite element is individually 
computed under physical constraints and restriction and then 
stress states of computed finite elements are aggregated to 
assess the complete stress state of the object under applied 
loads.  We follow a similar approach. We initially conduct 
terrain traversability assessment on individual finite sub-
windows of image independent of context of the whole image, 
and then aggregate the results to achieve terrain traversability 
assessment measures and classifying salient features of the 
nature terrain vigorously.  

This method has two benefits.  First, it allows much simpler, 
yet more inclusive fuzzy rule system to be developed for 
terrain traversability assessment purposes. Secondly, the 
method offers an opportunity for performing parallel image 
processing since each sub-window image can be 
independently analyzed. This feature can expedite terrain 
traversability assessment considerably if the robot has onboard 
parallel computation capability. For development of fuzzy 
rules and membership functions, we chose a set of natural 
terrain image samples randomly selected from among many 
salient features of different terrains.  We asked some terrain 
experts to classify terrain conditions at locations where the 
finite image sub-windows were taken. In parallel, for each 
finite image sub-window we computed their corresponding 
image surface texture properties. We compiled over 200 
different natural terrain data patterns. By considering range of 
texture attributes variation of these sample data, we developed 
a set of suitable fuzzy logic membership functions and fuzzy 
rule systems that closely mimic the human expert's judgment 
of the terrain traversability. 
  

4. TERRAIN TRAVERSABILIY  
ASSESSMENT ALGORITHM 
Table 1 summarizes the algorithm we discussed above.  The 
algorithm performs identification, localization, and 
recognition of rock formations and generates a collision free 
traverse path based on the optimization technique discussed 
earlier in section 3.  The algorithm initially enhances the 
image by removing noises and applies a Canny edge detector 
to extract out rocks edges. Next, an adaptive binarization 
convolution method is applied to binarize the image.  The 
result is the blobs of rock formations with enhanced edges.  
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The algorithm sorts the rock blobs according to their size and 
ignore the smaller rocks that can be negotiated with the robot 
during mobility planning phase.  The remaining rock blobs are 
treated as obstacles that the robot needs to avoid.  The 
algorithm computes center location and principle moments of 
the rock blobs.   

The algorithm uses a Fuzzy Logic Terrain Classifier (FLTC) 
to compute a certainty confidence factor for each detected 
rock blob.  The objective of FLTC is to verify that indeed the 
detected blob has surface texture similarity close to that of a 
rock.  Using texture analysis method, we compute image 
intensity contrast, energy, and variance, as well as rock blob 
area.  The first three attributes yield the most consistent 
indication of the rock texture formation.  The last attribute 
helps with the physical size classification of the rock.  The 
image texture attributes are used as input to the FLTC.  Figure 
3 presents nine cases by which we geometrically characterize 
the shape formation of the rocks.  Figure 4 presents the fuzzy 
membership functions corresponding to these image texture 
attributes.   The fuzzy inference engine of FLTC classifies the 
rocks based on a certainty confident level.   Figure 5 illustrates 
the fuzzy output membership functions considered for this 
purpose for classification of rock formations. After 
verification of the rocks, we apply a geometrical analysis 
scheme to characterize geometrical formation of each detected 
rock.    

 
Table 1. Algorithm for Terrain Traversability Path Planning 

and Assessment 

1. Apply a low-pass filter to reduce noise. 
2. Apply an Adaptive Binarization to binarize the image.  
3. Apply a blob detector to isolate rocks bigger than a size 

threshold level. 
4. Compute texture attributes of next largest rock blob. 
5. Apply fuzzy logic rock classifier to determine rock 

detection certainty.   
6. If rock detection certainty is above a threshold value, 

compute center location and principle moments of the 
rock blob; otherwise continue with step 4. 

7. Characterize and model the rock geometry and log in its 
coordinates, orientation, and geometrical configuration 
and dimension; if more rocks are remaining for analysis, 
continue with step 4.    

8. Map location of each rock to the world 
9. Apply the divide-and-conquer collision free traverse 

pathfinder as described in section 3 to generate near-
optimum traversable trajectory paths for the robot. 

10. Select a feasible trajectory path with the highest measure 
of traversability. 
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Figure 3. Nine rock formation models and their dimensional 
measurement probing methods. 

θ
α0

α1

A1

A2

A3

A4

A0

A5

A6

A7

A8

α0

α1

A8

A7
A6

A5

A1
A0

A2
A3

A4

θ

α0

α1

A4

A8

A7
A6

A5

A0
A1

A2

A3

θ α0

α1

A8

A7
A6

A5

A0A1

A2
A3

A 4 

θ α 0 α1

A 1 
A 3 

A 4 
A 0 

A8

A 2 
A 5 A 6 A7

θ
α0

α1

A3

A4

A0

A6

A7

A8

A5

A1

A2

θ

θ

α 0 α 1 
A8

A 7 
A 6 

A 5 
A 0 

A 1 
A 2 

A 3 
A 4 

θ

A 8 
A 7 

A 6 
A 5 

A 1 A 0 
A 2 

A3

A4

α 1 
α0

A4

A8

A7

A6

A5
A0

A1

A2

A3
θ 1 α0

α1

θ
α0

α1

A1

A2

A3

A4

A0

A5

A6

A7

A8

α0

α1

A8

A7
A6

A5

A1
A0

A2
A3

A4

θ

α0

α1

A4

A8

A7
A6

A5

A0
A1

A2

A3

θ α0

α1

A8

A7
A6

A5

A0A1

A2
A3

A 4 

θ α 0 α1

A 1 
A 3 

A 4 
A 0 

A8

A 2 
A 5 A 6 A7

θ
α0

α1

A3

A4

A0

A6

A7

A8

A5

A1

A2

θ

θ

α 0 α 1 
A8

A 7 
A 6 

A 5 
A 0 

A 1 
A 2 

A 3 
A 4 

θ

A 8 
A 7 

A 6 
A 5 

A 1 A 0 
A 2 

A3

A4

α 1 
α0

A4

A8

A7

A6

A5
A0

A1

A2

A3
θ 1 α0

α1

θ
α0

α1

A1

A2

A3

A4

A0

A5

A6

A7

A8

α0

α1

A8

A7
A6

A5

A1
A0

A2
A3

A4

θ

α0

α1

A4

A8

A7
A6

A5

A0
A1

A2

A3

θ α0

α1

A8

A7
A6

A5

A0A1

A2
A3

A 4 

θ α 0 α1

A 1 
A 3 

A 4 
A 0 

A8

A 2 
A 5 A 6 A7

θ
α0

α1

A3

A4

A0

A6

A7

A8

A5

A1

A2

θ

θ

α 0 α 1 
A8

A 7 
A 6 

A 5 
A 0 

A 1 
A 2 

A 3 
A 4 

θ

A 8 
A 7 

A 6 
A 5 

A 1 A 0 
A 2 

A3

A4

α 1 
α0

A4

A8

A7

A6

A5
A0

A1

A2

A3
θ 1 α0

α1

measurement probing methods. 

Figure 4. Input Membership Functions of Fuzzy Logic 
               Rock Classifier 

Contrast

Energy

Rock-Blob Area

Variance

Figure 5. Output Membership Function of Fuzzy Logic 
               Rock Classifier 

Roughness



 
 
Of a particular importance is boundary formation of each rock 
around its first moment axis and mass distribution of the rock 
around its first moment.  Two factors that control the shape 
appearance of the rock.   We model the shape of rocks in our 
virtual simulation environment using either hemi-spherical or 
ellipsoidal geometrical representations.  We use hemi-
spherical rock representation to model that class of rocks 
appeared to have square dimensional proportionally.  For the 
rocks appeared to have rectangular configuration, however, 
we use one of the nine models depicted in Figure 3.  We 
construct an ellipsoidal object using a lofting technique 
applied in CAD software for construction of solid objects.  A 
loft is result of surface formation achieved by connecting 
contour of several parallel construction polygons together.  To 
model each rock as a loft, we use the first principle moment 
axis of the rock and create eight spaced, parallel, semi-circles 
construction polygons with varying diameters proportional to 
circumferential diameter of the rock in normal direction to its 
first principle moment axis.  Depending on the orientation of 
the rock's first principle moment axis, the algorithm selects an 
appropriate rock model representation.  The circumferential 
diameter of the rock is measured in incremental distance along 
longitudinal direction of the rock's first principle moment axis.  
Line segments A0 through A8 shown for each rock model in 
Figure 3 illustrates position and direction of measurement of 
the rock's circumferential diameters.  Measurement is 
accomplished by image probing along the line segments Ai 's 
in the binary image. See Figure 6b. In the final step of this 
algorithm the path planning technique described in section 3 is 
applied to generate a near optimum free path for the robot.  
Figure 6 presents terrain modeling and geo-location 
distribution of rocky surface of a Martian Terrain.  
 
5.   PERFORMANCE MEASUREMENT 
The proposed terrain traversability assessment method was 
tested for assessment of several natural terrains.  We chose 
several B/W and Color images taken by Pioneer and 
Opportunity Mars rovers from Mars terrains.  The images 
were in size 320x240 pixels.  We chose square sub-window 
frames of size 20x20 pixels for terrain assessment sampling.    
Figure 7 and 8 shows the results analysis of four different 
types of Marian terrains.  The six terrain classifications are 
performed for each terrain.  The classes of sub-terrain 
conditions that were classified were:  (S) sandy, (V) very 
small rock, (m) rough, (M) very rough, (B) big rocks, and (U) 
uncertain.  The algorithm classifies those areas of terrain that 
are unknown to its internal fuzzy logic model as "uncertain".   
Another situation that algorithm classified terrain as uncertain 
is at the border near to horizon line.  Due to loss in depth of 
view, objects appearing near to horizon line cannot be 

uniquely differentiated and classified properly.  As shown in 
Figure 7b, the terrain assessment map shows uncertainty about 
the terrain context at two rows near to horizon line.  
Depending on pitch angle of the camera, the perception of 
terrain weakens in the image frame as we move from bottom 
of the image toward to top.   This problem is more severe 

 during route planning phases where the camera is looking 
directly straight toward the horizon with pitch angle near to 
zero.  However, this problem tends to be troublesome for 
navigational planning phases (since the camera is pitched 
more toward the ground and terrain content appears manifestly 
in the image frame).  Notice this observation in Figure 7c.  
The Terrain Traversability Assessment Measure (TTAM) that 
we used to evaluate the performance of the fuzzy logic terrain 
classifier was: 

(a)

(b)

(c)

Figure 6.  (a) An Image of Mars Terrain, (b) Localized Rock Blobs 
(c) Modeled Terrain

(a)

(b)

(c)

Figure 6.  (a) An Image of Mars Terrain, (b) Localized Rock Blobs 
(c) Modeled Terrain



Where, Mij is either 1 when terrain is classified correctly, 
otherwise 0. ijw  is a weight factor that reflects value 
criticality of terrain classification.  It may be assumed flat 
unity for all different classes of terrain condition, or assigned a 
range of values based on a degree of belief one may have on 
reliability of classification of the system.  We chose the latter 
alternative.  We selected the range of values of ijw  according 
to the following scheme:  

Sandy Terrain:           1.0           Very Rough Terrain:  1.3 
Very Small Rocks:    1.0            Rocky Terrain:           1.5 
Rough Terrain:          1.2 

5. EXPERIMENTAL SYSTEM SETUP 
To experimentally verifying the proposed rock detection 
techniques and navigational path planning technique, we 
constructed a terrain mock up similar to Planet Mars surface. 
Figure 9 presents the physical Mars mock up test bed.   The 
test bed provides a sand pile in size of 16 x 12 feet and rocks 
of various size and shapes.  Our laboratory has several all-
terrain robotic platforms.  Our robots are equipped with laser 
scanner, sonar, and stereovision cameras.   Many smaller 
rocks cannot be detected using either laser scanner nor the 
sonar sensor suit located around the robot since the elevation 
of the sensors is too high related to the height of the smaller 
rocks we have.  This necessitated usage of camera to visually 
inspect the rough terrain during navigation.   

As a part of this original investigation, we did not employ 
stereovision capability of our robot, though it is possible to 
fuse visual and stereovision results to achieve more robust 
analysis of the terrain [4].  Moving on soft sand pile creates 
not a major problem for our all-terrain robots. Our robots are 
relatively heavy and compacts the soil under theirs wheels that 
results good traction for the robot. They also benefit from all-
terrain tire rims that provide a sturdy traction with the ground.  
However, traction losses become on steep slopes.  Due to the 
later problem, dead-reckoning cannot be respected and visual 
localization relative to landmarks is a better method for 
localizing the robot.  We are currently implementing the 
algorithms on our robot supervisory controller called CORMI.  
CORMI stands for Cooperative Robotic Man-Machine 
Interface that is developed using FMCell robotic modeling and 
control software.  FMCell provides an intuitive man-machine 
interface tools for control, sensor and image processing of 
cooperative robotic systems.   Our reference [11] provides a 

detail description of our Cooperative Robotic Man-Machine 
Interface (CORMI). 
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Figure 7.  (a) A Mars Terrain, (b) Fuzzy Logic Terrain 
Assessment Results.  The Designation Are: (S) Sandy, (V) Very 
Small Rocks, (m) Rough Terrain, (M) Very Rough Terrain, (B) 
Big Rock, (U) Uncertain,  (c) Another Mars Terrain, (d) Fuzzy 
Logic Terrain Assessment Results.   Figure (b) and (d) are 
colored coded. 
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Figure 8.  (a) A Mars Terrain, (b) Fuzzy Logic Terrain 
Assessment Results.  The Designation Are: (S) Sandy, (V) Very 
Small Rocks, (m) Rough Terrain, (M) Very Rough Terrain, (B) 
Big Rock, (U) Uncertain,  (c) Another Mars Terrain, (d) Fuzzy 
Logic Terrain Assessment Results.  Figures (b) and (d) are 
colored  coded. 
 
 



CONCLUSION 
In this paper, we have discussed some of the navigational 
challenges associated with path planning of mobile robots in 
natural terrain navigation traversability assessment and 
presented a method for route planning and navigation planning 
in rough terrain.  The proposed method applies imagery 
techniques for detection and localization of terrain salient 
features.  For route planning, we have proposed a divide-and-
conquer near-optimum path planner method that is both fast 
and robust in generating collision free trajectory path plans. 
We have also presented a method for terrain traversability 
assessment and characterization based on a fuzzy logic 
approach.  Both approaches are fast and can be readily 
implement onboard mobile robot to assist the robot with 
terrain path planning and traversability assessment online. 
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Figure 9.  Mars Mockup Arrange at Intelligent Tactical  
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REFERENCES 
[1] Howard A., Tunstel E., Edwards D., and Carlson A., 

"Enhancing Fuzzy Navigation Systems for Mimicking 
Human Visual Perception of Natural Terrain 
Traversability," in the Joint 9th IFSA World Congress 
and 20th NAFIPS Int. Conf., pp. 7-12, Vancouver, B.C., 
Canada, July 2001. 

[2] Kubota T., Nakatani T., and Yoshimitsu T.,  "Path 
Planning for Planetary Rover Based on Traversability 
Probability," In 7th Int. Conf. on Advanced Robotics, 
Sant Feliu (Spain), Sept. 1995. 

[3]  Cherif M., and Laugier C., "Dealing With Vehicle/Terrain 
Interaction When Planning the Motions of a Rover," in 
the IEEE International Conference on Intelligent Robots 
and Systems, Munich (Germany), Sept. 1994. 

[4]  Olson, C. F., Matthies, L. H., Wright J. R., and Li R., and 
Di K., "Visual Terrain Mapping for Mars Exploration," 
IEEE AC paper #1176, 2003. 

[5]  Golda D., Iagnemma K., and Dubowsky S., "Probabilistic 
Modeling and Analysis of High-Speed Rough-Terrain 
Mobile Robots," in the Proc. of the 2004 IEEE Int. Conf. 
on Robotic and Automation, New Orleans, LA, April 
2004. 

[6]  Iagnemma, K., Golda D., Spenko, M., and Dubowsky S., 
"Experimental Study of High-speed Rough-terrain Mobile 
Robot Models for Reactive Behaviors," Proc. of the Int. 
Symp., on Experimental Robotics, Italy, 2002. 

[7] Sirisha R., and Shirkhodaie A., "Visual-Servoing and 
Navigation of Mobile Robots for Targeting Applications 
With Laser Sensory Data Fusion," IEEE SSST 33rd 
Southeastern Symposium on System Theory, March 18-
20 2001. 

[8] Shirkhodaie A., "Second Annual Research Progress 
Report," submitted to JPL, Tennessee State University, 
Department of Mechanical and Manufacturing 
Engineering, July 2004. 

 [9] Shirkhodaie, A., "Visual Telerobotic Task Planning of 
Cooperative Mobile Robots," 1st NASA/JPL Project 
Progress Technical Report, July 2003, Tennessee State 
University, Department of Mechanical and Manufacturing 
Engineering. 

[10] Shirkhodaie, A., "Visual Telerobotic Task Planning of 
Cooperative Mobile Robots," 1st NASA/JPL Project 
Progress Technical Report, July 2003, Tennessee State 
University, Department of Mechanical and Manufacturing 
Engineering. 

[11] Devgan, T. P., "Man-Machine Interface for Teleoperation 
And World Perception Modeling of Cooperative Mobile 
Robots," M.S. Thesis, Department of Mechanical and 
Manufacturing Engineering, Tennessee State University, 
August 2003. 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 


